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Background
With rapid advances in sequencing techniques, RNA sequencing, or RNA-seq, has 
emerged as a technique of choice for the characterization and comparison of transcrip-
tome at a genome-wide level. Studies performing various transcriptomic analyses such 
as expression profiling of genes, variant analysis, novel transcripts identification or 
fusion gene detection typically start by mapping RNA-seq reads back to the reference 
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genome or transcriptome [1, 2]. In cases where a reference genome or transcriptome 
is not available, which is typically the case for non-model organisms, studies typically 
start by generating a de novo transcriptome assembly for the organism under study. For 
this, raw RNA-seq reads are assembled into contigs, corresponding to expressed tran-
scripts, using one of the several popular reference-free transcriptome assemblers such 
as Trinity [3], Oases [4], Trans-ABySS [5], IDBA-tran [6], and SOAPdenovo-Trans [7]. 
More recently, studies involving RNA-seq data have started using supertranscritome ref-
erences instead of transcriptome references [8–11]. A supertranscriptome is a type of 
transcriptome reference which combines all transcribed splice variants for a gene in one 
supertranscript thereby providing a compact reference for read alignment and subse-
quent downstream analyses [8, 12].

Assembling a transcriptome or supertranscriptome using RNA-seq reads is, however, 
a challenging task due to significantly varying abundance of mRNA transcripts, alterna-
tive splicing, gene duplication and sequencing of intronic regions present in pre-mRNA 
or decaying of mature mRNA [13–16]. The problem is further compounded by the pres-
ence of sequencing errors in the underlying data and the computational limitations of 
the algorithms used by these assemblers, which typically adopt a number of heuristics 
to speed up the assembly process [17–19]. As a result, while the assemblers produce a 
workable assembly, they also generate a number of erroneous contigs which do not truly 
represent underlying biological supertranscripts thereby decreasing the overall assembly 
accuracy [18, 20]. Some of the common supertranscriptome assembly errors are shown 
in Fig. 1. These include (i)  supertranscript redundancy whereby multiple copies of the 
same supertranscript are generated due to underlying DNA polymorphism or sequenc-
ing errors, (ii) incomplete supertranscript where one or more whole or partial exons are 
missing either at one side or both sides of the assembled contig, (iii) fragmented super-
transcript where two or more contigs corresponding to different regions of a super-
transcript are present which could not be joined together during the assembly process, 
(iv) false chimeras which correspond to contigs generated as a result of erroneous fusion 
of two or more full or partial supertranscripts, and (v) local mis-assemblies and errors 
which are characterized as missing sequences, unsupported insertions, inversions and/
or translocations in the contigs [18, 21–24]. These assembly errors not only prevent 
accurate functional annotation of the supetranscriptome but also affect the downstream 
analyses such as identification of differential gene expression, splice variants and homol-
ogous genes [24].

In recent years, a few tools have emerged to correct one or more of the aforemen-
tioned assembly errors. For example, DRAP fixes partial contigs by re-assembling 
them using RNA-seq data and evaluates the results by comparing against a user-pro-
vided reference protein sequences [13]. Similarly, BRANCH identifies and completes 
partial contigs by taking information from genomic assembly along with transcrip-
tome assembly and RNA-seq reads to extend incomplete contigs and obtain full-
length transcripts from partial contigs [16]. However, as reported by the authors 
themselves, this approach may negatively affect the transcriptome assembly improve-
ment due to errors in the genomic assembly itself [16]. To deal with false chimeras, 
the most commonly used approach is the comparison of assembly contigs with closely 
related species using BLAST [24] making the reliability of the results conditioned on 
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the availability and quality of the data for closely related organisms. DRAP [13], on 
the other hand, checks for the presence of one unique full-length open reading frame 
(ORF) per transcript to identify and split chimeric contigs. While this seems a very 
good approach to distinguish normal contigs from chimeras, however, in practice it is 
not viable due to the presence of incomplete and/or fragmented contigs and chimeras 
resulting from the fusion of partial contigs. Moreover, ORFs are not defined for super-
transcripts making this approach unfeasible when working with supertranscriptomes. 
None of the above-mentioned tools addresses the issues of local mis-assemblies. Also, 
to the best of our knowledge, no tool attempts to correct any of these assembly errors 
in a supertranscriptome.

Here, we present ROAST: Reference-free Optimization of Assembled SuperTran-
scriptomes, a tool which aims to simultaneously correct all the assembly errors 
highlighted above and enables reference-free optimization of supertranscriptome 
assemblies. ROAST is an iterative tool, which uses paired-end information of the 
reads produced from Illumina sequencing platform and error signatures includ-
ing soft-clips, unexpected expression coverage, and reads with mates unmapped or 
mapped on a different contig [22] generated by RNA-seq alignment tools to identify 
and fix supertranscriptome assembly errors. We demonstrate ROAST by generating 
and improving de novo supertranscriptome assemblies of five model organisms from 
previous analyses [7, 23] including human (Homo sapiens), mouse (Mus musculus), 

Fig. 1 Common errors in de novo supertranscriptome assemblies. Redundant transcripts occur when 
multiple copies of the same transcripts are generated. Incomplete supertranscripts occurs when one or 
more exons are fully or partially missing either at one side or both side of assembled contigs. Fragmented 
supertranscripts correspond to two or more contigs relating to different regions of a supertranscript. False 
chimeras are contigs generated as a result of erroneous fusion of two or more full or partial supertranscripts. 
Local mis-assemblies are characterized as missing sequences, unsupported insertions, inversions and/or 
translocations in the contigs
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chicken (Gallus gallus), rice (Oryza sativa) and arabidopsis (Arabidopsis thaliana) as 
well as the assemblies generated using synthetic paired-end read data simulated from 
all these species.

Results and discussion
ROAST overview

ROAST is a command line tool which provides reference-free improvement of super-
transcriptome assemblies by fixing different assembly errors (Fig.  1) using RNA-seq 
data without relying on BLAST searches against other organisms. ROAST uses Illumina 
paired-end sequencing data for assembly improvement since it is the method of choice 
for majority of the studies involving de novo supertranscriptomic assembly [25]. ROAST 
takes paired-end RNA-seq data and the transcriptome assembly to be optimized in the 
form of supertranscripts [8] generated from these reads as input (Fig. 2). If the assembly 
is not provided then ROAST generates the supertranscriptome assembly using Trinity 
assembler [3].

ROAST begins assembly improvement process by removing redundant contigs pre-
sent in the supertranscriptome assembly using CD-HIT-EST [26] (see “Removal of 
redundant contigs” Section in the Methods below) since tools like Trinity and Trans-
ABySS have been reported to generate redundant contigs [9, 21, 27]. Once redundan-
cies have been removed from the assembly, ROAST aligns the RNA-seq reads to the 
assemblye “Removal of redundant contigs” (see the "Methods" Section) and rigorously 
processes this alignment data in an iterative manner to investigate different error signa-
tures such as discordantly-mapped reads (reads with mates unmapped or mapped on a 
different contig), partially mapped reads (reads containing soft-clipped bases) and unex-
pected variation in the read coverage along the contig to identify and fix different assem-
bly errors.

Assembly refinement in ROAST runs as two nested iterations, which we refer to as 
inner and outer iterations (Fig. 2). At the beginning of each outer iteration, first an inner 
iteration is run that extends partially assembled contigs. At each step of the inner iter-
ation, consensus sequences are generated using the soft-clipped bases from the reads 
that map near the ends of the contigs to extend contig sequences (see the  “Extending 
incomplete supertranscripts” Section below). This is done until the number of itera-
tion reaches a user-defined threshold (default value: 30) or no further improvement is 
observed. Once the inner iteration is completed, ROAST performs BLAST [28] searches 
using blastn algorithm within the assembly to identify potential overlap between dif-
ferent contigs. Contigs containing significant overlaps are merged together to form 
longer contigs (see the “Merging fragmented supertranscripts” Section below). ROAST 
uses this improved assembly to further extend partially assembled contigs and merge 
fragmented contigs using reads with unmapped mates (see the  “Extending incomplete 
supertranscripts” Section below) or distantly mapped mates (see the “Merging frag-
mented supertranscripts” Section below). This is followed by splitting of false chimeras 
(see the “Splitting false chimeras” Section below) and fixing of local mis-assemblies (see 
the “Fixing local mis-assemblies” Section below) by exploiting read coverage and soft-
clipped bases in partially mapped reads (Fig. 2). The outer iteration is repeated until the 
number of iteration reaches a user-defined threshold (default value: 100) or the number 
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Fig. 2 ROAST workflow to identify and fix de novo supertranscriptome assembly errors using RNA-seq data. 
ROAST takes paired-end RNA-seq reads and the de novo supertranscriptome assembly (optional) as input. It 
starts by removing the redundant supertranscripts and subsequently performs assembly improvement as 
two nested iterations. At the start of each outer iteration, an inner iteration is run that extends incomplete 
supertranscripts using soft-clipped bases. The inner iteration starts by mapping the reads on to the assembly 
from which partially mapped reads (reads containing soft-clipped bases) are extracted and used to extend 
incomplete contigs. This is done until the number of iterations or the number of contigs containing partially 
mapped reads reach the user-defined threshold. Once out of the inner iteration, ROAST merges fragmented 
supertranscripts using partially mapped reads. This is followed by realignment of reads on the improved 
assembly, which is then used to extend partial supertranscripts and merge fragmented contigs using reads 
with unmapped mates (orphan reads) and discordantly mapped read pairs respectively. The resulting 
assembly is then used for re-mapping of reads and subsequently false chimera and local mis-assemblies are 
identified and fixed. This whole process is repeated until the number of iteration or the number of contigs 
containing errors reach the user-defined threshold. At the end of iterative improvement, ROAST provides final 
improved assembly as output
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of contigs containing errors reach a user-defined threshold (default value: 0). By using 
a nested iterative approach to systematically identify and fix assembly errors, ROAST 
produces an assembly which is significantly improved compared to the initial assembly 
without the need of a reference genome or transcriptome.

Once the improvement process is over, ROAST writes the following files as output: 
a FASTA file containing the improved assembly, a summary file showing the mapping 
between the contigs present in initial and final assemblies, intermediate assemblies and 
log files detailing the changes made at each step of the iterative improvement process 
to help users inspect the errors present in the assembly and monitor the changes made 
during the iterative improvement process.

ROAST algorithm

ROAST is an iterative tool that identifies and fixes various supertranscriptome assem-
bly errors (Fig. 1) using different error signatures such as soft-clips, unexpected change 
in read coverage, and discordantly mapped reads generated during read alignment. The 
algorithm is summarized in Fig. 3 and described in detail for different error types in the 
subsequent subsections.

Extending incomplete supertranscripts

Incomplete supertranscripts are one of the most common supertranscriptome assembly 
errors. They correspond to contigs where one or more whole or partial exons are miss-
ing either at one side or both sides of the contigs resulting in missing sequence (Fig. 1). 
When working with supertranscriptome, they correspond to contigs that do not rep-
resent full-length supertranscripts. To identify and fix such contigs, ROAST uses par-
tially mapped reads found near the edges of a contig and reads with unmapped mates as 
described below.

Reads partially mapped at  the edges of a contig Partially mapped reads are the reads 
containing soft-clipped bases. Soft-clipped bases are the unmatched portion of an aligned 
read that do not support the nucleotides of the corresponding contig and are, therefore, 
masked during alignment [29]. This primarily occurs when these unmapped portions 
either do not map anywhere in the assembly due to missing reference sequence (incom-
plete transcript) or map on a different contig due to the presence of a fragmented tran-
script (see the “Merging fragmented supertranscripts” Section below) or an incorrectly 
assembled sequence (see the “Fixing local mis-assemblies” Section below) [22]. To extend 
incomplete sequences, ROAST first identifies reads containing soft-clipped bases in the 
outward direction that occur within 25 bases (user-defined parameter; default value: 25) 
of the contig boundary (Additional file 1: Figs. S1 and S2). Soft-clipped bases present in at 
least 3 mapped reads (user-defined parameter; default value: 3) and supported by at least 
75% of the mapped reads (user-defined parameter; default value: 75) are then used to gen-
erate consensus sequence(s) using CAP3. If CAP3 fails to generate a consensus sequence, 
for example in the case for short sequences, ROAST generates the consensus sequence 
by assigning the base occurring with the highest frequency in the soft clipped bases at 
each position. If two or more bases have maximum coverage at a position, ROAST uses 
the corresponding IUPAC code to represent those bases at that position. The consensus 
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Fig. 3 De novo supertranscriptome assembly error signatures used by ROAST to identify various types of 
assembly errors. a Incompleteness of the supertranscripts is detected using unmapped or partially reads 
(reads containing soft-clipped bases) at the edges of the contig. b Fragmented contigs are identified using 
partially mapped reads such that the soft-clipped bases map on different contigs and using reads with mates 
mapped on different contigs. c False chimeras are identified using partially mapped reads occurring inside 
a contig as well as based on unusual change in expression level along a contig. d Local mis-assemblies can 
be detected using partially mapped reads with soft-clipped bases occurring in either a crisscross fashion 
(missing sequences, inversions and translocations) or facing towards each other (unsupported insertions)
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sequence(s) is then used to extend incomplete corner(s) of the contig. The extension is 
done inside the inner iteration until the number of iterations reach a user-defined thresh-
old or no further improvement is observed (see Fig. 2 and the “ROAST overview” Section 
above). To reduce time and memory taken by re-alignment of reads in each iteration, 
ROAST uses only those reads for re-alignment that are mapped at contig edges, that is 
within certain bases from the contig boundaries (default value: 2 × read length) in the 
current iteration.

Reads with unmapped mates Besides partially mapped reads, another signature for an 
incomplete supertranscript is a cluster of reads mapped at the edge(s) of a contig with 
unmapped mates [22]. Presence of such reads suggests that the sequence corresponding 
to their unmapped mates is missing from the assembly. ROAST exploits this information 
by identifying reads with unmapped mates, which are mapped in the outward direction 
at the contig edges (see the Paragraph “Reads partially mapped at the edges of a contig” 
in this Section). To reduce false positives, at least 3 reads with unmapped mates (user-
defined parameter; default value: 3) are required. In addition, ROAST extracts unmapped 
mates only for those reads that have less than 25% (user-defined parameter; default value: 
25) soft-clipped bases. The unmapped mates are then re-assembled using CAP3 [30] and 
the contig is extended by stitching it to the newly assembled sequence based on the over-
lapping edges (Additional file 1: Figs. S3 and S4). Only those extensions are considered 
valid which increase the contig length by at least 50% of the read length (user-defined 
parameter; default value: 50). If no overlap is found then the newly assembled sequence is 
tagged and added to the assembly as a separate contig. If the newly assembled sequence 
is not merged with the original contig by the end of the iterative improvement due to lack 
of overlap, it is joined to the contig with 5 Ns (user-defined parameter, default value: 5).

Merging fragmented supertranscripts

Another common supertranscriptome assembly error relates to fragmented super-
transcripts. A fragmented supertranscript refers to a set of two or more contigs in the 
assembly which belongs to a full-length supertranscript but could not be joined together 
during the assembly process. ROAST uses partially mapped reads with soft-clipped 
bases mapping on different contigs and discordantly mapped read pairs to identify and 
fix fragmented supertranscripts as described below.

Partially mapped reads with soft‑clipped bases mapping on different contigs As noted 
in the  “Extending incomplete supertranscripts” Section above, soft-clipped bases from 
partially mapped reads can be used to identify fragment supertranscripts in addition 
to other assembly errors. If the consensus sequence generated from the soft-clipped 
bases from the reads partially mapped near the end of a contig maps on a different con-
tig, this suggests that the two contigs belong to one full-length transcript which could 
not be assembled together due to insufficient coverage depth and/or assembly error. 
ROAST, immediately after exiting the inner iteration, processes the contigs that have 
been extended using soft-clips during the inner iteration to identify and merge frag-
ment supertranscripts. (see Fig. 2). This is done as follows. First, ROAST uses 25 bases 
(user-defined parameter; default value: 25) as initial query sequence to search for an 
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overlap across the whole assembly using BLAST (blastn algorithm with default param-
eters). A hit with 100% identity (user-defined parameter; default value: 100) with the 
initial query sequence is taken forward. In case of multiple hits, the hit with the maxi-
mum score ((identity/query length) * 100) is considered. Subsequently, the overlapping 
region between the original contig and the contig identified by BLAST is extended, 
if possible, using a relaxed criteria of 90% identity (user-defined parameter; default 
value: 90). By default, hits containing gaps are ignored when searching for overlapping 
sequence although this behaviour can be changed by the user by setting the ‘number 
of gaps allowed in a hit’ parameter (default value: 0). Once the maximum overlap is 
found, the two contigs are merged to create a longer contig (Additional file 1: Fig. S1).

Reads with mates mapped on a different contig A read and its mate are expected to 
map on the same contig during the alignment process since they belong to the same 
physical transcript molecule. ROAST exploits this fact to identify fragmented super-
transcripts by looking for a cluster of reads aligned near the contig edges (see the 
“Extending incomplete supertranscripts” Section above) with mates mapped on a dif-
ferent contig. A cluster of such reads is referred to as a read or mate island in ROAST. 
A similar strategy has been used by Grouper to cluster similar contigs together [31]. 
To avoid false positives due to alignment errors, ROAST requires at least 5 reads (user-
defined parameter) to be present in a read/mate island. To merge parts of a fragmented 
supertranscript, contigs containing read and mate islands are first identified. These 
contigs are then merged based on their overlapping edges to create a longer con-
tig (Additional file 1: Figs. S5 and S6). An overlap is only deemed valid for merger if the 
overlap length between contigs is 10 or more bases (user-defined parameter; default 
value: 10), BLAST score is 90% or more (user-defined parameter; default value: 90) and 
the overlapping region starts within a certain bases from the outer edge of the read/
mate island (default value: 5% of the read length).

Splitting false chimeras

False chimera is another type of assembly error which significantly reduces assembly 
quality. It corresponds to a contig generated as a result of erroneous fusion of two or 
more full or partial supertranscripts [24] and is different from rarely existing natural 
chimeric transcripts (fusion genes) in some cancer tissues [32, 33]. False chimera can 
be “self-chimera”, where full or a part of supertranscript is duplicated and fused to 
itself or “multi-supertranscript chimera”, which is generated by the fusion of multiple 
supertranscripts [24]. ROAST removes repeated segments of self chimeras and splits 
multi-supertranscript chimeras using the following strategies.

Reads partially mapped inside a contig While reads partially mapped at the edge of 
a contig provide signatures for incomplete and fragmented contigs (see the  “Extend-
ing incomplete supertranscripts” and “Merging fragmented supertranscripts” Sections 
above), their occurrence in the middle of a contig suggests the presence of false chimera 
or local mis-assemblies (see “Fixing local mis-assemblies” Section below). To identify 
false chimeras, ROAST looks for reads partially mapped inside a contig such that soft-
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clipped bases occur in only one direction  (see Fig.  3 and Additional file  1: Fig.  S7). 
While searching for soft-clips, it ignores the soft-clipped bases occurring at the exon-
exon boundaries (see the “Methods” Section) since they can also lead to partial map-
ping of reads [34]. Furthermore, ROAST only considers positions containing soft-clips 
which are supported by at least 75% of the mapped reads (user-defined parameter; 
default value: 75) and the consensus sequence resulting from these soft-clipped bases 
(see the Paragraph “Reads partially mapped at the edges of a contig” above) contains at 
least 10 bases (user-defined parameter; defualt value: 10). It then uses BLAST (blastn 
algorithm with default parameters) to check if the consensus sequence occurs any-
where else in the contig with an identity of ≥ 90% (user-defined parameter; default 
value: 90). If found, the region between the BLAST hit and the position containing 
soft-clipped bases is extracted and the flanking regions are joined together using over-
lap between their bases (see Additional file 1: Fig. S7). In the case of no hit, the contig 
is split into two at the soft-clip position and the smaller sequence is extracted. To 
distinguish between self and multi-supertranscript chimeras, the extracted sequence 
is searched against the resulting contig again to check for duplication. A BLAST score 
of ≥ 90% (user-defined parameter; default value: 90) is required for the sequence to 
be regarded as self-chimera and consequently removed from the assembly. If no sig-
nificant hit is found then depending on whether the sequence length is ≥ 200 bases 
(user-defined parameter; default value: 200) either a new contig is created from the 
sequence or it is removed from the assembly thereby preventing unnecessary addition 
of fragmented contigs in the assembly (see Additional file 1: Figs. S7, S8 and S9).

Unusual changes in  the  transcript expression levels A typical mapping of RNA-seq 
data results in a consistent read coverage with random fluctuations across the length 
of the transcripts. However, an abrupt increase or decrease of coverage or a gradual 
but abnormal coverage change suggests the presence of a false chimera [22]. For multi-
transcript chimera, the change in the read coverage can be attributed to the differ-
ence in expression levels of the different genes whereas in the case of self-chimera 
this occurs due to the reads mapping on multiple (original and duplicated) locations. 
ROAST detects such unusual changes in the expression level to identify false chime-
ras as follows. First, the contig is scanned from left to right to detect abrupt cover-
age changes. A difference of ≥80% in read coverage (user-defined parameter; default 
value: 80) between two consecutive positions is regarded as an abrupt change. If a chi-
meric position is identified, the contig is split into two at that position and the smaller 
sequence is extracted. This sequence is either removed from the assembly or added as a 
new contig depending on its length and the BLAST result, as described above (see the 
Paragraph “Reads partially mapped inside a contig” in this Section) (Additional file 1: 
Fig. S10). Since the RNA-seq alignment typically results in a steady decrease in the 
coverage towards the ends of a contig [35], ROAST ignores coverage changes within 
certain bases from the ends of the contig (default value: read length) while looking 
for chimeric positions. User can optionally search for gradual but abnormal coverage 
changes using a sliding window approach, where average read coverage for two con-
secutive windows of size 100bp (user-defined parameter) each flanking a position is 
calculated and compared. A difference of ≥80% (user-defined parameter; default value: 
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80) between the average coverage of the two windows is required for a position to be 
regarded as chimeric. While this approach can detect genuine false chimeras (Addi-
tional file 1: Figs. S11 and S12), the presence of fluctuation in the read coverage may 
lead to false positives and is, therefore, off by default in ROAST.

Fixing local mis‑assemblies

Local mis-assemblies in the de novo assembled contigs are characterized as structural 
errors such as inversions and/or translocations, unsupported insertions, and miss-
ing sequences. These structural abnormalities can be detected using reads partially 
mapped inside contigs depending on how soft-clipped bases appear in these reads. To 
identify and fix local mis-assemblies, ROAST scans each contig from left to right and 
looks for different patterns of the soft-clip bases as described below.

Soft‑clipped bases facing in  the  opposite direction Crisscrossed soft-clipped bases 
or soft-clipped bases facing in the opposite direction occurring at a specific position 
inside a contig can help to identify and complete missing sequences in the assem-
bled transcripts/supertranscripts in addition to providing signatures for inversion and 
translocation (see Additional file 1: Fig. S13). To identify these mis-assemblies, con-
sensus sequences from the crisscrossed soft-clipped bases at non exon-exon boundary 
positions are searched against the contig using BLAST (blastn algorithm with default 
parameters) using the same strategy as described before (see the “Splitting false chime-
ras” Section). If no hit is found for both the consensus sequences then the sequences 
are flagged as missing from the contig, which need to be added to the current contig. 
Based on whether overlapping bases are found between 5’-end of left soft-clip consen-
sus sequence and 3’-end of the right soft-clip consensus sequence, the two sequences 
are either merged or concatenated end-to-end and the resulting sequence is inserted 
in the contig at the position containing soft-clipped bases (Additional file 1: Fig. S14). 
If, on the other hand, one or both consensus sequences are found anywhere else in 
the contig, the corresponding region(s) is flagged as translocation and optionally, 
inversion depending on the orientation of the BLAST hit. To fix such cases, ROAST 
extracts and inserts the translocated/inverted fragment(s) at the correct position(s) in 
the appropriate direction(s) (see Additional file 1: Fig. S15).

Soft‑clipped bases facing each other Like crisscrossed soft-clipped bases, soft-clipped 
bases facing towards each other can also help to identify local mis-assemblies. Spe-
cifically, they provide signature for unsupported insertions. An unsupported insertion 
corresponds to bases in the contigs that are not supported by read evidence [22] and, 
therefore, allows only partial mapping of reads around it (Additional file 1: Fig. S16). 
The distance between the two positions containing soft-clipped bases equals to the size 
of inserted fragment. To identify unsupported insertions, ROAST identifies soft-clip 
positions which are facing each other using the same strategy as described before (see 
the “Splitting false chimeras” Section). For a region to be flagged as an unsupported 
insertion, the left consensus sequence (see the Paragraph “Reads partially mapped at 
the edges of a contig”  above) must map immediately after the position generating 
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right consensus sequence and vice versa (Additional file 1: Fig. S17). Regions flagged as 
unsupported insertions which are less than 200 bases (user-defined parameter; default 
value: 200) are discarded while longer fragments are checked for false chimera (see the 
“Splitting false chimeras”  Section above).

Evaluation of ROAST’s performance

We evaluated the performance of ROAST using benchmark datasets based on simulated 
as well as actual sequencing data. The evaluation results are discussed below.

Evaluation using simulated datasets

To assess the accuracy of ROAST in identifying different types of assembly errors, we 
constructed reference supertranscriptomes for human (Homo sapien), mouse (Mus mus‑
culus), chicken (Gallus gallus), rice (Oryza sativa) and Arabidopsis (Arabidopsis thali‑
ana) using their publicly available reference genomes (see the “Construction of reference 
supertranscriptomes” Section in Methods). We produced 800 simulated errors, 200 for 
each error type (incomplete supertranscripts, fragmented supertranscripts, false chime-
ras and local mis-assemblies) in each reference supertranscriptome (see Section “Sim-
ulated assembly errors” in Methods). We further generated 40 million simulated read 
pairs for each species (see the Section “Simulated RNA-seq data” in Methods) to detect 
these errors. Simulated RNA-seq data provides true representation of the real super-
transcripts obtained from the reference sequences of model organisms and can, there-
fore, be used to assess the accuracy of error identification and fixation in the reference 
supertranscriptomes [22, 36].

ROAST was run to identify and correct errors produced in supertranscriptomes of 
model organisms using the simulated reads with default parameters with two exceptions. 
First, check for duplicate supertranscript was turned off by setting “–cdhitest 0” 
since supertranscriptome references were manually created using their respective tran-
scriptome assemblies downloaded from public databases and were not expected to con-
tain duplication. Second, check for exon-exon boundary when processing soft-clipped 
basses was disabled since simulated reads were produced directly from supertranscripts 
and hence did not contain soft-clipped bases at the exon-exon boundaries.

Table 1 shows the number of errors identified and fixed for each error type in dif-
ferent species. Incomplete supertranscripts and missing sequences were regarded as 

Table 1 ROAST performance in identifying and fixing different types of simulated errors using 
simulated RNA-seq data

Percentages are shown in parentheses. A total of 200 errors were produced for each error type including partial and 
fragmented supertranscripts and false chimeras. For local mis‑assemblies, 50 errors were produced for each error type

 Organism Incomplete 
supertranscript

Fragmented 
supertranscript

False 
chimera

Local mis-assembly

Missing 
sequence

Unsupported 
insertion

Trans-
location

Inversion

Human 174 (87) 194 (97) 174 (87) 48 (96)  50 (100)  49 (98) 49 (98)

Mouse 172 (86) 196 (98) 167 (84) 50 (100) 49 (98)  48 (96) 49 (98)

Chicken 179 (90) 196 (98) 176 (88) 50 (100) 49 (98)  49 (98) 46 (92)

Rice 193 (97) 196 (98) 168 (84) 50 (100) 50 (100) 46 (92) 48 (96)

Arabidopsis 192 (96) 192 (96) 169 (85) 50 (100) 49 (98)  46 (92) 49 (98)



Page 13 of 22Shabbir and Mithani  BMC Bioinformatics            (2024) 25:2  

correctly fixed if >= 90% of the deleted sequence was recovered. A complete recovery 
of the original sequence was required for fragmented supertranscripts, translocations 
and inversions. Similarly, unsupported insertions was regarded as properly fixed if 
all extra bases were removed. For false chimeras, both sequences producing a chi-
meric contig were required to be fully restored for the error to be deemed as rectified. 
It can be seen that ROAST identified and fixed assembly errors that were simulated 
in the reference supertranscriptomes with high accuracy. ROAST was most accu-
rate in identifying and correctly recovering missing sequences and performed with 
100% accuracy in four out of five species. It also fixed other local mis-assemblies and 
merged fragmented contigs with almost 100% accuracy across all species and was able 
to recover incomplete sequences with 90% or more accuracy in three out of five spe-
cies. For false chimeras, ROAST was able to identify and correct between 83.5% and 
88% errors that were produced in the reference supertranscriptome assemblies.

To further see how well ROAST optimization led to the restoration of original 
assembly quality, we compared the TransRate score of the initial, erroneous and the 
ROAST-improved assemblies. TransRate score is widely used as a key indicator of 
assembly quality and takes into account various factors including nucleotide identity, 
number and order of nucleotides in the contig along with the probability of univariate 
coverage depth for a contig calculated from aligned reads [22, 25]. The results for the 
comparison are given in Table 2. As expected, erroneous assemblies had slightly lower 
TransRate scores due to the presence of simulated assembly errors. By removing these 
assembly errors and restoring the assemblies close to their original state, ROAST was 
able to restore the scores to the initial levels. Taken together, these results indicate 
that ROAST is able to correctly identify and fix different types of supertranscriptome 
assembly errors with extremely high accuracy across different species.

Table 2 Comparison of overall assembly quality before and after the correction of simulated errors 
using simulated RNA-seq data against the original reference assembly

Organism Assembly TransRate score

Human Reference 0.80

Erroneous 0.79

Improved 0.80

Mouse Reference 0.98

Erroneous 0.97

Improved 0.98

Chicken Reference 0.83

Erroneous 0.81

Improved 0.82

Rice Reference 0.81

Erroneous 0.79

Improved 0.81

Arabidopsis Reference 0.83

Erroneous 0.81

Improved 0.83
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Evaluation using real datasets

The performance of ROAST for de novo supertranscriptome assembly improvement 
was tested using published data for the five model organisms used in this study. These 
species have well-annotated reference assemblies and have been used to benchmark per-
formance in previous studies [22, 23, 31]. RNA-seq data was downloaded from NCBI 
Sequence Read Archive (see the “Real datasets” Section in Methods) and used to gener-
ate de novo supertranscriptome assemblies using Trinity assembler (see the section “De 
novo supertranscriptome assembly of model organisms” in Methods). Next, ROAST 
was run with default parameters to identify and fix errors present in these assemblies. 
In all cases, ROAST was run until no further assembly improvement could be made. 
The numbers of contigs in which different types of errors were identified and fixed by 
ROAST for each dataset are listed in Additional file 1: Table S3. The improved assem-
blies were compared with the initial assemblies and the results were evaluated against 
the reference supertranscriptomes created for these organisms (see the “Construction of 
reference supertranscriptomes” Section in Methods), which provide a means to objec-
tively evaluate the assembly improvements. We calculated various metrics for initial and 
improved assemblies using different evaluation tools including TransRate [22], rnaQ-
UAST [37], and Samtools [38]. The results are discussed below.

Completeness of supertranscripts is one of the key indicators of assembly quality 
and corresponds to the number of contigs that were either extended or had missing 
sequences recovered during assembly improvement. Completeness was evaluated using 
the number of bases present in the assembly, mean length of the contigs and the pro-
portion of the reference supertranscriptome bases present in the assembly (reference 
coverage) calculated using TransRate (Table 3). Both mean contig length and reference 
coverage were higher in the improved assembly compared to the initial assembly for all 
species. Number of bases in the assembly was also found to be higher in all the improved 
assemblies except that for Arabidopsis. On investigating we found that this was due to 

Table 3 Evaluation of ROAST using real RNA-seq datasets

Superior values shown in bold face Values calculated using:a TransRate, b Samtools, c rnaQUAST.

* F1F2 and R1R2 orientations

Organism Assembly Completeness Fragmentation False 
chimera

Inversion/
translocation

Overall 
quality

No. of 
bases a

Mean 
contig 
length 
b

Reference 
coverage c

BLAST 
analysis

Proportion 
of read 
pairs on 
different 
contigs b

Chimeric 
contigs c

Proportion 
of read pairs 
with incorrect 
orientation b∗

TransRate 
score a

Human Initial 46,096,587 1109 0.09 3898 0.038 2184 0.011 0.46

Improved 49,024,824 1271 0.10 3709 0.029 2529 0.013 0.51

Mouse Initial 29,591,694 1131 0.07 2970 0.086 851 0.004 0.24

Improved 30,458,066 1216 0.08 2830 0.060 877 0.003 0.28

Chicken Initial 54,635,372 1018 0.21 2330 0.033 1747 0.003 0.51

Improved 57,983,502 1072 0.23 2380 0.019 1690 0.002 0.55

Rice Initial 26,514,527 701 0.17 2083 0.048 1253 0.002 0.40

Improved 30,336,262 784 0.18 1790 0.039 1151 0.001 0.44

Arabidop-
sis

Initial 32,430,389 646 0.24 11,373 0.067 4697 0.011 0.16

Improved 30,336,262 675 0.27 10,030 0.055 3725 0.011 0.40
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the presence of high number of redundant contigs ( ∼ 6900, 13.8%) in the Arabidopsis 
assembly, which were removed by CD-HIT-EST before the start of the iterative improve-
ment. In other species, the number of redundant contig was between 0.01%-−0.06% 
(see Additional file 1: Table S1). Taken together these metrics suggest a better represen-
tation of supertranscripts in the assemblies resulting after improvement with ROAST.

Another parameter that provides key insights into assembly quality is the contiguity of 
supertranscripts. This corresponds to the number of fragmented contigs present in the 
assembly and is negatively correlated with the assembly quality. We calculated the num-
ber of fragmented contigs using two strategies. First, BLAST-based assessment method 
was used to search the assembled supertranscriptomes against the reference super-
transcriptomes. Two contigs were regarded as fragmented if they showed 90% or more 
query coverage per subject against the same reference supertranscript and the length of 
query supertranscript covered at least 10% of the length of reference supertranscript. 
As can be seen from Table 3, the number of fragmented supertranscripts were reduced 
in all cases except chicken after improvement with ROAST. Increase in the fragmented 
supertranscripts count in chicken can be explained by the fact that extension of partial 
supertranscripts during assembly improvement resulted in 659 additional contigs fall-
ing in the criteria of 90% or more query coverage per subject compared to the initial 
incomplete contigs leading to the identification of more fragmented supertranscripts in 
the improved assembly (see  Additional file  1: Table  S2). Another metric for assessing 
the contiguity of supertranscripts is the proportion of read pairs mapped on different 
contigs (see the paragraph “Reads with mates mapped on a different contig” above). An 
assembly containing a higher number of fragmented supertranscripts will have greater 
fraction of reads with mates mapped on a different contig compared to the one with 
a lower fragmented supertranscripts count. The proportion of read pairs mapped on 
different contigs showed remarkable decrease for improved assemblies in all species 
compared to the initial assemblies (Table 3) thus implying a reduction in the number of 
fragmented supertranscripts in the assemblies post ROAST optimization.

To assess the decrease in false chimeras and local mis-assemblies including inver-
sions and translocations, we used the number of chimeric contigs reported by rna-
QUAST and the proportion of read pairs mapped in incorrect orientation (F1F2 and 
R1R2), calculated using Samtools respectively (Table 3). These parameters also nega-
tively correlate with the assembly quality. The number of chimeric contigs were found 
to be reduced in three out of five species including chicken, rice and Arabidopsis. 
Creation of new chimeric contigs (for example, in the case of human and mouse) due 
to erroneous merging of fragmented supertranscripts can be avoided by increasing 
the length of soft-clipped bases mapping on different contigs, number of reads con-
taining soft-clipped bases, number of reads with mates mapped on different contigs 
and/or setting a higher BLAST threshold to find overlap between two identified con-
tigs as fragments. However, it must be kept in mind that a more stringent criteria for 
these parameters may lead to fewer merging of original fragmented supertranscripts. 
Inversions and translocations were also found to be reduced in the ROAST improved 
assemblies in mouse, chicken and rice while in Arabidopsis no change in the propor-
tion of incorrectly mapped read pairs was observed. In human, on the other hand, 
slightly higher proportion of read pairs mapped in incorrect orientation was observed 
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suggesting further occurrence of false inversions and/or translocations. Like chimeric 
contigs, this can be improved by setting a higher soft-clipped base support for the 
position, soft-clipped consensus sequence length threshold and BLAST score to iden-
tify and fix local mis-assemblies and merge overlapped edges of fragmented super-
transcripts. It must, however, be noted that using too stringent criteria may lead to 
the missing of true assembly errors by ROAST.

Finally, the overall assembly quality was evaluated using the TransRate score (see 
the section  “Evaluation using simulated datasets” above) as well as different assem-
bly-level metrics. In all cases, TransRate score was higher after ROAST optimiza-
tion (Table 3) indicating that ROAST was able to improve overall assembly quality by 
identifying and fixing various types of assembly errors. Besides TransRate score, there 
are various metrics that can be used to assess overall assembly quality. These include 
number of contigs present in the assembly reflecting its compactness, percentage 
of reads mapped, and percentage of contigs and aligned reads regarded as ‘good’ 
by TransRate. ‘Good contigs’ are determined by TransRate using a cutoff optimiza-
tion procedure for individual scores of the contigs calculated using factors described 
above while ‘Good mapping’ correspond to those alignments that are consistent with 
a perfectly assembled contig, for example read pairs mapped in correct orientation 
on the same contig without any anomaly [22]. These metrics are shown in Fig. 4 for 
initial and improved assemblies. The number of contigs were lower while the percent-
age of good contigs increased in the improved assembles. Similarly, the percentages 
of reads mapped and good mapping also went up after ROAST optimization. Overall, 

Fig. 4 Assessment of assembly quality before and after improvement using ROAST. Initial and 
ROAST-optimized assemblies were compared using different metrics reflecting overall assembly quality. 
These include number of contigs present in the assembly, percentage of reads mapped, and percentage of 
contigs and aligned reads regarded as ‘good’ by TransRate [22]. See text for details on how contigs and reads 
are classified as ‘good’ by TransRate
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these results suggest that ROAST is able to produce assemblies which have fewer 
redundancies and a better representation of supertranscripts compared to the their 
initial versions.

As ROAST relies solely on RNA-seq data for assembly improvement, its efficacy in 
improving the quality of supertranscripts depends on the read abundance for that super-
transcript. Highly abundant supertranscripts are subject to more error fixation and 
improvement in quality compared to the ones with same number of errors but have low 
read abundance. Similarly, an assembly with lower read count might have fewer errors 
fixed compared to the one with higher number of reads since many error signatures do 
not meet the default cut-offs. To circumvent this, ROAST allows users to adjust different 
parameters such as setting lower threshold for reads with partially mapped mates at the 
edges of the contig and reads with unmapped mates to identify and extend incomplete 
supertranscripts. Similarly, setting lower thresholds for reads partially mapped with 
soft-clipped bases mapping on different contigs, reads with mates mapped on a different 
contig and reads partially mapped inside a contig can help in identifying and merging 
fragmented supertranscripts, and fixing local mis-assemblies and false chimeras when 
read coverage is low in the RNA-seq data. However, it must be kept in mind that using 
very low threshold values may result in the over-correction of assemblies. Also, many 
of these parameters are interrelated and changing one parameter to reduce a particular 
error type may also result in the reduction of number of errors being fixed for other 
types, or may lead to an overly corrected assembly containing additional assembly errors 
as discussed above. Moreover, since each dataset differs in complexity, it might be useful 
to evaluate different parameter combinations to identify what works best for the super-
transcriptome assembly being optimized. Under default settings ROAST runs until no 
more assembly error can be identified or a maximum of 100 iterations is reached. For 
the actual datasets, it took ROAST between 19 (Arabidopsis) and 39 (mouse) iterations 
for assembly improvement (see  Additional file  1: Table  S3). The number of iterations 
taken depends on the complexity as well as extent of abnormalities in the assemblies. 
This default behaviour can be changed by increasing the threshold for leftover errors or 
reducing the maximum number of allowed iterations at the cost of final assembly quality.

Conclusion
Here, we present ROAST a tool to identify and fix supertranscriptome assembly errors 
including missing sequences and various structural anomalies including fragmented 
supertranscripts, false chimera, inversions and translocations produced by current 
assemblers using Illumina paired-end sequencing data without the aid of reference 
sequence. Since ROAST does not rely on running BLAST using closely related species to 
improve the reference supertranscriptome, it is highly useful for studies involving non-
model organisms where a high quality reference genome or transcriptome may not be 
available for closely related organisms. ROAST identifies and fixes the assembly errors 
using the paired-end information of the reads and the error signatures produced dur-
ing read alignment including soft-clipped bases, unexpected change in expression cov-
erage, and reads with mates unmapped or mapped on a different contig. At the start of 
each iteration, improved assembly from the previous iteration serves as a reference for 
the current iteration for aligning RNA-seq reads and identifying error signatures thereby 
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allowing maximum improvement in the reference sequence. In addition to its core algo-
rithm for error identification and correction, ROAST uses a number of tools during 
the iterative improvement process. All these tools contribute the overall running time 
of ROAST as well as the extent of assembly improvement made by ROAST. Test runs 
on both simulated and real datasets show that ROAST significantly improves assembly 
quality by iteratively reducing assembly errors from the reference sequence. Supertran-
scriptome assemblies resulting ROAST processing provide a better representation of the 
underlying transcripts than those without any refinement, and are useful in a wide range 
of studies including homology inference for phylogenetic analysis, metabolic pathway 
reconstructions, metabolic flux analysis and differential expression analysis [18]. Hence, 
ROAST can be used as a downstream improvement step of de novo supertranscriptome 
assembly algorithms to help improve the quality of assembled supertranscriptome by 
fixing common assembly errors.

Methods
Construction of reference supertranscriptomes

Reference supertranscriptomes were constructed for human (Homo sapien), mouse 
(Mus musculus), chicken (Gallus gallus), rice (Oryza sativa) and Arabidopsis (Arabi‑
dopsis thaliana) using their reference genomes. Reference genomes were obtained from 
Ensembl (https:// www. ensem bl. org) for human (GRCh38), mouse (GRCm38), chicken 
(GRCg6a), rice (IRGSP−1.0) and from TAIR (https:// www. arabi dopsis. org) for Arabis-
dopsis (TAIR10). The transcriptomes were converted into supertranscriptomes using 
the script provided by Davidson et  al., 2017 [8], which creates a reference supertran-
script for each gene by concatenating the exonic sequences for the gene.

Simulated RNA-seq data

Simulated RNA-seq reads for all model organisms used in this study were generated 
from their respective reference supertranscriptomes using Mason2 [39]. A total of 80 
million reads (40 million read-pairs) of length 100bp were simulated with options 
“-illumina-prob-mismatch-scale 2.5 -fragment-max-size 500 

-fragment-min-size 250”. The number of reads was chosen to keep the size of the 
simulated datasets close to that of actual datasets, which is  40 million read pairs.

Simulated assembly errors

A total of 800 simulated errors (200 errors for each error type) were produced in each 
reference supertranscriptome. Partial supertranscripts were generated by removing 10 
to 30 percent of a contig from one or both sides of the supertranscript. To produce frag-
mented supertranscripts, a supertranscript was broken into two at a randomly sampled 
position within 40% and 60% of the contig. Similarly, false chimeras were generated by 
breaking and fusing two randomly selected contigs. Local mis-assemblies were pro-
duced as follows. A randomly selected fragment of length between 30% and 70% of read 
length was removed from or added to a supertranscript to mimic a missing sequence 
or an unsupported insertion. Finally, translocations and inversions were simulated by 
removing a fragment of length equal to 20–30% of supertranscript length from a super-
transcript and added at a different position within the same supertranscript in the same 

https://www.ensembl.org
https://www.arabidopsis.org
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orientation (for translocation) or reverse orientation (for inversion). A total of 50 errors 
were produced for each type of local mis-assembly. In all cases, contigs were randomly 
selected as long as they were > 500 bp in length and contained no low quality alignment 
(Phred score < 20 ). To avoid a situation whereby contigs containing simulated errors 
were marked as redundant by CD-HIT-EST and, consequently, removed at the begin-
ning of the assembly improvement (see the section “ROAST overview” Section above), 
supertranscripts having ≥ 95% similarity were ignored when producing an error and so 
were the overlapping genes.

Real datasets

To demonstrate the utility of ROAST for obtaining an improved reference assembly for 
benchmark data, real datasets for human, mouse, chicken, rice and Arabidopsis were 
used. These datasets have been previously used in benchmark comparisons in different 
studies [22, 23, 31]. The datasets were obtained from NCBI Sequence Read Archive data-
base using accession numbers SRR493369-SRR493371 (human), SRR203276 (mouse), 
SRR1956755 (chicken), SRR037735-SRR037738 (rice) and SRR1655112 (Arabidopsis), 
and consisted of paired-end reads of length 75–101 bp generated using Illumina paired-
end sequencing technology.

De novo supertranscriptome assembly of model organisms

De novo supertranscriptome assemblies of the model organisms were generated using 
the benchmark datasets using Trinity v2.11 [3] with default parameters and the flag “–
include_supertranscripts”. The supertranscriptome assemblies were used as 
input along with respective paired-end RNA-seq data to identify and fix assembly errors 
and improve assembly quality using ROAST.

Alignment, filtering and processing of RNA-seq data

During the iterative improvement process, ROAST aligns the RNA-seq data using Mini-
map2 v2.17 [40], which allows soft-clipped bases during mapping, and HISAT2 v2.0.4 
[41], a splice-aware aligner, to get splice site information. Read with low mapping qual-
ity (Phred score < 20 ) and read pairs mapped in incorrect orientations including F1F2, 
R1R2, and R1F2 are removed before further processing. Base coverage data, required for 
error identification and fixation, is generated using Samtools v1.9 [38] from the filtered 
alignment files. Picard tool (https:// broad insti tute. github. io/ picard/) is used to gener-
ate FASTQ files using the reads mapped at contig edges during each inner iteration (see 
the Paragraph “Reads partially mapped at the edges of a contig” above). To distinguish 
chimeric positions from exon-exon split boundaries, ROAST uses the Cufflinks v2.2.1 
[42] on the alignment file generated by HISAT2. CAP3 assembler [30] is used to gener-
ate consensus sequence from partially mapped reads and to construct assemblies from 
unmapped read for the extension of partial supertranscripts.

Removal of redundant contigs

At the start of the iterative improvement process, ROAST removes redundancies 
between contigs using CD-HIT-EST v4.8.1 [26] with sequence identity cut-off 0.95, a 
commonly used threshold [12, 43–45].

https://broadinstitute.github.io/picard/
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Software availability

ROAST is written in C++ and uses two external libraries. These include Bamtools, a C++ 
API and toolkit to analyze and manage BAM files [46], and Boost [47]. It also uses a num-
ber of tools including CD-HIT-EST, Minimap2, HISAT2, Cufflinks, BLAST (blastn), Picard 
tool and CAP3 for read alignment, filtering and local assembly. The source code, released 
under open source MIT license, and pre-compliled binaries of external tools required by 
ROAST are available for download at https:// github. com/ azizm ithani/ roast/. The tool can 
be run via a command line interface on Linux machines.
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