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either Uni-functional or were not able to perform analysis of user-defined functions.
Therefore, we created the TCGAplot R package to facilitate perform pan-cancer analysis
and visualization of the built-in multi-omic TCGA data.

Results: TCGAplot provides several functions to perform pan-cancer paired/unpaired
differential gene expression analysis, pan-cancer correlation analysis between gene
expression and TMB, MSI, TIME, and promoter methylation. Functions for visualization
include paired/unpaired boxplot, survival plot, ROC curve, heatmap, scatter, radar chart,
and forest plot. Moreover, gene set based pan-cancer and tumor specific analyses were
also available. Finally, all these built-in multi-omic data could be extracted for imple-
mentation for user-defined functions, making the pan-cancer analysis much more
convenient\

Conclusions: We developed an R-package for integrative pan-cancer analysis and vis-
ualization of TCGA multi-omics data. The source code and pre-built package are avail-
able at GitHub (https://github.com/tjhwangxiong/TCGAplot).
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Background

Cancer is a major public health problem and leading death causes worldwide, with
increasing new cases and deaths each year [1]. Tumor occurrence and progression are
accompanied by dysregulation of oncogene and tumor suppressor genes partially caused
by mutation, promoter and gene body methylation [2]. Immune escape is one of the

most essential hallmarks of cancer cells which evade immune surveillance via disrupt
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the crosstalk with immune cells within the tumor microenvironment (TME). TME and
tumor immune microenvironment (TIME) attract much attention in cancer research
area, and strategies targeting TME have emerged as promising approaches for cancer
treatment [3]. Advances in multi-omics technologies enable us to access multi-layer
information from the genome, transcriptome, proteome, metabolome, and epigenome,
fueling the development of cancer precision medicine [4].

The Cancer Genome Atlas (TCGA) is one of the largest collections of multi-omics data
involving 33 different types of cancer for more than 20000 samples, including exome
sequencing, RNA sequencing, microRNA sequencing, copy number variation, proteome
and methylome [5]. Several online tools have been developed to provide bioinformatic
analysis of TCGA data. Tang et al. [6] developed the web server GEPIA2 to perform gene
expression quantification at both pan-cancer level and a specific cancer subtype man-
ner. The cBioPortal (https://www.cbioportal.org/) for Cancer Genomics contains data
sets from numerous cancer studies including TCGA, and enables researchers to explore
genetic alterations per gene and sample [7]. Kaplan—Meier plotter (http://kmplot.com/
analysis/) provides pan-cancer survival analysis [8]. Gene Set Cancer Analysis (GSCA,
http://bioinfo.life.hust.edu.cn/GSCA/#/) provides gene set cancer analysis for TCGA
data, including genomic, pharmacogenomic, and immunogenomic gene sets [9].
TIMER2.0 is a web server for immune infiltration across TCGA cancers [10]. MethSurv
(https://biit.cs.ut.ee/methsurv/) provides a web tool to perform survival analysis using
TCGA methylome data [11]. In addition to these online website tools, some R packages
have been developed for TCGA data download, genomic and expressive analysis, such
as TCGAbiolinks and IBOR [12, 13]. However, an integrative R package for pan-cancer
expression and correlation analysis between gene expression and TMB, MSI, TIME, and
promoter methylation, is not available yet. Therefore, we developed an R-package for
integrative pan-cancer analysis and visualization of TCGA data named TCGAplot.

Implementation

The source code of TCGAplot R package is public available at https://github.com/tjhwa
ngxiong/TCGAplot. A pre-built version (v4.0.0) could be downloaded (https://github.
com/tjhwangxiong/TCGAplot/releases/download/v4.0.0/ TCGAplot_4.0.0.zip) and
installed quickly. A detailed vignette is available at https://github.com/tjhwangxiong/
TCGAplot/blob/main/vignettes/TCGAplot.Rmd.

Results

Data preparation

The integrated built-in data in TCGAplot R package include TPM (transcripts per mil-
lion) expression matrix, tumor mutational burden (TMB), microsatellite instability
(MSI), immune cell ratio, immune score, promoter methylation, and meta information
(Fig. 1).

The expression TPM matrix was downloaded from TCGA (https://portal.gdc.cancer.
gov/) using the TCGAbiolinks R package (v2.28.4) with GDCquery, GDCdownload,
and GDCprepare functions [12]. Duplicated samples were removed randomly. Genes
with TPM value of 0 across all samples were excluded, and the final TPM matrix with
protein-coding genes was shown as log2(TPM+1) accompanied with cancer type
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Fig. 1 Summary of built-in data in TCGAplot R package. Both paired and unpaired TPM matrixes were
included. Meta, TMB, MSI, promoter methylation, immune cell ratio, and immune scores were also included in
this data. All these built-in data could be extracted for user-defined functions

and group (tumor, normal) information. The somatic mutation and DNA methyla-
tion beta value data were downloaded with the TCGAbiolinks R package. The probes
within the TSS1500-island region was selected as promoter region. The MSI value of
TCGA patients were downloaded using the cBioPortalData R package (v2.12.0) [14]. The
immune cell ratio was downloaded from The Immune Landscape of Cancer (https://
api.gdc.cancer.gov/data/b3df502e-3594-46ef-9f94-d041a20a0b9a). The immune scores,
including ESTIMATE, Immune, and Stromal scores, were calculated using the estimate
R package (v1.0.13) based on the TPM matrix [15]. The gene lists for ‘stromal signature’
and ‘immune signature’ were summarized in Additional file 1: Table S1.

Pan-cancer expression analysis

Pan-cancer expression analysis includes unpaired tumor-normal box plot across 33
types of TCGA cancers (Fig. 2a) and paired tumor-normal box plot across 15 types of
TCGA cancers with more than 20 pairs of samples (Fig. 2b) using pan_boxplot and pan_
paired_boxplot functions respectively. Moreover, pan-cancer expression of a single gene
across 33 types of tumor samples (without normal samples) could be achieved by using
pan_tumor_boxplot function (Fig. 2c).

Pan-cancer correlation analysis
We also provide functions to analyze the correlation between single gene expression and
TMB, and MSI. The results were visualized with radar chart (Fig. 3a, b).

Immunotherapy has revolutionized the treatment of cancer patients and rejuvenated
the field of TIME. Therefore, we also provide some functions to perform the correlation
between a single gene and immune-related genes, including immune checkpoint genes
(ICGs) (Fig. 4a), chemokine (Fig. 4b), chemokine receptor (Fig. 4c), immune stimulator
(Fig. 4d), and immune inhibitor (Fig. 4e). Moreover, two color parameters, “lowcol” and
“highcol’, were provided for users to define the colors of low point and high point in the
heatmap respectively.

Moreover, correlation between gene expression and immune infiltration could be ana-
lyzed, including immune cell ratio (Fig. 5a), immune score (Fig. 5b, c).
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Fig. 2 Pan-cancer expression analysis. a Pan-cancer expression of KLF7 with the function of “pan_
boxplot(gene ="KLF7", palette ="jco", legend ="right")". b Pan-cancer expression of KLF7 of paired samples
with the function of “pan_paired_boxplot (gene ="KLF7", palette ="jco", legend ="right")". Only 15 types of

cancers with more than 20 paired samples in TCGA were included. ¢ Pan-cancer expression of KLF7 across 33

types of tumor samples (without normal samples) with the function of “pan_tumor_boxplot("KLF7")". ns, not
significant; *p <0.05, **p < 0.01, ***p <0.001, ****p < 0.0001

Pan-cancer cox regression analysis
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The Cox regression model is used for survival analyses in clinical research by esti-
mating the hazard ratio (HR) of a given endpoint correlated with a specific risk
factor, such as the expression of a single gene. We provide function to perform pan-
cancer cox regression analysis with or without age adjustment and visualization by
forest plot (Fig. 6a, b).
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Correlation between KLF7 and MSI
uwm  ACC picar
ucs BRCA
UcEC 01 CESC
THYM CcHoL
COAD™

TeCT DLBC*
STAD™ ESCA
SKCM GBM
SARC HNSC**

READ KICH

KIRC

KIRP

ov LIHC
MESO |ygc+ LUAD

Fig. 3 Correlation between gene expression and TMB, and MSI. a Correlation between expression of KLF7
and TMB with the function “‘gene_TMB_radar("KLF7")". KLF7 was negatively correlated with TMB in CHOL,
COAD, ESCA, HNSC, KIRP, OV, and THCA, while positively correlated with TMB in SKCM. b Correlation between
expression of KLF7 and MSI with the function “gene_MSI_radar("KLF7")" KLF7 was negatively correlated with
MSIin COAD, DLBC, HNSC, and STAD, while positively correlated with MSIin LUSC. *p <0.05, **p <0.01
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Fig. 4 Correlation between a single gene and immune-related genes. a Correlation between KLF7 and ICGs
with function “gene_checkpoint_heatmap("KLF7", method = "pearson’, lowcol ="blue’, highcol ="red")". b
Correlation between KLF7 and chemokines with function “gene_chemokine_heatmap("KLF7")". ¢ Correlation
between KLF7 and chemokine receptors with function ‘gene_receptor_heatmap("KLF7")". d Correlation
between KLF7 and immune stimulators with function ‘gene_immustimulator_heatmap("KLF7")". e Correlation
between KLF7 and immune inhibitors with function “‘gene_immuinhibitor_heatmap("KLF7")"
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Fig.5 Correlation a single gene and immune infiltration. a Correlation between KLF7 and immune cell ratio
with function “gene_immucell_heatmap("KLF7")". b Correlation between KLF7 and immune score displayed
by heatmap with function “gene_immunescore_heatmap('KLF7")" ¢ Correlation between KLF7 and immune
score displayed by triangle with function ‘gene_immunescore_triangle("KLF7")"

Pan-cancer correlation analysis based on gene set
Sometimes it is a gene set (instead of a gene) that’s driving the TMB, so we also provide
functions to analyze the correlation between the express of a gene set and TMB, and
MSI. The results were visualized with radar chart (Fig. 7a, b).

We also provide some functions to perform the correlation between a gene set and
immune-related genes, including ICGs (Fig. 8a), chemokine (Fig. 8b), chemokine recep-
tor (Fig. 8c), immune stimulator (Fig. 8d), and immune inhibitor (Fig. 8e).
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Fig. 6 Pan-cancer Cox regression analysis. a Pan-cancer Cox regression analysis of KLF7 across TCGA cancers
with function “pan_forest("KLF7", adjust =F)" KLF7 acts as risk factor in CESE, HNSC, LGG, PAAD, while acts as
protective factor in KIRC and READ. b Age adjusted pan-cancer Cox regression analysis of KLF7 across TCGA
cancers with function “pan_forest("KLF7", adjust =T)". After age adjustment, KLF7 did not act as a protective
factor in READ
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uwm  ACC pica uwm  ACC picar
ucs BRCA ucs BRCA
UcEC™ 02 CESC UCEC* 02 CESC
THYM " CHOL THYM CHOL™
THCA COAD™ THCA COAD™
0
TGCT bLBC TecT DLBC™

STAD*™ ESCA™

STAD** ESCA*
SKCM GBM

SKCM GBM
SARC HNSC

SARC HNSC*™

READ KICH
READ KICH
PRAD KIRC
PRAD™ KIRC
PCPG KIRP
PCPG KIRP
PAAD LAML
PAAD* LGG
ov LGG
MESO LHC ov uHe

LUSC LUAD™

MESO |gc+ LUAD®

Fig. 7 Correlation between gene set and TMB, and MSI. a Correlation between the gene set of KEGG_
APOPTOSIS and TMB with the function “‘gs_TMB_radar("KEGG_APOPTOSIS")" b Correlation between the gene
set of KEGG_APOPTOSIS and MSI with the function “gs_MSI_radar("KEGG_APOPTOSIS")". *p < 0.05, **p < 0.01

Cancer type specific expression analysis

In addition to pan-cancer analysis, we have also provided numerous functions for
caner type specific samples. The expression of a single gene could be grouped by clini-
cal data, including unpaired (Fig. 9a) and paired (Fig. 9b) tumor-normal samples, age
(Fig. 9¢, d), gender (Fig. 9¢), and stage (Fig. 9f).

Moreover, we provided cancer type specific analysis of gene set. The expression
of a gene set could be grouped by clinical data, including unpaired (Fig. 10a) and
paired (Fig. 10b) tumor-normal samples, age (Fig. 10c, d), gender (Fig. 10e), and stage
(Fig. 10f).
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Fig. 8 Correlation between a gene set and immune-related genes. a Correlation between the gene
set of KEGG_APOPTOSIS and ICGs with function “gs_checkpoint_heatmap("KEGG_APOPTOSIS")" b
Correlation between the gene set of KEGG_APOPTOSIS and chemokines with function “gs_chemokine_
heatmap("KEGG_APOPTOSIS")" ¢ Correlation between the gene set of KEGG_APOPTOSIS and chemokine
receptors with function “gs_receptor_heatmap("KEGG_APOPTOSIS")". d Correlation between the gene
set of KEGG_APOPTOSIS and immune stimulators with function “gs_immustimulator_heatmap("KEGG_
APOPTOSIS")" e Correlation between the gene set of KEGG_APOPTOSIS and immune inhibitors with function
“gs_immuinhibitor_heatmap("KEGG_APOPTOSIS")"

Tumor samples in a specific type of cancer could be further grouped by the expression
of a single gene, and the differentially expressed genes (DEGs) between high-expres-
sion and low-expression groups could be identified (Fig. 11a) and analyzed using Gene
Set Enrichment Analysis (GSEA) including GSEA-GO (Gene Ontology) (Fig. 11b) and
GSEA-KEGG (Kyoto Encyclopedia of Genes and Genomes) (Fig. 11c).

Cancer type specific diagnostic analysis

Receiver operating characteristic (ROC) curve and the area under the curve (AUC) were
widely used to examine the sensitivity and specificity of a diagnostic model. We provide
function to draw the ROC curve and calculate the AUC of a diagnostic model using the
expression of a single gene in a specific type of cancer. An example was shown for KLF7
in CHOL (Fig. 12a), HNSC (Fig. 12b), and UCEC (Fig. 12c¢).

Cancer type specific correlation analysis

We provide correlation analysis in a specific type of cancer, including gene—gene
(Fig. 13a, b), gene-methylation (Fig. 13c) correlation analysis. Moreover, for the corre-
lated genes, GO enrichment analysis (Fig. 13d) is also available.
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Fig. 9 Cancer type specific expression analysis. a Expression of KLF7 in COAD with the function
“tcga_boxplot("COAD"'KLF7")". b Expression of KLF7 in paired COAD samples with the function “paired_
boxplot("COAD"'KLF7")". ¢ Expression of KLF7 in COAD samples grouped by age with the function ‘gene_
age("COAD"'KLF7")". d Expression of KLF7 in COAD samples grouped by three age groups with the function
“gene_3age("COAD''KLF7")" e Expression of KLF7 in COAD samples grouped by gender with the function
“‘gene_gender("COAD"'KLF7")" f Expression of KLF7 in COAD samples grouped by stage with the function
‘gene_stage("COAD'"KLF7")"

Cancer type specific survival analysis
Survival analysis base on the expression (Fig. 14a) or methylation (Fig. 14b) level of a
single gene in a specific type of cancer could be performed.

Network construction

Users can also depict the linkages of a single gene or a gene set and GO terms or
KEGG pathways as a network using the gene_network_go (Fig. 15a) and gene_net-
work_kegg (Fig. 15b) functions.

Built-in data extraction

All built-in data in our package could be extracted for user-defined functions, includ-
ing TPM expression matrix, TMB, MSI, immune cell ratio, immune score, promoter
methylation, and meta information with functions listed in Table 1. Therefore, users
could perform their user-defined functions to make more unique analysis with TCGA
multi-omics data.
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Fig. 10 Cancer type specific gene set analysis. a Expression of the gene set "HALLMARK_DNA_

REPAIR" in COAD with the function “gs_boxplot("COAD""HALLMARK_DNA_REPAIR")" b Expression

of the gene set "HALLMARK_DNA_REPAIR" in paired COAD samples with the function “gs_paired_
boxplot("COAD""HALLMARK_DNA_REPAIR")" ¢ Expression of the gene set "HALLMARK_DNA_REPAIR" in COAD
samples grouped by age with the function “gs_age("COAD'"HALLMARK_DNA_REPAIR")". d Expression of

the gene set "HALLMARK_DNA_REPAIR" in COAD samples grouped by three age groups with the function
“gs_3age("COAD"'HALLMARK_DNA_REPAIR")" e Expression of the gene set "HALLMARK_DNA_REPAIR" in
COAD samples grouped by gender with the function “gs_gender("COAD""HALLMARK_DNA_REPAIR")" f
Expression of the gene set "HALLMARK_DNA_REPAIR" in COAD samples grouped by stage with the function
“gs_stage("COAD""HALLMARK_DNA_REPAIR")"

Conclusion

TCGAplot provides a user-friendly interface for analyzing TCGA pan-cancer multi-
omics data and uses visualization techniques to enable users explore the commonali-
ties and heterogeneity across numerous types of tumors. Concretely, several functions
have been developed to perform pan-cancer paired/unpaired expression analysis, cor-
relation analysis, survival analysis, as well as user-defined function analysis. Overall,
we developed an R-package for integrative pan-cancer analysis and visualization of
TCGA multi-omics data.
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Fig. 11 DEGs analysis between high- and low-expression groups of a single gene. a Heat map

showed the DEGs between KLF7 high- and low-expression groups in COAD with function “gene_deg_
heatmap("COAD"'KLF7")" b GSEA-GO analysis of the DEGs between KLF7 high- and low-expression groups in
COAD with function ‘gene_gsea_go("COAD"'KLF7")" and the top 5 GO pathways were shown. ¢ GSEA-KEGG
analysis of the DEGs between KLF7 high- and low-expression groups in COAD with function “gene_gsea_
kegg("COAD'"'KLF7")" and the top 5 KEGG pathways were shown
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Fig. 12 Cancer type specific diagnostic analysis. a ROC curve of the diagnostic model based on the
expression of KLF7 in CHOL with function “tcga_roc("CHOL''KLF7")" b ROC curve of the diagnostic model
based on the expression of KLF7 in HNSC with function “tcga_roc("HNSC"'KLF7")". ¢ ROC curve of the
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Table 1 Summary of functions to extract built-in data

Function name Function

get_tpm(cancer) Extract the TPM matrix of a specific type of cancer in TCGA. eg, get_tpm("COAD")

get_paired_tpm(cancer) Extract the TPM matrix of a specific type of cancer with paired samples (n> 20) in
TCGA. eg, get_paired_tpm("COAD")

get_meta(cancer) Extract the clinical information of a specific type of cancer in TCGA. eg, get_
meta("COAD")

get_tmb() Extract the TMB matrix of all samples in TCGA

get_msi() Extract the MSI matrix of all samples in TCGA

get_methy() Print the link of the whole methylation matrix for users to download

get_promoter_methy() Extract promoter methylation of a specific type of tumor

get_immu_ratio() Extract the immune cell ratio of all samples in TCGA

get_immuscore() Extract the immune score of all samples in TCGA

get_cancers() Return the sample summary of 33 types of cancer in TCGA

get_paired_cancers() Return the sample summary of 15 types of cancer containing more than 20 paired

samples in TCGA

Abbreviations

TME Tumor microenvironment

TIME ~ Tumor immune microenvironment
TCGA  The cancer genome atlas

TPM Transcripts per million

TMB Tumor mutational burden

MSI Microsatellite instability

HR Hazard ratio

DEGs  Differentially expressed genes
GSEA  Gene set enrichment analysis

GO Gene ontology

KEGG  Kyoto encyclopedia of genes and genomes
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