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Abstract 

Background:  Previously, many methods have been used to predict the incidence 
trends of infectious diseases. There are numerous methods for predicting the incidence 
trends of infectious diseases, and they have exhibited varying degrees of success. 
However, there are a lack of prediction benchmarks that integrate linear and nonlinear 
methods and effectively use internet data. The aim of this paper is to develop a predic-
tion model of the incidence rate of infectious diseases that integrates multiple meth-
ods and multisource data, realizing ground-breaking research.

Results:  The infectious disease dataset is from an official release and includes four 
national and three regional datasets. The Baidu index platform provides internet 
data. We choose a single model (seasonal autoregressive integrated moving aver-
age (SARIMA), nonlinear autoregressive neural network (NAR), and long short-term 
memory (LSTM)) and a deep evolutionary fusion neural network (DEFNN). The DEFNN 
is built using the idea of neural evolution and fusion, and the DEFNN + is built using 
multisource data. We compare the model accuracy on reference group data and vali-
date the model generalizability on external data. (1) The loss of SA-LSTM in the refer-
ence group dataset is 0.4919, which is significantly better than that of other single 
models. (2) The loss values of SA-LSTM on the national and regional external datasets 
are 0.9666, 1.2437, 0.2472, 0.7239, 1.4026, and 0.6868. (3) When multisource indices 
are added to the national dataset, the loss of the DEFNN + increases to 0.4212, 0.8218, 
1.0331, and 0.8575.

Conclusions:  We propose an SA-LSTM optimization model with good accuracy 
and generalizability based on the concept of multiple methods and multiple data 
fusion. DEFNN enriches and supplements infectious disease prediction methodologies, 
can serve as a new benchmark for future infectious disease predictions and provides 
a reference for the prediction of the incidence rates of various infectious diseases.

Keywords:  Infectious diseases, Time series, Neural network, Neuroevolution, Meta-
heuristic algorithm

†Tianhua Yao, Xicheng Chen and 
Haojia Wang have contributed to 
the work equally and should be 
regarded as co-first authors.

*Correspondence:   
yidong@tmmu.edu.cn; 
asiawu@tmmu.edu.cn

1 Department of Health Statistics, 
College of Preventive Medicine, 
Army Medical University, NO.30 
Gaotanyan Street, Shapingba 
District, Chongqing 400038, 
China
2 Department of Health 
Education, College of Preventive 
Medicine, Army Medical 
University, NO.30 Gaotanyan 
Street, Shapingba District, 
Chongqing 400038, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05621-5&domain=pdf


Page 2 of 17Yao et al. BMC Bioinformatics           (2024) 25:38 

Background
The incidence of infectious diseases has always been a public health problem worthy of 
attention and can cause very large social, economic and health burdens [1]. Using data 
on the numbers of infectious cases to predict the trends of infectious diseases can pro-
vide a focus and direction for the actual prevention and control of infectious diseases 
and can also allow for the evaluation of epidemic prevention effects and long-term 
outcomes [2]. However, previous research on infectious disease prediction has mainly 
focused on a single disease and a single region, and there have been few systematic stud-
ies on multiple national and regional diseases [3–5]. Therefore, in this paper, the effec-
tiveness and universality of the incidence rates of infectious diseases in nationwide and 
regional epidemics are studied.

At present, there are many problems, such as poor model accuracy and weak gener-
alization performance, in the field of infectious disease trend prediction [6]. There are 
many kinds of time series prediction models for infectious diseases, and there is no 
systematic, unified and standardized research or modelling approach. Previous studies 
often use time series methods in the prediction of incidence rates of infectious diseases.

Autoregressive integrated moving average (ARIMA) uses the historical values ​​of a 
univariate time series to predict future values ​​and is suitable for processing stationary 
data with linear trends. On this basis, the seasonal ARIMA (SARIMA) model was also 
developed. SARIMA fully considers seasonal information to effectively predict seasonal 
infectious diseases [7]. However, SARIMA presupposes the basic time series to be lin-
ear, so it is not suitable for analysing data containing nonlinear time series [8]. To solve 
this problem, nonlinear machine learning models represented by artificial neural net-
works (ANNs) have been gradually proposed and promoted. Nonlinear autoregressive 
neural networks (NARNNs), ​​hereafter referred to as NARs, approach nonlinear regres-
sion through neural networks and can generalize and deal with high-dimensional non-
linear regression estimation [9–12]. In addition, long short-term memory (LSTM), 
an improved recurrent neural network (RNN), has brought revolutionary changes to 
various fields. LSTM has powerful feature extraction and representation capabilities, 
is successful in processing and predicting long and lagging data in time series and can 
compensate for the defect of vanishing gradients in RNNs [13–15]. Linear statistical 
models and nonlinear neural network models have their own advantages and disadvan-
tages in time series modelling. The combination of the two models to perform the fusion 
analysis of infectious disease time series may achieve good results [16].

Previously, data collection for infectious diseases was limited to the diagnosis stage, 
with issues such as incomplete coverage and poor timeliness. However, the factors influ-
encing the occurrence of infectious diseases are complex, and the traditional monitoring 
system is ineffective for tracking new infectious diseases. It is now possible to obtain and 
explore internet data as internet technology advances [17]. The effective use of internet 
health data may provide high application value, potentially improving the effect of infec-
tious disease early warning research [18]. There are currently some precedents in the use 
of internet data in the prediction of infectious diseases [19–21]. The findings highlight 
the importance and relevance of internet data in the prediction of infectious diseases.

Feature selection and hyperparameter optimization are necessary steps for machine 
learning methods to achieve good accuracy, but traditional algorithms often have 
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problems, such as slow convergence speeds and the tendency to easily fall into local 
optima [22]. Evolutionary neural networks (ENNs) are neural network models based on 
evolutionary computing and neural networks [23]. As a result, in this paper, the concept 
of evolution is employed to improve the efficiency of hyperparameter estimation, and 
the coronavirus herd immunity optimizer (CHIO) is used to adjust the hyperparameters 
[24, 25]. CHIO is a metaheuristic algorithm that was proposed in 2020 and inspired by 
social distance and a population immune strategy. When the proportion of immunized 
individuals gradually increases and reaches the group immune state, susceptible individ-
uals are better protected. The metaheuristic algorithm based on evolutionary thinking 
can effectively improve the optimization accuracy while reducing the optimization time 
compared to those of the traditional grid search method.

We construct a new deep evolutionary fusion neural network (DEFNN), which aims 
to fully extract the information of time series by using various types of models. We 
also select six national or regional external datasets to study the generalizability of the 
DEFNN. Our method has the following innovations. (1) Multiple methods: We develop 
a new DEFNN prediction model that combines linear and nonlinear methods based 
on the residual method and execute it using a meta-heuristic algorithm. The combina-
tion of evolutionary ideas can account for the benefits of various types of methods and 
efficiently search for the optimal hyperparameters. (2) Multisource data: We include 
infectious disease data as well as internet data, modifying the infectious disease data 
prediction results and improving the model’s prediction ability on the disturbed part. (3) 
Application value: We are the first to apply the DEFNN model to benchmark data and 
national and regional external test sets. This model has good prediction accuracy and 
generalizability. The DEFNN and DEFNN + models constructed in this paper enrich and 
supplement the methodological research content of infectious disease prediction, serv-
ing as new benchmarks for future infectious disease prediction and providing a refer-
ence for predicting the incidence of various infectious diseases.

Methods
Data preprocessing, single model construction, multiple method correction, multisource 
data correction, generalization performance verification, and other steps are covered in 
this paper. Figure 1 depicts the technical path of this method.

Infectious disease data

Seven infectious disease datasets were selected in this paper. The reference group data 
were the national hepatitis C incidence rate data from the National Health Committee. 
The national external data included hepatitis B, tuberculosis and brucellosis data, which 
were obtained from the official website of the National Health Commission. Thr regional 
external data included hepatitis C-R, hepatitis B-R and varicella-R data, which were 
obtained from Chongqing Health Commission. The basic information of the datasets is 
shown in Table 1. The data in this study were reasonably collected, and there were no 
missing data.

In addition, population data were sourced from China’s annual statistical yearbooks, 
and geographic data were sourced from the National Basic Geographic Information 
Database.
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Fig. 1  Flowchart of this research. The single models include linear (SARIMA) and nonlinear (NAR and LSTM) 
models. In NAR, three different algorithms are selected for optimization, including the Levenberg‒Marquardt 
(LM), scaled convergent gradient (SCG) and Bayesian regulation (BR) algorithms, which are defined as NAR1, 
NAR2 and NAR3, respectively

Table 1  The basic information of the infectious disease datasets

R stands for regional dataset, the time span count (month) is in parentheses, the official website refers to the official website 
of the Chinese Health Commission, and the database refers to the database of the Health Commission

Application Dataset Area Data 
source

Time phase 
(month)

Time phase 
of training set 
(month)

Time phase of 
test set (month)

Reference 
Group Data

Hepatitis C National Official web-
site

2008.1 ~ 2022.4 
(172)

2008.1 ~ 2021.4 
(160)

2021.5 ~ 2022.4 
(12)

National 
External 
Data

Hepatitis B National Official web-
site

2008.1 ~ 2022.4 
(172)

2008.1 ~ 2021.4 
(160)

2021.5 ~ 2022.4 
(12)

Tuberculosis National Official web-
site

2008.1 ~ 2022.4 
(172)

2008.1 ~ 2021.4 
(160)

2021.5 ~ 2022.4 
(12)

Brucellosis National Official web-
site

2008.1 ~ 2022.4 
(172)

2008.1 ~ 2021.4 
(160)

2021.5 ~ 2022.4 
(12)

Regional 
External 
Data

Hepatitis 
C-R

Chongqing Database 2008.1 ~ 2022.6 
(174)

2008.1 ~ 2021.6 
(162)

2021.7 ~ 2022.6 
(12)

Hepatitis B-R Chongqing Database 2013.1 ~ 2022.6 
(114)

2013.1 ~ 2021.6 
(102)

2021.7 ~ 2022.6 
(12)

Varicella-R Chongqing Database 2013.1 ~ 2019.12 
(84)

2013.1 ~ 2018.12 
(72)

2019.1 ~ 2019.12 
(12)
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Internet data

The internet data are sourced from the Baidu index platform, which mainly focuses on 
the search frequency and click frequency of key texts. The internet retrieval keywords 
are shown in Table 2. The Baidu information index is used to measure the attention and 
popularity of a specific news topic in a Baidu search over a certain period. It is based on 
big data analysis and search click-through volume, reflecting the popularity and level of 
attention of a specific news topic during a specific period.

The basic information for feature extraction and selection of internet data is shown in 
Table 3. Feature extraction is performed on each index time series, 22 representative fea-
tures are selected for each index, and variance selection is performed with a threshold of 
1.0. The independent variable contains 4 key texts. After extracting time series features 
from each key text, 22 of the most critical features are selected [26], and 88 features are 
obtained. Finally, the numbers of features included in hepatitis C, hepatitis B, tubercu-
losis, and brucellosis datasets are 16, 18, 21, and 22, respectively. Afterwards, we select 
a decision tree to fit and correct the prediction error of the selected features for the cur-
rent month. After extracting features from internet data, we complete the conversion 
from day to month. After conversion, both the independent and dependent variables are 
monthly data.

The data acquisition of infectious diseases involves the following steps. First, keyword 
cooccurrence analysis, expert consensus, and experience are used to determine the 
highly relevant keyword information of the infectious disease to be analysed through the 

Table 2  Search keywords of internet data

Infectious Disease Keywords

Hepatitis C Hepatitis C, hepatitis, class B infectious disease, transmission

Hepatitis B Hepatitis B, hepatitis, class B infectious disease, transmission

Tuberculosis Tuberculosis, cough, class B infectious disease, transmission

Brucellosis Brucellosis, infectious disease, class B infectious disease, transmission

Table 3  The basic information of the internet data

The Baidu index and consulting index are derived from the Baidu search engine. The specific extraction process to 
determine the number of time series features is referred to as Catch22

Infectious 
Disease

Number 
of Key 
Words

Area Data 
Source

Time Phase 
(month)

Number 
of Time 
Series 
Features

Number of 
Characteristics

Number of 
Characteristics 
After Variance 
Selection

Hepatitis C 4 National Baidu & 
Advisory 
index

2011.1 ~ 2022.4 
(136)

22 88 16

Hepatitis B 4 National Baidu & 
Advisory 
index

2011.1 ~ 2022.4 
(136)

22 88 18

Tubercu-
losis

4 National Baidu & 
Advisory 
index

2011.1 ~ 2022.4 
(136)

22 88 21

Brucellosis 4 National Baidu & 
Advisory 
index

2011.1 ~ 2022.4 
(136)

22 88 22
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database. Second, search engines are used to match text data and obtain keyword text 
index information. The search engine here specifically refers to the Baidu Search Index 
website, which is beneficial for representing social hotspots and the real-time living con-
ditions of residents. Then, time series feature extraction is performed on the monthly 
index information to obtain the time series characteristics of each index for each month. 
Finally, we extract the 22 most important time series features [26, 27] and incorporate 
them into the model for analysis. Catch22 is a 22 time series feature provided by the fea-
ture library in the Hctsa toolbox. This feature set is one of the small time series feature 
sets with strong predictive ability. By using the Catch22 feature set, we can effectively 
reduce the computational complexity and avoid feature redundancy without affecting 
the predictive performance of the final model.

We divided data preprocessing into two parts to improve the convenience of data 
processing, accelerate the model’s convergence speed, and avoid the impact of differ-
ent dimensions on the accuracy of the results. For linear models, the logarithmic change 
method was used, and for nonlinear models, the standardization method was used. 
Thus, the model can conform to a standard normal distribution after data processing.

Furthermore, the model construction, evaluation index, and calculations were all 
based on MATLAB 2021b, and the geographic information map was drawn using Arc-
GIS 10.8.1.

Fusion of multiple methods

As shown in Fig. 2, the seasonal-trend decomposition procedure based on loess (STL) 
is a representative time series decomposition algorithm that can divide time series 
into trend terms, periodic terms, and disturbance terms. The traditional linear time 
series method is useful for revealing the change rule of the trend and periodic terms, 
but it does not analyse the disturbance term, which introduces errors into the predic-
tion results. This paper proposes two creative correction methods to better predict the 
change law of the disturbance term, namely, "multiple methods" and "multisource data."

We examined the nonlinear methods represented by NAR and LSTM, which have a 
good learning effect for nonlinear characteristics and can effectively evaluate the time 
series fluctuation state. As a result, we employed nonlinear methods to alter the out-
comes of linear time series methods.

Fig. 2  Seasonal-trend decomposition procedure based on loess (STL)
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Our modelling process incorporates the concepts of "fusion" and "evolution," with the 
goal of overcoming the limitations of a single method. We used the residual sequence 
from the linear model as the training set for the nonlinear model, optimized the hyper-
parameters using deep neural evolution, and then built the DEFNN. The time series pre-
diction model was built using the concept of fusion evolution. The linear and nonlinear 
model prediction result sequences were fused, and the coronavirus herd immunity opti-
mizer (CHIO) was introduced to optimize the model hyperparameters. Then, the opti-
mization results were obtained [24, 25].

The model was trained using reference group data (hepatitis C dataset). During the 
training process, CHIO was used to perform hyperparameter optimization, after which 
the best hyperparameters of various models could be determined. Details can be found 
in Table 4. After training, the national and regional external datasets were used to vali-
date the optimal model’s generalization performance. Finally, we built the deep evolu-
tionary fusion neural network, which included SA-NAR-1, SA-NAR-2, SA-NAR-3, and 
SA-LSTM, and tested it.

Fusion of multisource data

The traditional incidence rate report has a lag effect, which affects the time series predic-
tion accuracy. Internet data are useful for providing proactive information and overcom-
ing the lag effect associated with traditional data. As a result, we used internet data to 
modify the results. The residual fusion process produces the prediction results, and the 
model performance is compared. Simultaneously, network data from specific infectious 
diseases can be used for the regression prediction of the residual part, resulting in an 
accurate prediction. Finally, the DEFNN + was built on top of the DEFNN. The distinc-
tion is whether internet data were used. Figure  3 depicts the multisource data fusion 
process.

In this paper, multisource data fusion was implemented on the national dataset to 
study the improvement effect of network big data correction on the prediction results. 

Table 4  Various model hyperparameters and their optimal values

Method Hyperparameters Values

SARIMA (p, d, q) (0,1,1)

(P, D, Q) (0,1,1)

NAR1 No. of Neurons 50

Time Step 12

NAR2 No. of Neurons 30

Time Step 12

NAR3 No. of Neurons 50

Time Step 13

LSTM Layers 3

No. of Neurons 180

Learning Rate 0.005

Batch Size 5

Epochs 200

Time Step 12
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Regression analysis was carried out with internet data as the independent variable 
and the residual after model fitting as the dependent variable. We also carried out an 
ex-right operation on the internet data, i.e., dividing the Baidu index by the overall 
index activity of the month, to eliminate the impact caused by the fluctuation of the 
number of search engine users.

Evaluation metrics

We used five common evaluation indicators, including the mean square error (MSE), 
mean absolute error (MAE), root MSE (RMSE), mean absolute percentage error 
(MAPE) and R-square (R2) metrics. The first four indicators represent the model fit-
ting error, while R2 represents the model fitting trend. The smaller the error value is, 
the better the fitting performance of the model, and the greater the R2 is, the stronger 
the ability of the model to predict the trend of actual data. In addition, to better eval-
uate the accurate proportion of rising or falling trends in the prediction of infectious 
diseases at each time node, this paper creatively proposes the concept of the accuracy 
of trend prediction (ATP). ni represents whether the predicted trend is accurate dur-
ing the ith prediction and can be expressed as

where the last value of y0 is the validation set. When i > 0, yi represents the test set 
sequence, ŷi represents the prediction results of the model on the test set, and yi  = yi−1 . 
Hence, the ATP can be defined as

where N represents the number of test set total time nodes.
To comprehensively utilize the MSE, R2, and ATP evaluation indicators, we con-

structed a joint objective function named lossJ  , and its calculation method is defined 
as

(1)ni =
1; (ŷi − yi−1)/(yi − yi−1) > 0

0; (ŷi − yi−1)/(yi − yi−1) < 0

(2)
ATP =

N
∑

i=1

ni

N
× 100%

Fig. 3  Fusion of multisource data (time series data + internet data)
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Our objective function ensures that the sought parameters minimize the error (MSE) 
and maximize the degree of fit (R2) between the model’s predicted data and actual data, 
thereby comprehensively balancing the accuracy of the built model in predicting data 
and predicting trends in infectious disease incidence. When using optimization algo-
rithms for hyperparameter optimization, the use of joint objective functions can simul-
taneously provide direction and step size guidance for the next iteration of the algorithm 
by the MSE, R2, and ATP, avoiding single indicator variation errors or premature con-
vergence affecting the final optimal hyperparameter determination. In addition, when 
constructing the final DEFNN + model, to better perform residual fusion and avoid 
overfitting, we also used fivefold cross validation to adjust the model parameters.

Results
Time and spatial descriptions

Here, the temporal and spatial epidemic characteristics of the seven datasets are 
described. Figure 4 shows the time trend diagram, and Fig. 5 shows the spatial distribu-
tion diagram. The overall development trend has certain seasonal characteristics.

Prediction accuracy of the DEFNN

Five single models and four fusion models were selected for training and testing on the 
reference group data. The single models involved in the comparison include SARIMA, 
NAR1, NAR2, NAR3, and LSTM, and the DEFNN models involved in the comparison 
include SA-LSTM, SA-NAR1, SA-NAR2, and SA-NAR3. The prediction effect of each 
model on the reference group data is shown in Table 5, Figs. 6, and 7, and only the test 
set data are shown.

For the single models, the MSE, MAE, RMSE and lossJ values of SARIMA are all lower 
than those of the other models, while the R2 value is better than those of the other mod-
els; hence, it is the best single model. Compared with the single models, the indicators 
of the DEFNN are improved to varying degrees. On the test set, the MSE, MAE, RMSE 
and lossJ values of the SA-LSTM model are all lower than those of the other models, 
while the R2 value is better than those of the other models. The lossJ value of SA-LSTM is 
0.4919. The SA-LSTM model is conducive to improving the overall prediction ability of 
the SA-LSTM model and reducing the gap between the predicted and actual values. SA-
LSTM is the optimal model for our infectious disease trend prediction task.

Prediction generalization of the DEFNN

The optimal SA-LSTM model was selected using the reference group data. To analyse 
the robustness and generalizability of the optimal model on various datasets, three 
national external validation datasets and three regional external validation datasets 
were selected for validation. See Table 6 and Fig. 8 for the results. The lossJ values of SA-
LSTM are 0.9666, 1.2437, 0.2472, 0.7239, 1.4026 and 0.6868.

(3)min lossJ =

[

MSE + (1− R2)
]

ATP
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Prediction accuracy of the DEFNN + 

We also introduced additional internet data on the basis of SA-LSTM. Table  7 and 
Fig. 9 display the final prediction results. The results show that using the Baidu index 
to correct the results and obtain more accurate prediction results is effective. The lossJ 
of the DEFNN + for hepatitis C, hepatitis B, tuberculosis, and brucellosis are 0.4212, 
0.8218, 1.0331, and 0.8575, respectively, on the four national datasets.

Comparison with previous studies

We compared this method with the most advanced methods in the previous lit-
erature to better illustrate the performance of this model. The results show that the 

Fig. 4  Time trends of the datasets. a: Hepatitis C; b: Hepatitis B; c: Tuberculosis; d: Brucellosis; e: Hepatitis C-R; 
f: Hepatitis B-R; g: Varicella-R
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prediction performance of this method is better than that of the previous advanced 
methods. See Table 8 for details.

Discussion
In the analysis and prediction of the incidence rates of infectious diseases, we compare 
five single models and propose a fusion evolutionary idea based on the results. We build 
and select the optimal fusion model and use the national external data and regional 
external data to verify the optimal model.

SARIMA is a typical representative of linear prediction models. NAR is a representa-
tive model of machine learning and has good performance in classification and regres-
sion. LSTM is a deep learning model suitable for nonlinear regression [34]. Our DEFNN 

Fig. 5  Spatial distributions of the regional external datasets. Our base map is based on the standard map 
with the review number GS (2019) 3333 downloaded from the Standard Map Service website of the National 
Bureau of Surveying and Mapping Geographic Information. The base map has not been modified. a ~ b: 
Hepatitis C-R, c ~ d: Hepatitis B-R, e ~ f: Varicella-R; a, c, e: Geographical Plots, b, d, f: Kernel Density Plots
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model effectively fuses the linear part and the nonlinear part through a residual method. 
When there is a nonlinear part in the prediction data, it can be explained by the neural 
network, so the effect of the DEFNN is obviously better than that of a single model. In 
addition, we introduce a function to comprehensively weigh the accuracy of the model 
in the prediction of infectious diseases, named lossJ , and then make a more comprehen-
sive evaluation of the performance of the model.

Our results show that SA-LSTM not only has good prediction accuracy but also has 
good robustness and generalizability in external verification. The reason for these results 
is that the SARIMA model cannot capture the nonlinear part of time series data, and 
the evaluation effect of the NAR and LSTM models on the linear part is also limited 
[35]. The DEFNN can not only make effective use of the seasonal prediction advan-
tages of SARIMA but also explain the nonlinear trend in the dataset [36]. In addition, 
the evolution process based on a metaheuristic algorithm is conducive to improving the 
accuracy of the neural network model hyperparameter search [37–39]. The verification 

Table 5  Prediction effect of the single and fusion models on the reference group data

SARIMA, NAR1, NAR2, NAR3 and LSTM are single models, while SA-NAR1, SA-NAR2, SA-NAR3 and SA-LSTM are DEFNN 
models. MSE: mean square error, MAE: mean absolute error, RMSE: root mean square error, R2: R-square, ATP: accuracy of 
trend prediction

Model MSE MAE RMSE MAPE R2 ATP lossJ

SARIMA 0.1965 0.5192 0.6807 0.0382 0.6617 0.7500 0.7131

NAR1 0.2362 0.5292 0.8183 0.0363 0.5110 0.7500 1.0069

NAR2 0.1974 0.5265 0.6839 0.0364 0.6585 0.5833 0.9239

NAR3 0.2188 0.6487 0.7581 0.0441 0.5804 0.6667 0.9575

LSTM 0.1952 0.5973 0.6760 0.0422 0.6663 0.7500 0.7053

SA-NAR1 0.1803 0.4229 0.6247 0.0299 0.7151 0.8333 0.5583

SA-NAR2 0.1896 0.5206 0.6568 0.0378 0.6850 0.8333 0.6055

SA-NAR3 0.2000 0.5930 0.6927 0.0425 0.6496 0.7500 0.7339

SA-LSTM 0.1673 0.4816 0.5796 0.0350 0.7574 0.8333 0.4919

Fig. 6  Prediction effect of each single model on the reference group data
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results of the external dataset in this paper show that SA-LSTM is suitable not only for 
the national dataset of a variety of infectious diseases but also for the regional dataset of 
a variety of infectious diseases.

Fig. 7  Prediction effect of each fusion model on the reference group data

Table 6  Prediction results of the DEFNN on the national external validation data

Hepatitis B, tuberculosis and brucellosis data are national external data, while Hepatitis C-R, Hepatitis B-R and Varicella-R 
data are regional external data. MSE: mean square error, MAE: mean absolute error, RMSE: root mean square error, R2: 
R-square, ATP: accuracy of trend prediction

Data MSE MAE RMSE MAPE R2 ATP lossJ

Hepatitis B 0.6074 1.6436 2.1041 0.0225 0.7213 0.9167 0.9666

Tuberculosis 0.6982 1.7561 2.4185 0.0389 0.7654 0.7500 1.2437

Brucellosis 0.1955 0.5487 0.6774 0.1333 0.7734 0.9167 0.2472

Hepatitis C-R 0.3442 1.0028 1.1925 0.0537 0.6203 1.0000 0.7239

Hepatitis B-R 1.0382 2.5307 3.5964 0.0389 0.7522 0.9167 1.4026

Varicella-R 0.6868 1.3131 2.3792 0.8818 0.8333 0.9660 0.6868

Fig. 8  Prediction results of the optimal model on the national external validation data. a: Hepatitis B; b: 
Tuberculosis; c: Brucellosis; d: Hepatitis C-R; e: Hepatitis B-R; f: Varicella-R
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Internet retrieval data, as represented by the Google influenza index, have gradually 
been applied to the prediction of infectious diseases [40–42]. Internet search data can 
effectively reflect population internet behaviour and reasonably measure the popula-
tion’s spontaneous and proactive search behaviour prior to the onset of infectious dis-
eases. As a result, we introduce the research concept of multisource data fusion and then 
construct the DEFNN + on the basis of the DEFNN. The DEFNN proposed in this paper 
is applicable to a wide range of seasonal infectious diseases, has high prediction accu-
racy, and can be used as a new benchmark in the field of infectious disease trend predic-
tion. In the future, the benchmark that we have created can be used to predict the trend 

Table 7  Model effect of the DEFNN + on each dataset

Data MSE MAE RMSE MAPE R2 ATP lossJ

Hepatitis C 0.1511 0.4249 0.5233 0.0304 0.8001 0.8333 0.4212

Hepatitis B 0.5714 1.6194 1.9794 0.0222 0.7533 0.9167 0.8218

Tuberculosis 0.1949 0.5321 0.6752 0.1308 0.7748 0.7500 1.0331

Brucellosis 0.1900 0.4790 0.6581 0.1238 0.7861 0.9167 0.8575

Fig. 9  Model effect of the DEFNN + on each dataset. A: Hepatitis B; b: Tuberculosis; c: Brucellosis; d: Hepatitis 
C-R

Table 8  Comparison with previous studies

Author Year Dataset MSE MAE RMSE MAPE

Zhang [28] 2014 Hepatitis B – – – 0.1097

Azeez [29] 2016 Tuberculosis – – 0.7386 1.1039

Zheng [30] 2020 Hepatitis B – – 0.7000 0.8900

Wang [31] 2020 Tuberculosis – 0.8030 0.9790 0.0765

Guo [32] 2021 Tuberculosis 3.2460 – – 0.0208

Li [33] 2021 Tuberculosis – – 1.1330 0.0796

SA-LSTM 2023 Hepatitis C 0.1673 0.4816 0.5796 0.0350
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of infectious diseases in more types and regions, providing a better foundation for infec-
tious disease prevention, control, and evaluation.

Conclusion and future work
In summary, the DEFNN is constructed by using the idea of neuroevolution and fusion. 
The optimal SA-LSTM model is superior to other models in reference group data 
prediction and has a good generalization performance on the external test set. The 
DEFNN + can significantly improve the prediction performance after incorporating 
internet data. The DEFNN model proposed in this paper has good prediction perfor-
mance, can provide strong future predictions, and has a strong guiding role in the pre-
vention and control of infectious diseases. It is suggested that this model be extended to 
predict a variety of seasonal infectious diseases to guide their prevention.

Although the design of this study is reasonable and strictly implemented, there is still 
some room for improvement. We look forward to the following future research direc-
tions: (1) In the future, multidimensional and wide-ranging analyses will be carried out 
on the characteristics of spatial distributions, population distributions and pathogenic 
factors to better implement early warnings. (2) In the future, we need to continue to 
explore the optimization method of model hyperparameters and improve the model 
effect. (3) The DEFNN + results indicate that the addition of the Baidu index can effec-
tively correct the results and obtain more accurate prediction results, but the effect on 
the overall trend analysis is limited. As a result, improving the utilization of internet data 
in the future is required to obtain more accurate prediction results.
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