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Abstract 

Background: The recent development of high-throughput sequencing has created 
a large collection of multi-omics data, which enables researchers to better investigate 
cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrat-
ing multi-omics data has been proven to be effective for building more precise classifi-
cation models. Most current multi-omics integrative models use either an early fusion 
in the form of concatenation or late fusion with a separate feature extractor for each 
omic, which are mainly based on deep neural networks. Due to the nature of biological 
systems, graphs are a better structural representation of bio-medical data. Although 
few graph neural network (GNN) based multi-omics integrative methods have been 
proposed, they suffer from three common disadvantages. One is most of them use 
only one type of connection, either inter-omics or intra-omic connection; second, they 
only consider one kind of GNN layer, either graph convolution network (GCN) or graph 
attention network (GAT); and third, most of these methods have not been tested 
on a more complex classification task, such as cancer molecular subtypes.

Results: In this study, we propose a novel end-to-end multi-omics GNN framework 
for accurate and robust cancer subtype classification. The proposed model utilizes 
multi-omics data in the form of heterogeneous multi-layer graphs, which combine 
both inter-omics and intra-omic connections from established biological knowledge. 
The proposed model incorporates learned graph features and global genome features 
for accurate classification. We tested the proposed model on the Cancer Genome 
Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset 
for molecular subtype and cancer subtype classification, respectively. The proposed 
model shows superior performance compared to four current state-of-the-art baseline 
models in terms of accuracy, F1 score, precision, and recall. The comparative analysis 
of GAT-based models and GCN-based models reveals that GAT-based models are 
preferred for smaller graphs with less information and GCN-based models are preferred 
for larger graphs with extra information.
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Background
The fast-growing high-throughput sequencing technology has made DNA and RNA 
sequencing more efficient and accessible, resulting in a large collection of multi-omics 
data which makes molecular profiling possible. Due to the heterogeneity in cancer and 
the complexity of the biological processes, employing multi-omics sequencing data are 
crucial to more accurate cancer classification and tumor profiling. Many researchers 
have proposed methods that incorporate multi-omics data for either cancer type classifi-
cation or cell type clustering [1–11]. These methods show that utilizing multi-omics data 
improves performance, and provides a better understanding of the key pathophysiologi-
cal pathways across different molecular layers  [12]. A typical multi-omics data gener-
ated from DNA and RNA sequencing usually consists of mRNA expression, microRNA 
(miRNA) expression, copy number variation (CNV), and DNA methylation [13]. The 
difference in data distributions across each omic, and the complex inter-omics and intra-
omic connections (certain omic can act as a promotor or suppressor to genes) add more 
challenges to developing an integrative multi-omics classification method for cancer 
molecular subtypes.

Recent studies have shown that cancer taxonomy based on molecular subtypes can be 
crucial for precision oncology [13, 14]. An accurate cancer molecular subtype classifier 
is crucial for early-stage diagnosis, prognosis, and drug development. Traditional can-
cer taxonomy is based on its tissue origin. In 2014, The Cancer Genome Atlas (TCGA) 
Research Network proposed a new clustering method for cancers based on their inte-
grated molecular subtypes that share mutations, copy-number alterations, pathway 
commonalities, and micro-environment characteristics instead of their tissue of ori-
gin  [13]. They found 11 subtypes from 12 cancer types. In 2018, they applied the new 
taxonomy method to 33 cancer types and found 28 molecular subtypes  [15]. The new 
cancer taxonomy provides a better insight into the heterogeneous nature of cancer.

With the recent development in deep learning models, data-driven models bene-
fit from the powerful feature extraction capability of deep learning networks in many 
fields  [16–19]. Most multi-omics integrative models employ an early fusion approach 
that aggregates multi-omics data (mainly by concatenation) and then applies a deep 
neural network as a feature extractor; or a late fusion approach that first extracts fea-
tures from each omic by deep neural networks and then aggregates extracted features 
as inputs to the classification network. For efficient implementation of multi-omics inte-
grative models, convolutional neural networks (CNNs) are widely used [20].

Traditional deep neural networks are based on the assumption that the inner structure 
of the data is in Euclidean space [21]. Because of the complex interactions across many 
biological processes, such data structure is not a proper representation of bio-medical 
data, and researchers proposed graph-based data structures to tackle this limitation. 
In 2016, a graph convolution network (GCN), ChebNet, was proposed [16]. It uses the 
Chebyshev polynomial as the localized learning filter to extract the graph feature repre-
sentation. In 2017, Petar Velickovic et al. proposed a graph attention network (GAT) that 
overcomes GCN’s disadvantage of dependence on the Laplacian eigenbasis  [22]. GAT 
uses masked self-attention layers to enable nodes to attend over their neighborhoods’ 
features [22]. With the recent growing interest in the graph neural network, many graph-
based classification methods have been proposed in the bio-medical field.
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To utilize the power of graph-structured data, Ramirez et al. proposed a GCN method 
to use intra-omic connections, protein-protein interaction networks, and gene co-
expression networks. The model achieves a 94.71% classification accuracy for 33 cancer 
types and normal tissue on TCGA data [23]. To use the intra-omic connection across 
multiple omics, Wang et  al. proposed MOGONET, a late-fusion GCN-based method 
that integrates multi-omics data for bio-medical data classification. And they achieve 
80.61% accuracy on breast cancer subtype classification with BRCA dataset  [5]. To 
compensate for the limitation of GCN, that it only extracts local representation on the 
graph, Li et al. proposed a parallel-structured GCN-based method that utilizes a gene-
based prior knowledge graph for cancer molecular subtype classification [1]. There are 
also other ways to structure the graph. Wang et  al. proposed a GCN-based method 
that uses a KNN-generated cell-cell similarity graph for single-cell sequencing data 
classification [24].

Since the introduction of GAT in 2017, it has gained more and more interest. Shan-
thamallu et al. proposed a GAT-based method, GrAMME, with two variations that use 
a supra-graph approach and late-fusion approach to extract features from a multi-layer 
graph with intra-omic connections only for classification in social science and politi-
cal science datasets  [25]. On the other hand, Kaczmarek et al. proposed a multi-omics 
graph transformer to utilize an inter-omics connection only graph, the miRNA-gene tar-
get network, for cancer classification on 12 cancer types from the TCGA data [7].

There are three common disadvantages of these approaches. First, most of them con-
sider only one kind of connections in their model, either inter-omics or intra-omic con-
nections. They do not aim to utilize both inter-omics and intra-omic connections for 
more effective feature extraction. Second, they only consider one kind of GNN mod-
els, either GCN or GAT. We find that GAT and GCN have their strength in different 
scenarios as shown in our experiments. Different graph layers are preferred for differ-
ent tasks even with datasets in a similar domain. Third, most of these methods have not 
been tested on a more complex classification task. They are used for classification based 
on the cell-of-origin taxonomy such as cancer type classification and have not been 
applied to a more complex classification task such as cancer molecular subtype classi-
fication, which is more useful for diagnosis, prognosis, and treatment. Inspired by our 
previous work on the cancer molecular subtype classification based solely on intra-omic 
connections, we aim to develop a multi-omics integrative framework that exploits the 
powerful data aggregation property of GCN or GAT models (depending on the situa-
tion) and utilizes both the intra-omic network and the inter-omics network for more 
precise classification.

Our goal is to build an accurate, robust, and efficient multi-omics integrative predic-
tive model to classify these cancer molecular subtypes. In this work, we propose a gen-
eral framework that can be used with any graph neural networks as the feature extractor, 
incorporate both gene-based and non-gene-based prior biological knowledge (primar-
ily miRNA), and learn a knowledge graph consisting of both intra-omic and inter-omics 
connections. We apply the proposed model to classify cancer molecular subtypes and 
breast cancer molecular subtypes. We choose breast cancer as it is one of the most com-
mon and lethal cancers with a large number of samples in TCGA. It can be categorized 
into four major molecular subtypes based on the gene expression of the cancer cells, and 
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breast cancer subtypes have significant impacts on the patient’s survival rates  [26]. Our 
experimental results show the proposed method outperforms both the graph-based and 
CNN-based state-of-the-art methods.

Our contributions in this study are (i) a novel generalized GNN-based multi-omics 
integrative framework for cancer molecular subtype classification, (ii) a supra-graph 
approach that can incorporate both intra-omic and inter-omics prior biological knowl-
edge in the form of graphs, (iii) a representation of multi-omics data in the form of het-
erogeneous multi-layer graph, and (iv) a comparative analysis of GCN and GAT based 
models at different combinations of omics and different graph structures.

Method and materials
The overview of the proposed framework structure is shown in Fig. 1. The input data 
for the proposed framework is shown as a graph structure on the leftmost side. The 
data consists of three omics, mRNA expression (orange boxes), copy number variation 
(CNV) (yellow boxes), and miRNA (green boxes). The details of the network structure 
are discussed in the following Network Section. The proposed framework consists of 4 
major modules: Module (1) a linear dimension-increase neural network, Module (2) a 
graph neural network (GNN), Module (3) a decoder, and Module (4) a shallow paral-
lel network. Any kind of graph neural network can be used in Module 2. In this study, 
we focus on graph convolutional network (GCN) and graph attention network (GAT), 
which are two major kinds of GNN. Experiments about the effect of the decoder and the 
shallow parallel network modules are discussed in our ablation study.

Network

We build a heterogeneous multi-layer graph based on the prior biological knowledge, 
i.e. gene-gene interaction (GGI) network from BioGrid and miRNA-gene target net-
work from miRDB  [27, 28]. Inspired by the meta-path and supra-graph approach for 
the multi-layered network models [25, 29], we build a supra-graph with miRNA-miRNA 
meta-paths. A miRNA-miRNA meta-path is defined as if two miRNA nodes are con-
nected to the same gene node from the GGI network and miRNA-gene network. An 
example of how we construct the supra-graph is shown in Fig. 2. Meta-paths are shown 
as dotted lines in the figure.

The adjacency matrix of the supra-graph is an (N +M)× (N +M) matrix, where 
N is the number of genes and M is the number of miRNA. Every node in the graph is 
assumed to be self-connected, thus the diagonal elements of the adjacency matrix in the 
study are 1. The adjacency matrix of the supra-graph is shown in Eq. (1).

where Agene−gene ∈ R
N×N , Agene−mi ∈ R

N×M , and Ami−mi ∈ R
M×M.

We also construct four different kinds of graphs other than supra-graph in our abla-
tion study and apply them to five input combinations of omics: mRNA, miRNA, mRNA 
+ miRNA, mRNA+CNV, mRNA + MiRNA + CNV, to test the effect of the different 
graphs on the model performance. The four different graphs are defined as follows.

(1)ASupra =
Agene−gene Agene−mi

A
T
gene−mi Ami−mi,

,
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Fig. 1 The overall structure of the proposed model has four major modules shown as dotted grey 
rectangles. The input graph consists of inter-omics (red edges), intra-omic (blue edges) edges and 
miRNA-miRNA meta-path (black dashed edges), and three omics data, mRNA (orange boxes), CNV (yellow 
boxes), and miRNA (green boxes) is shown as the leftmost side. Module 1 consists of two parallel linear 
dimension-increase layers for gene-based nodes and miRNA-based nodes. The upgraded graph shown in 
the middle is obtained by feeding the node attributes from the input graph through module 1, where the 
dark orange boxes are the updated gene-based node attributes and the dark green boxes are the updated 
miRNA-based node attributes. Module 2 consists of two graph neural network layers, which can be any graph 
neural networks. The output of module 2 is then fed into a max pooling layer and then a transformation layer 
to obtain the learned graph representation (blue boxes). Module 3 consists of a decoder to reconstruct the 
graph representation back to the input graph node attributes. Module 4 consists of a shallow fully connected 
network that takes the updated node attributes as the input. The output of the parallel network (grey cubes) 
is then concatenated with the learned graph representation, and passes through a classification layer for the 
classification task
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Only Gene-based Nodes When the input combination of omics is mRNA 
or mRNA+mRNA+CNV ( M = 0 ), the graph is built with the GGI network, 
A = Agene−gene ∈ R

N×N .
Only miRNA-based Nodes When the input combination of omics is miRNA ( N = 0 ), 

the graph is built with only miRNA meta-path network, A = Ami−mi ∈ R
M×M.

Only Intra-class Edges The graph only contains GGI network and miRNA meta-path 
network.

Only Inter-class Edges The graph only contains miRNA-gene target network.

The input graph is denoted as a tuple G = (V ,E,XV ) , where V is the set of nodes, E 
is the set of edges, and xV  is the node attributes. The prior knowledge is incorporated 
into the model through the supra-graph defined above. In the supra-graph, nodes con-
sist of both gene-based nodes and miRNA-based nodes, and edges are assigned by the 
adjacency matrix. Each gene-based node has a node attribute of a vector consisting of 
both gene expression and CNV data, xv∈Vgene ∈ R

2 . Each miRNA-based node has a node 
attribute as a scalar, xv∈VmiRNA

∈ R . The gene-based nodes and miRNA-based nodes are 
fed through a linear dimension-increase layer, denoted as Module 1 in Fig. 1 to achieve 
the same node attribute dimension, X′

V ∈ R
(N+M)×F , where F is the increased node 

attribute dimension.

(2)ASupra =

[

Agene−gene 0N ,M

0M,N Ami−mi

]

∈ R
(N+M)×(N+M).

(3)ASupra =

[

IN ,N Agene−mi

A
T
gene−mi IM,M

]

∈ R
(N+M)×(N+M).

Fig. 2 The overall graph, supra-graph, is constructed from three different omic data on the left-hand side 
and two prior knowledge graphs on the right-hand side. mRNA (orange table) and CNV (yellow table) 
data are considered gene-based, which have the same dimension. miRNA (green table) data has the same 
number of rows but different feature lengths for each sample
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Graph neural network: convolution‑based

As mentioned before, any graph neural network can be used in the GNN module. We 
use ChebNet [16] to implement the GCN in this study. The supra-graph adjacency 
matrix introduced in the previous network section is first Laplacian normalized to L 
as expressed in Eq. (4).

where I ∈ R
(N+M)×(N+M) is an identity matrix, and the degree matrix 

D ∈ R
(N+M)×(N+M) is a diagonal matrix. The eigen decomposition form of L can be 

obtained as

where U = (u1,u2, . . . ,un) is a matrix of n orthonormal eigenvectors of L , therefore 
UU

T = I . And � = diag(�1, �2, . . . , �n) is the eigenvalue matrix [16].
After transforming the graph on the Fourier domain, the learning filter can be 

approximated by a Kth-order Chebshev polynomial. The convolution on the graph by 
such localized learning filter, h(�) can be expressed in Eq. (6).

where Xj ∈ R
(N+M)×F is the features of j-th sample, L̃ = 2L/�max − I , and 

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃) with T0(L̃) = I and T1(L̃) = L̃ . K is a hyper-parameter, 
where K = 5 in our study. A max-pooling layer with p = 8 is used to reduce the number 
of nodes and one layer of fully connected network is used to transform the learned local 
feature representation to a vector of length 64 for each sample, θ1 ∈ R

64.

Graph‑neural network: attention‑based

GAT aims to solve the problem of GCN’s dependence on Laplacian eigenbasis of the 
graph adjacency matrix [22]. The updated node attributes are first passed through a 
linear transformation by a learnable weight, denoted as W ∈ R

F ′×F  , where F is the 
updated node attribute dimension and F ′ is the intended output dimension for this 
GAT layer. Then, the self-attention coefficients for each node can be calculated as Eq. 
(7).

where eij represents the importance of node j to node i and xi, xj are the node attributes 
for node i, j. Such attention score is only calculated for j ∈ NB(i) , where NB(i) is all the 
first-order neighbor nodes around node i. The method normalizes the attention score by 
a softmax layer of eij and uses LeakyReLU as the activation function as express in Eq. (8).

(4)L = I+D
−1/2

AD
1/2,

(5)L = U�U
T ,

(6)y = Uh(�)UT
Xj = U

K−1
∑

k=1

βkTk(�̃)UT
Xj =

K−1
∑

k=0

βkTk(L̃Xj),

(7)eij = a(Wxi,Wxj),

(8)αij =
exp(LeakyReLU(�aT [Wxi||Wxj]))

∑

k∈NB(i) exp(LeakyReLU(�a
T [Wxi||Wxk ]))
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The output for each node can be expressed as Eq. (9).

A multi-head attention mechanism is used to stabilize the attention score. In our study, 
the number of heads is 8. Similar to the GCN-based GNN module, the output is then 
passed through a max-pooling layer and a transformation layer to obtain the local graph 
representation, θ1 ∈ R

64.

Decoder and shallow parallel network

As shown in Fig. 1, the decoder is a two-layer fully connected network that is used to 
reconstruct the node attributes on the input graph. To compensate the localization 
property of either GCN or GAT layer in the GNN module, we use a parallel shallow fully 
connected network. Since the prior knowledge graphs have many limitation [1], we may 
neglect some global patterns in the data when extracting features based on the graph 
structure only. A shallow two-layer fully connected network is able to learn the global 
features of the data while ignoring the actual inner structure of the data. These two mod-
ules help the framework to better extract the overall sample feature representation. The 
effect of including vs. excluding these two modules is discussed in detail in the Ablation 
Study Section.

The input of the parallel network is the updated node attributes, X′
V ∈ R

(N+M)×F and 
the output global representation of the sample, θ1 is in the same dimension as the local 
feature representation from the GNN module, θ2 ∈ R

64 . θ1 and θ2 are then concatenated 
and passed through a classification layer for prediction.

Loss function

In the proposed framework, we define the loss function L as a linear combination of 
three loss functions in Eq. (10).

where �1 , �2 and �3 are linear weights, Lent is the standard cross-entropy loss for the clas-
sification results, Lrecon is the mean squared error for the reconstruction loss when the 
decoder is included, and Lreg is the squared l2 norm of the model parameters to penalize 
the number of parameters to avoid overfitting. Lrecon is defined as

where xj is the flattened feature vector of j-th sample and x̂j is the corresponding recon-
structed vector. We denote Wall as the vector consists of all parameters in the model and 
the Lreg is defined as

(9)x
′
i = σ(

∑

j∈NB(i)

αijWxj).

(10)L = �1Lent + �2Lrecon + �3Lreg ,

(11)Lrecon =
∑

j

(xj − x̂j)
2,

(12)Lreg =
∑

w∈Wall

w2.
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Results and discussion
We apply the proposed model to two different classification problems. The first is can-
cer molecular subtype classification on the TCGA Pan-cancer dataset and the second 
is breast cancer subtype classification on the TCGA breast invasive carcinoma (BRCA) 
dataset [15, 30].

Data and experiment settings

The TCGA Pan-cancer RNA-seq data, CNV data, miRNA data, and molecular subtype 
labels are obtained from the University of California Santa Cruz’s Xena website  [31]. 
We only keep samples that have all three omics data and molecular subtype labels, and 
collect 9,027 samples in total. We use 17,946 genes that are common in both the gene 
expression data and the CNV data, and 743 miRNAs. The total number of molecular 
subtypes is 27 and there is a clear imbalance among these 27 classes as shown in Fig. 3. 
All samples from class 24 are excluded from the study due to the lack of miRNA data. 
For BRCA subtype classification, there are 981 samples in total with 4 subtypes as shown 
in Table 1. For the experiments on both datasets, 80% of the data is used for training, 
10% is used for validation, and 10% is used for testing. All classes are present in the test 
set.

All expression values are normalized within their own omics. We select the top 700 
genes ranked by gene expression variances across the samples, and the top 100 miRNAs 

Fig. 3 The number of cases in each molecular subtypes is shown. All samples from class 24 are excluded due 
to lack of miRNA data
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by miRNA expression variance. Results are averaged from five individual trials. The 
details of the model structure and hyperparameters are disclosed in the appendix. The 
model is implemented using Pytorch Geometric Library.

Baseline models

We selected four state-of-the-art models [1, 7, 23, 25] as baseline models to evaluate the 
performance of the proposed approach. These four baseline models are implemented 
within the proposed framework in two forms, one is with the original structure, and the 
other is with some modifications to accommodate the multi-omics data. The details of 
all graph-based baseline implementation configurations are shown in Table 2. We also 
included a fully-connected neural network (FC-NN) as a Euclidean-based baseline 
model. Conventional machine learning methods, such as Random Forest and SVM are 
not included in the scope of this study because they do not scale well to the multi-omics 
data as mentioned in our previous work [1].

Fully‑connected neural network (FC‑NN)

The FC-NN is one of the widely used deep learning model for data in Euclidean space. 
The implemented structure is the same as the parallel structure. The input data is passed 
through a dimension-increase layer and then flattened. The flattened data is passed 
through three hidden layers and a softmax layer for classification.

Table 1 Number of cases in each BRCA subtype

BRCA subtypes Counts

LumA 529

LumB 197

Basal 175

Her2 80

Table 2 Configurations of baseline models on omics, graph structure, gnn layers, and regularizaiton 
modules

Model Omics Graph GNN 
Layer

Module

mRNA CNV miRNA Intra‑omic Inter‑omic GCN GAT Decoder Parallel

GCN (Original) [23] � – – � – � – – –

GCN (Modified) � � � � – � – – –

Multi-omics GCN (Original) 
[1]

� � – � – � – � �

Multi-omics GCN (Modi-
fied)

� � � � – � – � �

GrAMME (Modified) [25] � � � – � – � – –

Multi-omics GAT (Original) 
[7]

� – � � – – � – –

Multi-omics GAT (Modi-
fied)

� � � � – – � – –
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GCN models by Ramirez et al.

The GCN model on cancer type classification is designed for gene expression data with 
intra-omic connections only [23]. The implementation of the original structure and the 
modified structure is a GCN model with no regularization modules.

Multi‑omics GCN models by Li et al.

The multi-omics GCN model on cancer molecular subtype classification is designed for 
gene expression and CNV data with intra-omic connections only [1]. The implementa-
tion of both structures is a GCN model with a decoder and a parallel structure as shown 
in Table 2.

GrAMME

Since GrAMME is not designed for cancer type classification  [25], we modified the 
original structure for multi-omics data. GrAMME is designed for a GAT model with 
intra-omic connections only. The implementation is a GAT model with no regulariza-
tion modules.

Multi‑omics GAT by Kaczmarek et al.

The multi-omics graph transformer on 12 cancer type classification is designed for gene 
expression and miRNA data with inter-omics connections only [7]. As shown in Table 2, 
the main difference between multi-omics GAT and GrAMME is the construction of the 
graph.

Performance on classification

For both classification tasks, the results of the proposed model and the baseline models 
are shown in Table 3. The proposed model with GAT layers outperforms all the base-
line models for both tasks in all four metrics and the proposed model with GCN layers 
achieves third for the pan-cancer classification, and second for the breast cancer subtype 

Table 3 Results of the proposed and baseline models with 700 genes for molecular subtype 
classification on the TCGA pan-cancer dataset and cancer subtype classificaiton on the TCGA BRCA 
dataset

The bold font indicates the highest values and the values after ± sign are the standard deviations.
a Accu. stands for Accuracy

Model Pan‑cancer BRCA 

Accu.a F1 Accu.a F1

Proposed w/ GAT 83.9% ± 1.4% 0.84 ± 0.01 86.4% ± 1.9% 0.87 ± 0.02
Proposed w/ GCN 81.2% ± 0.6% 0.81 ± 0.01 83.8% ± 0.9% 0.84 ± 0.01

FC-NN 78.4% ± 0.8% 0.75 ± 0.02 80.8% ± 1.1% 0.80 ± 0.02

GCN (Original) [23] 77.6% ± 0.9% 0.76 ± 0.02 82.8% ± 1.2% 0.84 ± 0.01

GCN (Modified) 78.5% ± 1.2% 0.77 ± 0.02 81.8% ± 1.4% 0.82 ± 0.01

Multi-omics GCN (Original) [1] 78.6% ± 0.9% 0.78 ± 0.01 81.8% ± 1.1% 0.82 ± 0.01

Multi-omics GCN (Modified) 80.2% ± 0.8% 0.79 ± 0.01 82.8% ± 0.9% 0.83 ± 0.01

GrAMME (Modified) [25] 81.4% ± 1.3% 0.81 ± 0.03 82.8% ± 1.6% 0.84 ± 0.03

Multi-omics GAT (Original) [7] 76.3% ± 1.2% 0.76 ± 0.02 81.8% ± 1.3% 0.82 ± 0.02

Multi-omics GAT (Modified) 79.7% ± 1.3% 0.79 ± 0.02 82.8% ± 1.4% 0.84 ± 0.02
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classification. For the task of pan-cancer molecular subtype classification, the additional 
omic data in the modified structure improve the model performance in all three cases of 
the baseline model with the original structure vs. the baseline model with the modified 
structure. For the same task, the multi-omics GCN model with the decoder and parallel 
structure shows superior performance among all the baseline models that utilize GCN 
layers. And GrAMME, which utilizes intra-omic connections, performs better than 
GAT models that utilize inter-omics connections. GrAMME is the best-performing one 
among the baseline models for the pan-cancer task. Overall, we see the proposed model 
achieves the best performance for the classification task on the complex pan-cancer 
molecular subtype classification in all four metrics and we can conclude that more omics 
improve the performance of models, and the models with more restriction modules or 
GAT layers have better performance.

For breast cancer subtype classification, the overall trend is slightly different from that 
in the previous task. In most cases of including more omics, the performance of the 
models shows little or no improvement. We believe it is due to the nature of breast can-
cer taxonomy. The subtype is based on the expression level of multiple proteins. Thus, it 
makes the breast cancer subtype to be more closely related to the gene expression omic 
than the pan-cancer molecular subtype does. Such characteristic of the breast cancer 
subtype makes the model only using gene expression data perform very well such as the 
original GCN model. However, the proposed model still outperforms any baseline mod-
els by a large margin in all four metrics.

Ablation study

We conduct an ablation study to evaluate the effects of different numbers of genes, dif-
ferent training set splits, different combinations of modules within the model, and differ-
ent combination of omics and graphs on the performance of the proposed model.

Different numbers of genes

We trained the proposed model and all baseline models at the 300 and 500 genes for 
pan-cancer molecular subtype classification and 300, 500, 1000, 2000, and 5000 genes 
for breast cancer subtype classification. The limitation of the test scope on pan-cancer 
classification is due to the computation constraints caused by its large number of sam-
ples. As shown in Table 4, increasing the number of gene nodes improves the perfor-
mance of all models. FC-NN model demonstrates great improvement in performance 
as the number of genes increases. And the proposed model with the GAT layer outper-
forms the baseline models at both numbers of genes.

The accuracy and F1 scores of the proposed model and the baseline models for BRCA 
subtype classification are shown in Fig. 4. The proposed model with GAT performs best 
when the number of genes is smaller than 1000 and the proposed model with GCN per-
forms best when the number of genes is larger than 1000. The proposed GAT-based 
model yields the best result with an accuracy of 88.9% and an F1 score of 0.89 when 
using 700 genes; and the proposed GCN-based model yields the best result with an 
accuracy of 90.1% and an F1 score of 0.90 when using 5000 genes. The detailed results 
are shown in the supplementary file (Additional file 1). The performance of the proposed 
model with GAT deteriorates beyond 1000 genes, but the performance of the proposed 
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model with GCN continues to rise as the number of genes grows beyond 1000 genes. All 
GAT-based baseline models show similar deterioration around 1000 genes. We think the 
high computation cost of the GAT-based model can cause it to perform worse on a large 
graph than on a small graph. Overall, we can conclude that the proposed model with 
GCN layers scales better than that with GAT layers at a large number of genes.

In the process of testing the models on a large graph, we also find that a GAT-based 
model is more stable on a smaller learning rate compared to a GCN-based model. We 
believe it is caused by GAT’s high computation costs since a high learning rate may cause 
the model to be stuck in a local optimum.

Overall, we see the proposed model achieves the best performance and scales well 
with a larger number of genes. We can also conclude that more genes and more omics 
mostly improve the performance of models, the models with more modules have better 
performance, and GAT-based models perform better with smaller graphs while GCN-
based models scale better at larger graphs.

Different training set split

To examine the performance of the proposed model on a complex dataset with a smaller 
training set, we tested the model on the Pan-cancer dataset using three different train-
ing set splits. This approach was taken to mimic situations where only a smaller labeled 
dataset is available in the real world. The training set splits were set at 70% , 60% , and 
50% , with corresponding testing set splits of 20% , 30% , and 40% . Throughout these tests, 
the validation set split was consistently kept at 10%.

As shown in Table  5, the proposed model with the GAT layer exhibits a slight 
performance deterioration at 70% and 60% training set splits. However, it displays a 
more pronounced decline in classification accuracy at 50% . In contrast, the proposed 
model with the GCN layer demonstrates consistent and robust performance across 
all three training-validation-testing splits. However, its classification accuracy is 
lower than that of the model with the GAT layer at 70% and 60% training set splits. 
Therefore, we can conclude that the proposed model with the GAT layer achieves 

Table 4 Results of the proposed model and baseline models with 300 and 500 genes for molecular 
subtype classification using the TCGA pan-cancer dataset

The bold font indicates the highest values and the values after ± sign are the standard deviations
a Accu. stands for Accuracy

Model 300 500

Accu.a F1 Accu. F1

Proposed w/ GAT 77.6%  ± 1.6% 0.76  ± 0.02 81.6%   ± 1.2% 0.80  ± 0.01
Proposed w/ GCN 75.8% ± 1.1% 0.74 ± 0.02 80.0% ± 1.2% 0.79 ± 0.02

FC-NN 65.9% ± 1.3% 0.59 ± 0.04 77.5% ± 1.4% 0.74 ± 0.02

GCN (Original) 74.5% ± 1.6% 0.72 ± 0.05 76.1% ± 1.3% 0.73 ± 0.03

GCN (Modified) 75.5% ± 1.4% 0.72 ± 0.03 77.9% ± 1.1% 0.77 ± 0.02

Multi-omics GCN (Original) 76.4% ± 1.3% 0.76 ± 0.03 77.4% ± 1.3% 0.77 ± 0.03

Multi-omics GCN (Modified) 77.4% ± 1.3% 0.76 ± 0.02 78.2% ± 1.2% 0.75 ± 0.02

GrAMME (Modified) 77.4% ± 1.5% 0.76 ± 0.02 79.6% ± 1.4% 0.79 ± 0.02

Multi-omics GAT (Original) 73.4% ± 1.8% 0.71 ± 0.04 75.1% ± 1.5% 0.74 ± 0.04

Multi-omics GAT (Modified) 75.8% ± 1.5% 0.74 ± 0.04 77.4% ± 1.3% 0.74 ± 0.02
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superior performance compared to the model with the GCN layer when the training 
set is relatively small. However, the model with the GCN layer outperforms at a very 
small training set ( 50% ). Overall, the proposed model with the GCN layer offers more 
robust classification performance with smaller training sets.

Fig. 4 Performance of the Proposed Models and Baseline Models with Different Numbers of Genes on BRCA 
Dataset. (a) The accuracy of the proposed model with GAT (blue solid line) or GCN (orange solid line) and 
baseline models (dashed line) are plotted against different numbers of genes (300, 500, 700, 1000, 2000, and 
5000) for BRCA subtype classification. (b) The F1 scores of the proposed model with GAT (blue solid line) or 
GCN (orange solid line) and baseline models (dashed line) are plotted against different numbers of genes 
(300, 500, 700, 1000, 2000, and 5000) for BRCA subtype classification
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Different combinations of modules

To examine the effect of different modules within the proposed model, we test three 
different variants of the proposed model for the Pan-cancer molecular subtype clas-
sification. All variants of the proposed model are trained with all three omics data at 
300, 500, and 700 genes. The proposed model without the decoder acts as a parallel 
structured GNN model, the proposed model without the parallel structure acts as a 
graph autoencoder model, and the proposed model without both the decoder and the 
parallel structure acts as a graph-classification GNN model.

As shown in Table  6, models without the parallel structure perform poorly com-
pared to those without the decoder at any number of genes in general. It shows that 
the parallel structure plays an important role in feature extraction, which also dem-
onstrates the benefit of including both local features and global features. When the 
graph size is small (300 genes), the model without the decoder and the parallel struc-
ture performs more poorly compared to those with either component. However, 
when the graph size is large enough (500 genes and 700 genes), the model without 
the decoder and the parallel structure performs relatively the same compared to those 
with either of the component. We believe the extra information in the large graph 
compensates for the loss in performance caused by the exclusion of either the decoder 
or the parallel structure.

Table 5 Proposed Model with Different Training-validation-testing Split

The values after ± sign are the standard deviations
a Accu. stands for Accuracy

Model Training set ratio

70% 60% 50%

Accu.a F1 Accu.a F1 Accu.a F1

Proposed w/ GAT 82.5%± 1.5% 0.82± 0.02 79.9%± 4.0% 0.78± 0.06 74.2%± 7.5% 0.71± 0.10

Proposed w/ GCN 77.9%± 1.2% 0.76± 0.02 76.7%± 0.4% 0.75± 0.01 77.3%± 2.5% 0.76± 0.03

Table 6 Results of the Variants of the Proposed Model for Molecular Subtype Classification Using 
the TCGA Pan-cancer Dataset

The bold font indicates the highest values and the values after ± sign are the standard deviations.
a Accu. stands for Accuracy

GNN layers 
(Module)

300 500 700

Accu.a F1 Accu.a F1 Accu.a F1

GAT (No 
Decoder)

76.3% ± 1.6% 0.76 ± 0.03 78.2% ± 1.2% 0.77 ± 0.01 80.2% ± 1.2% 0.79 ± 0.01

GCN (No 
Decoder)

75.3% ± 1.2% 0.74 ± 0.02 76.8% ± 0.8% 0.75 ± 0.01 79.3% ± 0.8% 0.78 ± 0.01

GAT (No Parallel) 75.4% ± 1.8% 0.73 ± 0.03 76.1% ± 1.7% 0.73 ± 0.02 79.8% ± 1.3% 0.78 ± 0.02

GCN (No Parallel) 73.5% ± 1.2% 0.72 ± 0.02 75.4% ± 1.2% 0.73 ± 0.01 76.7% ± 0.8% 0.75 ± 0.01

GAT (No Decoder 
& Parallel)

74.9% ± 1.4% 0.73 ± 0.02 76.4% ± 0.9% 0.74 ± 0.01 80.1% ± 0.8% 0.79 ± 0.01

GCN (No 
Decoder & 
Parallel)

73.1% ± 1.2% 0.73 ± 0.02 75.6% ± 0.8% 0.73 ± 0.01 77.3% ± 0.02% 0.76 ± 0.01
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Different combination of omics and graphs

To test the effect of different choices of omics and different graphs, we generate five 
different combinations of omics. The five combinations of omics are mRNA, miRNA, 
mRNA + CNV, mRNA + miRNA, and mRNA + CNV + miRNA. For mRNA + miRNA 
and mRNA + CNV + miRNA, two different variants of graphs are also tested. All mod-
els are conducted for Pan-cancer molecular subtype classification, and trained with 500 
genes except for only miRNA omic, which contains only 100 miRNA nodes. As shown in 
Table 7, the best-performing setting is mRNA + CNV + miRNA with intra-omic edges 
for both GAT-based and GCN-based models. The worst-performing setting is miRNA, 
which has the smallest graph size and information. Models on mRNA + CNV perform 
better than those on mRNA + miRNA, but adding miRNA to mRNA + CNV (mRNA + 
CNV + miRNA setting) still improves the model performance. Models with intra-omic 
graph performs slightly better than models with inter-omics graph. The performance 
difference across different settings is the same for both GAT-based and GCN-based 
models.

Conclusion
In this study, we propose a novel end-to-end multi-omics GNN framework for accu-
rate and robust cancer subtype classification. The proposed model utilizes multi-
omics data in the form of a heterogeneous multi-layer graph, which is the supra-graph 
built from GGI network, miRNA-gene target network, and miRNA meta-path. While 
GNNs have been previously employed for genomics data analysis, our model’s nov-
elty lies in the utilization of a heterogeneous multi-layer multiomics supra-graph. 
The supra-graph not only incorporates inter-omics and intra-omic connections from 
established biological knowledge but also integrates genomics, transcriptomics, and 
epigenomics data into a single graph, providing a novel advancement in cancer sub-
type classification. The proposed model outperforms all four baseline models for can-
cer molecular subtype classification. We do a thorough comparative analysis of GAT 

Table 7 Results of the proposed model on different combinations of omics and networks at 500 
genes using the TCGA pan-cancer dataset

The bold font indicates the highest values and the values after ± sign are the standard deviations.
a Data contains no miRNA-based nodes, so only 500 gene nodes in the graph
b Data contains no gene-based nodes, so only 100 miRNA nodes in the graph
c The graph contains only gene-gene connections
d The graph contains only miRNA-miRNA meta-path connections
e Accu. stands for accuracy

Data Network GAT GCN

Accu.e F1 Accu.e F1

mRNAa Intra-omicc 77.0% ± 1.9% 0.75 ± 0.03 76.1% ± 0.9% 0.73 ± 0.01

miRNAb Intra-omicd 74.0% ± 0.4% 0.70 ± 0.01 68.2% ± 4.1% 0.63 ± 0.04

mRNA+CNVa Intra-omicc 79.1% ± 1.4% 0.77 ± 0.03 77.1% ± 0.7% 0.76 ± 0.01

mRNA+miRNA Inter-omic 76.1% ± 1.6% 0.73 ± 0.03 75.4% ± 0.7% 0.73 ± 0.01

Intra-omic 77.3% ± 1.6% 0.75 ± 0.03 76.8% ± 0.7% 0.74 ± 0.01

mRNA+CNV+miRNA Inter-omic 80.3% ± 1.6% 0.80 ± 0.02 77.4% ± 0.6% 0.74 ± 0.01

Intra-omic 80.5% ± 1.2% 0.80 ± 0.02 78.2% ± 0.6% 0.75 ± 0.01
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and GCN-based models at different numbers of gene settings, different combinations 
of omics, and different graphs.

Comparing the proposed model to the baseline models, it achieves the best perfor-
mance for cancer molecular subtype classification and BRCA subtype classification. 
The proposed model with GAT layers performs better than that with GCN layers at 
smaller-size graphs (smaller than 1000 genes). However, the performance of the GAT-
based model deteriorates as the size of the graph grows beyond a certain threshold. 
On the other hand, the performance of the GCN-based model continues to improve 
as the size of the graph grows. Therefore, we can conclude that a GAT-based model is 
more suitable on a smaller graph, where it has a higher feature extraction ability and 
its computation cost isn’t that high yet.

By studying the effect of different modules within the proposed model and different 
combinations of omics, we find the addition of a decoder and the parallel structure, 
and including other omics improves the performance of the proposed model. The 
benefit of using parallel structure outweighs that of decoder, especially on smaller-
size graphs, and the benefit of adding CNV is higher than that of adding miRNA. We 
also find that using a graph with only intra-omic edges yields a better performance 
than using a graph with only inter-omics edges, which agrees with the results from 
the previous study [7].

The proposed model also has some limitations. We investigate only two well-estab-
lished and widely adopted GNN models. New models are emerging with the recent 
blooming of studies in GNN models. As the size of the graph grows or more omics are 
added, GAT-based models become more sensitive to parameters and take a much longer 
time to train. It is our future research direction to overcome such limitations. The pro-
posed model for cancer subtype classification depends on labeled data, which is costly 
to annotate and difficult to obtain in the real world. Exploring unsupervised learning for 
cancer subtype detection is also a direction we aim to pursue in our future research.

In summary, incorporating gene-based and non-gene-based omic data in the form 
of a supra-graph with inter-omics and intra-omic connections improves the cancer 
subtype classification. The GAT-based model is preferable on smaller graphs than 
the GCN-based model. GCN-based model is preferable when dealing with large and 
complex graphs.
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