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Abstract 

Background: A growing body of researches indicate that the disrupted expression 
of long non-coding RNA (lncRNA) is linked to a range of human disorders. Therefore, 
the effective prediction of lncRNA-disease association (LDA) can not only suggest solu-
tions to diagnose a condition but also save significant time and labor costs.

Method: In this work, we proposed a novel LDA predicting algorithm based on graph 
convolutional network and transformer, named GCNFORMER. Firstly, we integrated 
the intraclass similarity and interclass connections between miRNAs, lncRNAs and dis-
eases, and built a graph adjacency matrix. Secondly, to completely obtain the features 
between various nodes, we employed a graph convolutional network for feature 
extraction. Finally, to obtain the global dependencies between inputs and outputs, 
we used a transformer encoder with a multiheaded attention mechanism to forecast 
lncRNA-disease associations.

Results: The results of fivefold cross-validation experiment on the public data-
set revealed that the AUC and AUPR of GCNFORMER achieved 0.9739 and 0.9812, 
respectively. We compared GCNFORMER with six advanced LDA prediction models, 
and the results indicated its superiority over the other six models. Furthermore, GCN-
FORMER’s effectiveness in predicting potential LDAs is underscored by case studies 
on breast cancer, colon cancer and lung cancer.

Conclusions: The combination of graph convolutional network and transformer can 
effectively improve the performance of LDA prediction model and promote the in-
depth development of this research filed.

Keywords: LncRNA-disease association prediction, Graph convolutional network, 
transformer, Machine learning, Multiheaded attention mechanism

Introduction
The majority of transcribed sequences, classified as non-coding RNAs, do not pos-
sess the coding capacity for proteins. Specifically, we designate those non-coding 
RNAs exceeding 200 nucleotides in length as long non-coding RNAs (lncRNAs) [1–3]. 
For much of the past, lncRNAs were mistakenly thought of as transcription noise [4]. 
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However, in recent times, researchers worldwide have shown a notable increase in curi-
osity regarding lncRNAs. Thanks to advancements in both experimental methodologies 
and computational prediction algorithms, the identification of thousands of lncRNAs 
has rapidly expanded across eukaryotic organisms, encompassing organisms from 
nematodes to humans. A mounting body of researches have underscored the pervasive 
involvement of lncRNAs throughout the cellular life cycle, operating through diverse 
mechanisms and exerting crucial influences on various essential biological processes [5], 
such as regulation of gene expression, species evolution, embryonic development, mate-
rial metabolism, and tumorigenesis [6]. For example, the lncRNA MEG8 in the PANC-1 
cell line in pancreatic cancer is overexpressed and represses miRNA-34a and miRNA-
203 genes, leading to the upregulation of SNAIL family transcription factors and pro-
moting the expression of calmodulin causing EMT [7–9].

In the last decade, researchers have proposed various methods for predicting poten-
tial lncRNA-disease associations (LDAs), and these approaches have demonstrated com-
mendable performance [10]. LncRNAs and miRNAs stand out as separate classes in the 
domain of non-coding RNAs, each serving unique functions within the cell. Despite 
their divergent roles, these two RNA types exhibit intricate interconnections with one 
another [11]. Chen et al. delve into the advancements in addressing challenges related to 
the accurate prediction of miRNA-disease associations (MDAs) since 2017 [12]. Huang 
and Chen, along with their collaborators, conducted an extensive examination of 29 cut-
ting-edge models designed for predicting MDAs. They propose a practical evaluation 
framework that can be universally applied to ensure an impartial and systematic assess-
ment of predictive capabilities for any future models in this domain [13]. These works 
provide useful references for designing more effective LDA prediction models. In gen-
eral, current LDA prediction methods fall under three classifications:

The first type of LDA prediction approach is based on biological networks with the 
premise that lncRNAs with equivalent functions are frequently connected to similar dis-
eases [14]. LRLSLDA is the first computational model in this field, which strategically 
incorporates a Laplace regularization term to constrain model parameters, preventing 
them from becoming excessively large or small. This enhances the stability and robust-
ness of the model, particularly in the presence of noise and data perturbations. Con-
sequently, LRLSLDA exhibits improved performance and reliability in inferring LDAs. 
The introduction of LRLSLDA signifies innovative thinking and experimentation within 
this research field, serving as a cornerstone for subsequent developments and investi-
gations into related models [15]. Later, Ping and colleagues devised a binary network 
utilizing established LDAs and inferred potential LDAs by analyzing the nature of the 
dichotomous network [10]. The KATZLDA model, introduced by Chen et  al., first 
integrates Gaussian interaction profile kernel similarity, lncRNA expression similarity, 
lncRNA functional similarity between lncRNA and diseases, and lncRNA-disease con-
nection networks, and then applies the KATZ algorithm to forecast lncRNAs and dis-
eases [16]. The HGLDA establishes lncRNA-miRNA and miRNA-disease relationships 
and makes LDA predictions based on hypergeometric distribution tests [17]. Yu et al. 
combined lncRNA-miRNA, miRNA-diseases, and lncRNA-diseases associations and 
predicted LDAs by a double random walk model [18]. Chen et al. performed prediction 
by integrating the expression and semantic similarity of lncRNA and disease and using 
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a modified version of random walk in IRWRLDA [19]. Liu et al. discovered the link by 
incorporating lncRNA tissue specificity and representation of both genes and lncRNAs 
[20]. The LNSUBRW makes predictions of potential lncRNAs with candidate diseases 
based on imbalanced double random walking and linear neighborhood similarity [21].

The second type of LDA prediction method employs matrix decomposition. The 
MFLDA is a matrix decomposition-based LDA prediction approach presented by Fu 
et al. [22]. This method firstly works by splitting the adjacency matrix triple factoriza-
tion of combining disparate data sources into low-rank matrices, then optimizes the 
weight matrix by integrating heterogeneous data sources and weighting them differently 
to the adjacency matrix, and finally makes use of the improved low-rank. The SIMCLDA 
model firstly uses PCA to further extract characteristics from the similarity matrix, fol-
lowed by induction matrix complementation to make predictions for LDA pairs [23]. 
Furthermore, Liu et  al. suggested a double sparse cooperative matrix decomposition 
technique based on the Gaussian kernel function to forecast LDAs [24]. Xuan et al. pro-
posed the PMFILDA which applied the probability distribution matrix for forecasting 
LDA pairs [25].

The third strategy is based on machine learning. Machine learning-based approaches 
predict LDAs by extracting features of lncRNAs and diseases, for example, the LDAP 
model, formulated on SVM principles, was conceptualized by Lan and collaborators 
[26]. To address the difficulty of learning putative representations of lncRNAs and dis-
eases, the DMFLDA model employed cascading hidden layers [27]. To solve the dif-
ficulty of lacking negative samples, Chen and colleagues were instrumental in the 
development of the LRLSLDA model, a semisupervised learning method, to find the link 
between lncRNAs and diseases by using two classifiers without the need for negative 
samples. Although the LRLSLDA reduces the prerequisites for prediction, the selec-
tion of parameters for the classifiers remains to be considered [6]. Chen et al. also pro-
posed the ILDMSF model under the premise of fusing lncRNA similarity and disease 
similarity [28]. In general, machine learning-based algorithms have produced promis-
ing findings in predicting LDAs. Recently, ensemble learning strategies have also pro-
duced positive results. Zhao et  al. designed the ABDA model, which predicted LDAs 
by using an adaptive augmentation algorithm that continuously adjusts the weighting 
coefficients of the residual samples to make the residual samples better trained, thus 
achieving better results. Zhou and colleagues employed a fusion approach, integrating 
gradient-augmented decision trees with logistic regression, abbreviated as GBDT-LR, 
for the prediction of LDAs [29]. Yao and colleagues employed a random forest approach 
to identify and select 100 noteworthy features, subsequently utilizing these features for 
the prediction of LDAs [30]. Recently, deep learning has also made significant break-
throughs in this area. Xuan et  al. designed multiple LDA prediction models based on 
convolutional neural network (CNN), such as CNNLDA [31], LDAPred [22], GCNLDA 
[32], and CNNDLP [33]. In addition, the VGAELDA predicted LDAs by combining vari-
ational inference with a graph self-encoder [34].

In this paper, we proposed a novel LDA prediction model based on graph convolu-
tional network and transformer, named GCNFORMER. Firstly, based on the correlation 
and similarity between lncRNAs, miRNAs and diseases, we integrated intraclass similar-
ity and interclass correlation between them to build a graph relational adjacency matrix. 
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Secondly, to completely obtain the features between nodes, we used a graph convolu-
tional network for feature extraction. Finally, to obtain the global dependencies between 
inputs and outputs, we used a transformer with the multiheaded attention mechanism 
to predict potential LDAs. Under fivefold cross-validation, both the AUC (area under 
the ROC curve) and the AUPR (area under the precision-recall curve) reveal the GCN-
FORMER outperforms six other LDA prediction models. Additionally, in case studies 
involving breast cancer, colon cancer, and lung cancer, the GCNFORMER consistently 
demonstrates strong performance.

Materials and methods
Datasets

Dataset1 is from the work of Fu et al., which includes 240 lncRNAs, 495 miRNAs, and 
412 diseases [22]. In dataset1, 2697 experimentally validated LDAs were obtained from 
the LncRNADisease [35] and Lnc2Cancer databases [36]. Meanwhile, 13,562 MDAs 
were gained from the HMDD database [37], and 1002 lncRNA-miRNA interactions were 
got from the starBase database [38]. Dataset2 is from LDAformer [39], which contains 
665 lncRNAs, 316 diseases, 295 miRNAs, 3833 LDAs, 2108 lncRNA-miRNA interac-
tions, and 8540 MDAs. Dataset3 is from SVDNVLDA [40], which contains 861 lncR-
NAs, 431 diseases, 437 miRNAs, 4518 LDAs, 4189 MDAs, and 8172 lncNRA-miRNA 
interactions.

Disease semantic similarity

Disease Ontology (DO) provide downloadable ontology for integrating biological data 
related to human diseases. The terms in DO are organized in directed acyclic graphs 
(DAGs) as diseases or concepts associated with diseases [41]. DAGs have been widely 
used in computing disease similarity. Disease di is defined as DAG(d) = (Col(d), E(d)), 
where Col(d) denotes the node-set, which consists of both the current node and its 
ancestor nodes, and E(d) signifies the collection of edges connecting parent and child 
nodes. The contribution of disease d to the ontology worth of disease W, can be deter-
mined in two phases, as follows:

where the semantic decay factor is Δ, which usually takes the value of 0.5 so that the 
similarity of diseases di and dj can be calculated by the following equation:
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LncRNA/miRNA functional similarity

In terms of functionality, lncRNAs/miRNAs that share similarities are typically linked 
to comparable diseases [42]. Based on the previous work, we assume that lncRNAs or 
miRNAs z1 and z2 , are associated with p and q diseases, respectively. One of them can be 
regarded as di (1 ≤ i ≤ p) and dj (1 ≤ j ≤ q). As a result, the functional similarity between 
z1 and z2 can be determined using the below equation:

Model framework

This paper introduced a novel LDA prediction model, GCNFORMER, with its construc-
tion outlined in Fig.  1. Firstly, we constructed a graph relationship adjacency matrix 
based on the intraclass and interclass relationships between lncRNA, miRNA and dis-
ease. Secondly, according to the above graph adjacency matrix, the features between the 
three entities are further extracted by the GCN. Finally, we adopt the encoder part of 
the transformer with its own multiheaded attention mechanism to forecast associations 
between lncRNAs and diseases.

(4)Sim(z1, z2) =
1

p+q
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Fig. 1 The flowchart of constructing the GCNFORMER model
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Graph convolutional network

Deep learning has grown in popularity in computational biology in recent years, in which 
the graph convolutional network (GCN), in essence, is a feature extractor. GCN has 
excellent graph data processing recognition ability, and it can identify node information 
and the relationship between the nodes [43]. In this work, we used a GCN for feature 
extraction. We constructed a graph network consisting of six types of graphs, including 
intraclass similarity of nodes between lncRNA and lncRNA, miRNA and miRNA, dis-
ease and disease, and interclass associations between lncRNA and disease, lncRNA and 
miRNA, miRNA and disease. Specifically, a weighted complex graph Bcomplex = (V ,E) 
constructed, where V is the set of nodes consisting of lncRNA, miRNA, and disease 
nodes, E is the set of edges between nodes. We define Xcomplex = (Z, S) ∈ RNt×Nt , 
Nt = Nl +Nd +Nm , as the adjacency matrix of Bcomplex , where S is the similarity asso-
ciation matrix of the same nodes, while Z is the association matrix of different types of 
nodes.

where S denotes intraclass similarity including matrices of miRNA-miRNA similarity, 
disease-disease similarity, and lncRNA-lncRNA similarity; Z denotes interclass associa-
tion matrix, if there is an association, it is set to 1, otherwise, it is set to 0; ZT denotes 
the transpose matrix of the Z matrix. After that, we set the row normalized adjacency 
matrix Xcomplex as the feature matrix Xfeature.

where Xfeature is an Nt×Nt matrix where each row is the eigenvector of a node in t. Firstly, 
define the following matrix as the adjacency matrix with self-connections X̂complex , 
where I is the unit matrix:

Then symmetric Laplace normalisation of X̂complex yields X̃complex∈RN×N :

In the above equation, E∈RN×N is the diagonal matrix, and the matrix E is actually the 
degree matrix of X̂complex , similar to the following equation:

The matrix X̃complex as well as the feature matrix Xfeature are used as inputs to the graph 
convolutional network, through which the network representation between lncRNA, 
miRNA and disease is obtained:
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where W is a weight matrix, n is a hyperparameter and the operation of multiplying 
the matrix X̃complexXfeature can be interpreted as the integration of spatial information. 

Assuming that K = X̃complexXfeature∈RN×N , where Ki ∈ RN , the ith row of matrix K can 
be understood as the feature vector of the ith node. By multiplying K with the weight 
matrix W, the node can be mapped to a low-dimensional vector Zi∈Rn , similar to Fig. 1, 
where the second row Z2 as well as the third row Z3 are representations of lncRNA l2 as 
well as the disease d1 , respectively.

Transformer

Inspired by Zhou et al., we used a transformer for the final prediction [39]. Transformer 
is a model that uses the attention mechanism to expedite model training. It performs 
well in parallelizing the computation and understanding the relationship of data. Trans-
former does away with conventional CNN and RNN, and the entire network is made 
up of attention mechanisms. Transformer adds the concept of a multiheaded atten-
tion mechanism to further improve the performance of the self-attentive layer and to 
address the gradient vanishing issue. The transformer also uses a residual neural net-
work structure.

Multihead attention

When given the same set of queries, keys, and values, multiheaded attention is a design 
that allows the model to learn several behaviors based on the same attention process, 
and then combine them. There are three inputs for the scaled dot product attention: Q, 
K, and V, i.e., three multiheads, which are finally spliced. Given the query Q ∈ Rdq、key 
K ∈ Rdk、value V ∈ Rdv , each attention header Xi (i = 1,….,X) is calculated as follows:

The parameters that can be learned are w(q)
i ∈ Rpq×dq , w(k)

i ∈ Rpk×dk , w(v)
i ∈ R

pv×dv . 
The output of multiheaded attention must undergo additional linear transformation to 
correlate to the outcome of X head splicing. The learnable parameters are W0 ∈ Rp0×hpv:

Add and norm

The Add and Norm operations are utilized in the transformer’s encoder layers, i.e., the 
residual join and the layer normalization operations. Residual concatenation means add-
ing the inputs and outputs of the network, i.e.:
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When the network structure is deep, the gradient of the network backpropagation 
when updating the parameters, easily causes the problem of gradient disappearance, and 
each layer’s output plus x, in the derivative of every layer adds a constant, effectively 
solving the problem of gradient disappearance. Compared with BatchNorm, we use Lay-
erNorm here, which can normalize all features of each sample, and finally we can obtain:

Feedforward network

Although the multiheaded attention process is used to learn to articulate features, the 
results achieved may not be particularly good. Normalization after the attention layer, in 
combination with the activation function, can be better learned. The essence of feedfor-
ward neural networks is the ReLU activation function, namely:

Prediction

The prediction score is calculated using the sigmoid activation function, and the loss 
function is binary cross-entropy, as shown below:

where p is the prediction score, sigmoid is the activation function, W denotes the 
weights, and b denotes the bias. If the collection contains experimental records of lncR-
NAs associated with disease, y = 1, otherwise y = 0.

Experiments and results
Fivefold cross‑validation

Because of limited known LDA information and lack of unknown information, there is 
an imbalance problem in LDA prediction. By using cross-validation, model performance 
evaluation can be performed on different training and validation sets, thus minimizing 
the impact of imbalance. In order to objectively evaluate the performance of LDA pre-
diction model, each fivefold cross validation experiment was performed 10 times. This 
is particularly important for dealing with imbalanced data because it reduces the eval-
uation bias caused by random sampling and ensures that the model performs consist-
ently on multiple training and validation sets. Furthermore, the use of evaluation metrics 
appropriate for unbalanced data, such as AUPR, enables a thorough evaluation of the 
model’s performance across diverse classes, thus reducing the problems associated with 
sample imbalance.

In fivefold cross-validation, 20% of the samples were individually taken out as test set 
which will not be involved in the training and validation of the model but will be used for 

(13)F(x) = f(x)+ x

(14)F(x) = LayerNorm(f(x)+ x)

(15)FNN(x) = ReLU(0, xw1 + b1)w2 + b2

(16)Loss = −�[ylog(p)+
(

1− y
)

log(1− p)]

(17)P = sigmoid(WX+ b)
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the final evaluation of the model’s performance. The remaining 80% of the samples were 
used as training set. In fivefold cross validation, these samples is divided into 5 equal 
parts. In each fold, four of these parts are used in turn to train LDA prediction model, 
and the remaining part is used as validation set. The performance metrics of the model 
were computed and recorded. This process is repeated 5 times, and the average value of 
fivefold is used as the final prediction result of the model. Finally, the predicted results 
of the trained model on the test set are used as a basis for evaluating the model’s perfor-
mance. Such a cross-validation approach helps in assessing the model’s performance in 
a more comprehensive manner and reduces the effect of chance due to improper data 
segmentation. Additionally, to avoid over-fitting, we fine-tune the model’s complexity by 
adjusting the number of network layers and reducing the number of units in each layer. 
In addition, the attention mechanism assists the model in enhancing its concentration 
on important parts when processing the data to prevent over-fitting.

Evaluation indicators

By adopting fivefold cross-validation, the various evaluation indicators of LDA predic-
tion models can be calculated. First, the receiver operating characteristic (ROC) curve 
can be obtained by graphing the true positive rate (TPR) and the false positive rate (FPR) 
at various thresholds. The TPR and FPR were determined as follows, with a tighter area 
under the curve near 1 indicating higher model performance:

where true positive (TP) consists of instances that are both positive and projected to be 
positive, false positive (FP) refers to situations that are negative but are projected to be 
positive, true negative (TN) refers to situations that are negative and are projected to 
be negative, and instances that are positive but are projected to be negative are referred 
to as false negatives (FN). In addition to the area the under ROC curve (AUC), the area 
under the PR curve (AUPR), accuracy (Acc), F1-score (F1), and Marrs correlation coef-
ficient (Mcc) are also used to evaluate the model’s performance, shown as Eqs. 20–24, 
where Recall represents the recall rate and Presession represents the precision rate:

(18)FPR =
FP

FP+ TN

(19)TPR =
TP

TP+ FN

(20)Precision =
TP

TP+ FP

(21)Recall =
TP

TP + FN

(22)Acc =
TP+ TN

TP+ FN+ FP+ TN
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Evaluation results

To evaluate the GCNFORMER’s performance, we conducted a comparison with six 
contemporary methods for LDAs prediction, including IPCARF [44], GCLMTP [45], 
MAGCNSE [46], LR-GNN [47], VGAELDA [34], and SIMCLDA [23]. These methods 
include matrix decomposition-based methods, machine learning-based methods, and 
graph neural network-dependent methods. Specifically, GCLMTP proposes a graph 
comparison learning for multi-task prediction, MAGCNSE employs a multi-view graph 
convolutional neural network, LR-GNN is based on graph neural networks for discov-
ering biologically significant molecular relationships, and VGAELDA integrates vari-
ational inference and graph autoencoder. In addition, IPCARF combines incremental 
principal component analysis and random forest algorithms. SIMCLDA is a matrix 
decomposition-based approach.

In order to make a fair comparison, we determined the hyperparameters of the 
compared methods based on the values in the relevant literature. For IPCARF, n_esti-
mators = 1500; for GCLMTP, the number of GCN layers was set to 2 and the node 
embedding dimension was set to 256; for MAGCNSE, the number of GCN layers was 
set to 2, the number of GCN embedding layers was set to 128, and the CNN embedding 
layer was set to 128; for LR-GNN, the number of GCN layers was set to 3, and embed-
ding size is set to 64; for VGAELDA, the dimension of the output vector is 256; for SIM-
CLDA αl is set to 0.8, αd is set to 0.6, and λ is set to 1. Figures 2 and 3 display the AUC 
values and AUPR values obtained by all seven LDA prediction models under fivefold 
cross-validation, respectively. Furthermore, Table 1 lists more performance measures for 
the seven models involved in the comparison.

(23)F1 =
2× Precision× Recall

Precision+ Recall

(24)Mcc =
TP × TN − FP × FN

√
(TP + FN )× (TP + FP)× (TN + FP)× (TN + FN )

Fig. 2 ROC curves of seven LDA prediction models on dataset 1
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As one can see from Figs. 2, 3 and Table 1, the average AUC and AUPR of the IPCARF 
model are lower than that of the GCNFORMER by 0.5% and 1.66%; the average AUC 
and AUPR of the GCLMTP model are 0.91% and 1.96% lower than that of the GCN-
FORMER; the average AUC and AUPR of the MAGCNSE are 2.07% and 2.19% lower 
than that of the GCNFORMER; the average AUC and AUPR of the LR-GNN are 5.5% 
and 79.37% lower than that of the GCNFORMER; the average AUC and AUPR of the 
VGAELDA model are 6.13% and 21.54% lower than that of the GCNFORMER; the aver-
age AUC and AUPR of the SIMCLDA are 22.84% and 89.13% lower than that of the 
GCNFORMER. These results indicate that the GCNFORMER has an excellent ability to 
predict LDAs.

Fig. 3 AUPR curves of seven LDA prediction models on dataset 1

Table 1 The performance of seven LDA prediction models

Method AUC AUPR ACC F1 Mcc

GCNFORMER 0.9739 0.9812 0.9726 0.9693 0.9461
IPCARF 0.9689 0.9646 0.9093 0.9168 0.8403

GCLMTP 0.9648 0.9616 0.8992 0.9006 0.8069

MAGCNSE 0.9532 0.9593 0.9526 0.9544 0.8965

LR-GNN 0.9189 0.1875 0.8596 0.5689 0.5598

VGAELDA 0.9126 0.7658 0.9718 0.5863 0.6456

SIMCLDA 0.7455 0.0899 0.7834 0.2748 0.2376

Table 2 Performance of GCNFORMER on three datasets

Dataset AUC AUPR ACC F1 Mcc

Dataset1 0.9739 0.9812 0.9726 0.9693 0.9461

Dataset2 0.9642 0.9616 0.9196 0.9204 0.8379

Dataset3 0.9681 0.9623 0.9203 0.9289 0.8605
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In order to prove the generalization ability of the model, we tested the GCNFORMER 
on three datasets separately, and the test results are shown in Table 2, which proves that 
the model has good generalization ability.

We also employed a two-tailed equal variance t-test to assess the performance differ-
ences between GCNFORMER and the other methods. The two-tailed equal variance 
t-test is a hypothesis test in statistics, which is usually used to compare whether there is 
a significant difference between two groups of sample means. As can be seen in Table 3, 
GCNFORMER outperforms the current state-of-the-art methods in both AUC and 
AUPR.

GCN parameter analysis

As an important module of LDA prediction, the hyperparameters of the GCN have a 
great influence on the prediction, and poor or too many parameter settings will affect 
the model’s performance. Therefore, experiments are used to fine-tune the model’s 
parameters. Figure 4 shows the evaluation of AUC values for various GCN layers and 
different GCN embedding sizes, which demonstrates that the model performs best when 
the GCN embedding size is 128 and the number of GCN layers is 2.

Ablation study

For GCNFORMER, the interclass graph Z and the intraclass graph S contain compre-
hensive and detailed relationships, and we further conducted cauterization experi-
ments to validate the importance of both interclass and intraclass similarity graphs, and 
eliminated modules from the transformer one by one to validate the importance of each 

Table 3 Differences of AUC and AUPR between GCNFORMER and the other methods via t-tests

AUC AUPR

IPCARF 2.65847E−10 5.48979E−17

GCLMTP 5.22752E−29 1.07083E−34

MAGCNSE 1.97778E−35 1.45233E−35

LR-GNN 2.23227E−39 1.23987E−63

VGAELDA 4.54622E−43 1.94547E−53

SIMCLDA 3.3708E−54 1.53726E−64

Fig. 4 AUC results are compared for various GCN embedding sizes and layer counts
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module. Tables  4 and 5 present the outcomes of the burn-in experiments, where we 
observe that the best results are obtained by using both interclass association graphs and 
intraclass similarity graphs, and effectively validate the importance of the Add, Norm, 
and feed-forward network modules in the transformer. This may be because the fact that 
the interclass association graph better encompasses the interconnections between lncR-
NAs and diseases, while the intraclass similarity graph better describes the relationships 
between nodes, which has a crucial impact on the performance.

Case studies

To conduct a more in-depth assessment of the model’s effectiveness, we validated three 
relatively common cancers: colorectal, breast, and lung cancer using the LncRNADis-
ease v2.0 and Lnc2Cancer v3.0 datasets and some published literature data. First, known 
LDAs were used as positive samples and the same negative samples were randomly 
selected from unknown LDAs. Next, all unknown pairs of lncRNAs associated with a 
specific disease were used as test samples. Finally, after training with the positive–nega-
tive samples, scores were obtained and ranked using the test samples, and evidence was 
sought from relevant databases.

Colon cancer stands out as one of the deadliest malignancies affecting the digestive 
system [48], which is a type of malignant tumor that grows in the colon, and tends to 
occur at the junction of the rectum and sigmoid colon. We used GCNFORMER to pre-
dict the lncRNAs linked to colon cancer, 19 of which have been supported by published 
research. For example, it was demonstrated that human colorectal cancer (CRC) exhib-
its abnormal production of long noncoding RNA cell cycle protein-dependent kinase 
inhibitor 2B antisense RNA1 (CDKN2B-AS1) [49]. Increased PVT1 expression is linked 
to colon cancer incidence, disease remission, and distant metastasis. It is also linked to 
increased expression of poor prognostic metastatic markers [50]. Table 6 shows the 20 
lncRNAs predicted to be linked to colon cancer:

The most common primary malignant lung tumor is lung cancer. In the past 50 years, 
lung cancer incidence and mortality rates have been significantly rising worldwide, espe-
cially in industrially developed countries, and lung cancer has taken first place among 

Table 4 Influence of the final result of the cauterization experiment

Interclass association Z Intraclass similarity S AUC AUPR

✓  × 0.9713 0.9785

 × ✓ 0.9683 0.9762

✓ ✓ 0.9739 0.9812

Table 5 Influence of the final result of the cauterisation experiment

Add Norm FN AUC AUPR

× ✓ ✓ 0.9562 0.9654

✓ × ✓ 0.9689 0.9769

✓ ✓ × 0.9708 0.9776

✓ ✓ ✓ 0.9739 0.9812
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male patients who died of cancer. Lung cancer, encompassing both non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC), is increasingly emerging as a lead-
ing contributor to global cancer-related mortality [51]. Table 7 summarizes the sources 

Table 6 Twenty predicted lncRNAs linked to colon cancer

Rank LncRNAname Evidence

1 CDKN2B-AS1 LncRNADiseasev2.0Lnc2Cancerv3.0

2 SNHG4 LncRNADiseasev2.0Lnc2Cancerv3.0

3 AFAP1-AS1 LncRNADiseasev2.0Lnc2Cancerv3.0

4 GAS5 LncRNADiseasev2.0Lnc2Cancerv3.0

5 HNF1A-AS1 Lnc2Cancerv3.0

6 KCNQ1OT1 Lnc2Cancerv3.0

7 BANCR LncRNADiseasev2.0Lnc2Cancerv3.0

8 NRON LncRNADiseasev2.0

9 TUG1 LncRNADiseasev2.0Lnc2Cancerv3.0

10 SPRY4-IT1 LncRNADiseasev2.0Lnc2Cancerv3.0

11 H19 LncRNADiseasev2.0Lnc2Cancerv3.0

12 BCYRN1 Lnc2Cancerv3.0

13 PRNCR1 LncRNADiseasev2.0Lnc2Cancerv3.0

14 CASC16 Unknown

15 PVT1 Literature

16 UCA1 LncRNADiseasev2.0Lnc2Cancerv3.0

17 XIST LncRNADiseasev2.0Lnc2Cancerv3.0

18 TP53TG1 LncRNADiseasev2.0Lnc2Cancerv3.0

19 TUSC7 LncRNADiseasev2.0Lnc2Cancerv3.0

20 DANCR LncRNADiseasev2.0

Table 7 Twenty predicted lncRNAs linked to lung cancer

Rank LncRNAname Evidence

1 CRNDE LncRNADiseasev2.0

2 H19 LncRNADiseasev2.0Lnc2Cancerv3.0

3 DLEU2 LncRNADiseasev2.0Lnc2Cancerv3.0

4 HOTAIR LncRNADiseasev2.0Lnc2Cancerv3.0

5 AFAP1-AS1 LncRNADiseasev2.0Lnc2Cancerv3.0

6 NEAT1 LncRNADiseasev2.0Lnc2Cancerv3.0

7 ZFAS1 Literature

8 LINC-PINT Lnc2Cancerv3.0

9 BCAR4 LncRNADiseasev2.0

10 TINCR LncRNADiseasev2.0Lnc2Cancerv3.0

11 NPSR1-AS1 Lnc2Cancerv3.0

12 PANDAR LncRNADiseasev2.0Lnc2Cancerv3.0

13 SOX2-OT LncRNADiseasev2.0Lnc2Cancerv3.0

14 MEG3 LncRNADiseasev2.0Lnc2Cancerv3.0

15 UCA1 LncRNADiseasev2.0Lnc2Cancerv3.0

16 KIRREL3-AS3 Unknown

17 CASC16 LncRNADiseasev2.0Lnc2Cancerv3.0

18 RMST Unknown

19 EWSAT1 LncRNADiseasev2.0Lnc2Cancerv3.0

20 CBR3-AS1 Lnc2Cancerv3.0
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of evidence for lncRNAs linked to lung cancer, 18 of which have been confirmed in the 
literature. As an example, as determined by qPCR and protein blotting analysis, the 
expression level of lncRNAH19 was significantly increased in hypoxic circumstances 
and the invasive capacity of lung cancer was greatly increased [52]. Loss-of-function 
assays showed that knockdown of ZFAS1-inhibited NSCLC cell proliferation and inva-
sive potentials increased the rate of apoptosis of NSCLC cells in  vitro and attenuated 
tumour growth of NSCLC cells in nude mice [53].

Despite notable strides in cancer research, breast cancer persists as a critical health 
concern and continues to be a prominent subject of scientific investigation. Breast can-
cer is the most frequent cancer in women around the world, and its prevalence and fatal-
ity rates are predicted to rise further [54]. Table 8 shows the origin of the evidence for 
lncRNAs linked to breast cancer, and the relevant literature has confirmed 18 of them. 
For example, BCAR4 expression was driven in human ZR-75–1 and MCF7 breast cancer 
cells, which resulted in cell proliferation [55]. Thus, a case study of colon and lung cancer 
and breast cancer showed that GCNFORMER has good performance in predicting rel-
evant lncRNAs.

Discussion
Graph convolutional network extends convolutional operations from traditional data to 
graph data by learning a mapping of functions through which a node can aggregate its 
features with those of its neighbors to achieve a more complex network, so graph convo-
lutional network has a superior ability to process graph data. Today, the attention mech-
anism is frequently used in a variety of tasks, and its advantage is its ability to amplify 
the impact of important parts of the data. Transformer itself is a model that uses the 

Table 8 Twenty predicted lncRNAs linked to breast cancer

Rank LncRNAname Evidence

1 BCAR4 LncRNADiseasev2.0Lnc2Cancerv3.0

2 XIST LncRNADiseasev2.0Lnc2Cancerv3.0

3 UCA1 LncRNADiseasev2.0Lnc2Cancerv3.0

4 SOX2-OT LncRNADiseasev2.0

5 HOTAIR LncRNADiseasev2.0Lnc2Cancerv3.0

6 LINC01133 LncRNADiseasev2.0Lnc2Cancerv3.0

7 AFAP1-AS1 LncRNADiseasev2.0Lnc2Cancerv3.0

8 LINC00961 LncRNADiseasev2.0

9 MEG3 LncRNADiseasev2.0Lnc2Cancerv3.0

10 EGOT LncRNADiseasev2.0Lnc2Cancerv3.0

11 HULC LncRNADiseasev2.0

12 GAS5 LncRNADiseasev2.0Lnc2Cancerv3.0

13 CRNDE Lnc2Cancerv3.0

14 CCAT2 LncRNADiseasev2.0Lnc2Cancerv3.0

15 PVT1 LncRNADiseasev2.0Lnc2Cancerv3.0

16 CDKN2B-AS1 LncRNADiseasev2.0

17 TP53COR1 Unknown

18 HOXA11-AS LncRNADiseasev2.0Lnc2Cancerv3.0

19 MIR155HG Unknown

20 PRNCR1 LncRNADiseasev2.0Lnc2Cancerv3.0
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attention mechanism to improve its effectiveness, and its multiheaded attention mecha-
nism further refines the attention layer by enhancing the model’s capacity to focus on 
various locations as well as giving multiple representation subspaces to increase model 
performance. In GCNFORMER model, graph convolutional network can effectively 
capture the topology and interactions in lncRNA-disease association network, while 
transformer can extract the contextual information under the complex relationships. 
Therefore, combining graph convolutional network with transformer can help to learn 
richer and more efficient feature representations, improve the ability to identify and 
mine key features in lncRNA-disease associations, and provide more accurate predic-
tion. Taken together, the combination of graph convolutional network and transformer 
brings new ideas and technical means to lncRNA-disease association prediction field, 
improves the accuracy and explanatory ability of lncRNA-disease association prediction 
model, and can promote the in-depth development of the related research.

Conclusion
In this work, we proposed a graph convolutional network and transformer-based LDA 
prediction method (GCNFORMER). First, we constructed graph relational adjacency 
matrices by combining intraclass similarity and interclass associations between lncR-
NAs, diseases, and miRNAs. Second, we employed a graph convolutional network to 
fully extract the characteristics among the nodes. Finally, we implemented a transformer 
encoder to forecast potential lncRNA-disease associations. The AUC, AUPR, and some 
other evaluation indicators under fivefold cross validation outperform six other state-
of-art lncRNA-disease association prediction models. The case study on three cancers 
demonstrate that GCNFORMER is a useful LDA prediction model with good predic-
tion performance. Of course, there are still some aspects which can be further improved. 
First, only lncRNA, miRNA, and disease information were used in current GCN-
FORMER model. To improve the model’s effectiveness in predicting LDAs, our next step 
will introduce more biological information into GCNFORMER. Specifically, large-scale 
multi-omics data, including genomics, transcriptomics, proteomics, and clinical data, 
can be further integrated, and comprehensive data analyses can be carried out to iden-
tify potential LDAs. Second, in addition to LDA prediction, further in-depth studies on 
the function and mechanism of lncRNAs can be carried out in the future to explore their 
specific roles in the process of disease development, thus revealing their importance in 
the mechanism of disease occurrence.
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