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Abstract 

Background:  Meta-analysis is a statistical method that combines the results of multi-
ple studies to increase statistical power. When multiple studies participating in a meta-
analysis utilize the same public dataset as controls, the summary statistics from these 
studies become correlated. To solve this challenge, Lin and Sullivan proposed 
a method to provide an optimal test statistic adjusted for the correlation. This method 
quickly became the standard practice. However, we identified an unexpected power 
asymmetry phenomenon in this standard framework. This can lead to unbalanced 
power for detecting protective minor alleles and risk minor alleles.

Results:  We found that the power asymmetry of the current framework is mainly due 
to the errors in approximating the correlation term. We then developed a meta-analysis 
method based on an accurate correlation estimator, called PASTRY (A method to avoid 
Power ASymmeTRY). PASTRY outperformed the standard method on both simulated 
and real datasets in terms of the power symmetry.

Conclusions:  Our findings suggest that PASTRY can help to alleviate the power asym-
metry problem. PASTRY is available at https://​github.​com/​hanlab-​SNU/​PASTRY.
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Introduction
Genome-wide association studies (GWAS) have identified numerous variants associated 
with traits. However, early studies suffered from the limitation of using small sample 
sizes, which made them underpowered to detect variants with small effect sizes. Larger 
sample sizes are required to address this challenge, but increasing sample size can often 
be difficult for a single researcher. The implementation of meta-analysis, a statistical 
technique that combines multiple GWAS summary statistics, has proven to be instru-
mental in increasing the sample size and enhancing the statistical power to detect more 
associated variants. Specifically, the fixed effects model is widely acknowledged as the 
prevailing methodology for conducting the meta-analysis of multiple studies [1–3].
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A common requirement of meta-analysis is that the participating samples have to be 
independent among studies [2]. When multiple studies in a meta-analysis have over-
lapping controls, the resulting summary statistics become correlated, leading to an 
increased risk of false positives. However, this independency requirement is often vio-
lated in GWAS meta-analysis because studies often utilize the same public datasets as 
additional controls [4–14].

Fortunately, recent advances in meta-analysis methods have addressed this issue by 
explicitly accounting for the correlations arising from shared subjects. Lin and Sullivan 
introduced a correlation estimator coupled with an optimal test statistic to account for 
the correlations [15]. Their method has demonstrated comparable power to the splitting 
approach, which refers to an imaginary method that divides shared individuals into the 
respective studies prior to the meta-analysis. After Lin and Sullivan’s method was pro-
posed, several additional methods were also developed, but they were based on a similar 
correlation estimator [16–18]. Thus, the correlation estimator suggested by Lin and Sul-
livan and their associated method have become the standard practice to deal with over-
lapping samples in GWAS meta-analysis.

In this paper, we report a phenomenon that the use of this standard framework sug-
gested by Lin and Sullivan [15] can lead to unbalanced power for detecting protective 
minor alleles (Relative risk; RR < 1) and risk minor alleles (RR > 1). We observed that 
when the controls were shared among studies in meta-analysis, the power for detecting 
protective minor alleles became severely lower than the power for detecting risk minor 
alleles. In our simulation of five-study meta-analysis for testing a SNP with a minor allele 
frequency (MAF) of 0.1, when the minor allele’s effect was risk (RR = 1.30), the stand-
ard framework showed 80.4% power. However, when we reversed the effect direction 
(RR = 1/1.30), the power decreased to 56.0%. As MAF decreased, the degree of power 
asymmetry worsened. In contrast, the splitting approach based on genotype data did not 
show this phenomenon and consistently achieved 69.5% power for both situations.

Having an unbalanced power for detecting risk and protective minor alleles can 
adversely impact the interpretability of downstream analyses. The presence of a higher 
number of risk minor alleles, as demonstrated by Chan et  al. in 2014 [19], can pro-
vide evidence for polygenic inheritance in complex diseases. Furthermore, the imbal-
ance between risk and protective minor alleles can offer insights for population genetic 
analyses, including analyses of selective pressure in relation to a specific disease [20]. 
These analyses are typically based on the assumption that commonly used two-sided 
tests have equal power for detecting risk and protective minor alleles. Therefore, if the 
association results were generated by a severely unbalanced test, the results can mislead 
interpretation.

We investigated why the power asymmetry phenomenon occurs. We found that the 
standard correlation estimator of the current method was approximated under the null 
hypothesis of no effect, and this approximation led to an imperfect estimate. It turns out 
that the true correlation is largely dependent on the MAF and effect size under the alterna-
tive hypothesis, and simply ignoring them could lead to substantially unbalanced power. To 
overcome this problem, we developed a method called PASTRY (A method to avoid Power 
ASymmeTRY). Our method is built upon an accurate correlation estimator that accounts 
for both MAF and effect size. By simulations and real data analyses, we show that PASTRY 
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substantially reduces the power asymmetry phenomenon in meta-analysis with overlap-
ping samples.

Methods
Case–control GWAS model

Case–control GWAS studies use a logistic regression model for finding disease-associated 
SNPs, where the binary trait represents individuals as either "cases" (disease) or "controls" 
(no disease). The simple logistic regression model used for a binary outcome is as follows:

where p denotes the probability that the (case) event will occur, Y ∈ {0, 1} is the disease 
status, X ∈ {0, 1} is the explanatory variable (i.e., genotype dosage of one SNP), and α 
and β are the intercept and regression parameter.

Suppose there are M case–control GWAS studies and we are interested in combining 
these summary-level results into a single estimate. In general, the random effects model is 
often favored over the fixed effects model to account for heterogeneity. However, we see 
a different trend in GWAS meta-analyses where the fixed effects model tends to be more 
commonly used [2, 21–24]. Before describing our PASTRY model, we describe the fixed 
effects model for the GWAS meta-analysis and its extension, Lin and Sullivan method (LS).

Fixed effects (FE) model

The fixed effects model assumes that the effect sizes are the same across all the studies. A 
common method for this model is the Inverse Variance-Weighted (IVW) average method, 
which combines the effect sizes by  weighting them by the inverse of their variance. The 
IVW estimator can be represented as follows:

where i is the index for the study ( i = 1, 2, . . . ,M ), β̂i is the effect size of the study i , and 
the weights are defined as

where σ̂ 2
i  is the variance of β̂i . The variance of this estimator turns out to be

(1)logit(Y ) = ln(odds) = α + βX + ǫ

(2)Pr(Y = 1|X) = eα̂+β̂X

1+ eα̂+β̂X

(3)β̂IVW = Wiβ̂i

Wi

,

(4)Wi =
1

σ̂ 2
i

(5)Var
(
β̂IVW

)
= 1∑

Wi
.
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Lin and Sullivan’s (LS) method

Lin and Sullivan developed a fixed-effects model method that can account for the cor-
relation introduced by overlapping samples in meta-analyses. Here, we will refer to this 
method as LS for abbreviation. First, Lin and Sullivan analytically derived the approxi-
mated correlation formula [15]. Then, the final meta-analysis statistic is obtained 
after accounting for the cross-study correlations. Suppose that we have M studies 
(1, ..k , l, ..M; l �= k) with observed effect sizes of β̂ = (β̂1, . . . , β̂M) in the meta-analy-
sis. Lin and Sullivan showed that the correlation between statistics of study k and l is 
approximately a function of the sample sizes:

nk and nl denote the total number of samples in study k and l , and the subscript + and 
– define case and control specific sample sizes. nij+ and nij− denote the number of over-
lapping case and control subjects between study i and j , respectively. If we wish to com-
bine M studies with overlapping samples, we can build a M ×M correlation matrix C , 
where element [k , l] is the correlation between studies k and l , rkl.

The M ×M variance–covariance matrix � can be obtained using the correlation 
matrix above and the standard deviations of studies. Then, the meta-analyzed effect size, 
β̂LS , and the variance Var(β̂LS) can be calculated as

where e is the length-M vector of ones.

PASTRY method

Effect size and variance of PASTRY​

The meta-analysis effect size and the variance of our new method PASTRY have very 
similar forms to the LS method, as follows.

The difference is that we use a different variance–covariance matrix, namely �PASTRY 
[15]. This matrix has the following form:

(6)rkl ≈
nkl−

√
nk+nl+
nk−nl−

+ nkl+
√

nk−nl−
nk+nl+√

nknl

(7)C = [rkl]M×M

(8)β̂LS = e
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e
,

(9)Var
(
β̂LS
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,

(10)β̂PASTRY = e
T�−1

PASTRY β̂

eT�−1
PASTRY e

,

(11)Var
(
β̂PASTRY

)
= 1

eT�−1
PASTRY e

.



Page 5 of 19Kim et al. BMC Bioinformatics           (2024) 25:24 	

where �PASTRYk ,l represents the variance–covariance between two studies ( k and l ), as 
well as the classical robust sandwich variance estimator [25].
IPASTRYk denotes the information matrix in study k , CovPASTRY (Uk ,Ul) is the covari-

ance between the two score functions of studies k and l . In Appendix, we elucidated the 
procedures for deriving the detailed formula.

Splitting approach

The splitting approach is the most naïve and simple method to deal with overlapping 
samples. This method splits the overlapping samples into individual studies before meta-
analysis, so that all samples can be non-overlapping. Although this method obviously 
solves the overlapping sample problem, this method is impractical in many situations 
because individual studies are already performed and cannot be modified. Although 
impractical, for performance comparison, we included this method in Results.

Power simulation

We conducted power simulations to compare methods. We assumed that we combine 
K  studies. In each simulation, we assumed each study had n samples consisting of n+ 
cases and n− controls and all controls were shared among studies. We assumed a vari-
ant with a MAF of p . Assuming a very low prevalence, the expected case MAF becomes 
p+ = γ p/((γ − 1)p+ 1) and the expected control MAF becomes p− ≈ p , where γ 
refers to relative risk. We randomly sampled the number of minor alleles for cases and 
controls using the binomial distribution.

For the splitting approach, we ensured that the sum of the minor allele counts of the 
overlapping samples were the same before and after splitting. We conducted simula-
tions under different scenarios, varying the number of studies (from 2 to 10), MAF (from 
0.1 to 0.5), relative risk (risk: 1.05, 1.10, 1.15, 1.20, 1.25, 1.30; protective: 1/1.30, 1/1.25, 
1/1.20, 1/1.15, 1/1.10, 1/1.05). We iterated each simulation 100  K times to assess the 
power of the methods.

Real data analysis

UK biobank diabetes mellitus data

We used the UK Biobank data project (www.​ukbio​bank.​ac.​uk) for real data analysis. The 
data contains 488,377 individuals and 784,256 autosomal genotyped genetic markers. 
We used a diabetes mellitus phenotype (Illness code E10-14 Diabetes mellitus in field 
41,202 and 41,204) to evaluate the PASTRY, LS method, and the splitting approach.

First, we performed a GWAS analysis using logistic regression model implemented in 
PLINK. There are 368,329 people in control set and 30,220 in case set. We identified 468 
statistically significant loci from the GWAS results and focused on the candidates (Addi-
tional file 1: Table S1).

Second, we randomly split the control and case samples into 5 groups. We treated 
each group as an independent study and conducted a GWAS analysis on each study. 
In the splitting approach, we used 73,700 and 6040 individuals for control and case in 
each study. In contrast, in the PASTRY and LS methods, we conducted a meta-analysis 

(12)�PASTRYk ,l = I−1
PASTRYk

CovPASTRY (Uk ,Ul)I
−1
PASTRYl

http://www.ukbiobank.ac.uk
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of studies with shared control design where all controls are shared. We used 368,329 
shared controls and 6044 cases for each set in the shared design. We applied three meta-
analysis frameworks: the PASTRY method, LS method, and the splitting approach.

Third, we calculated and visualized the ratio of p-values of the PASTRY method (and 
LS method) over the p-value of splitting approach for the 768 loci for six categorized 
ranges of odds ratios (ORs): −  1.20, 1/1.20–1/1.10, 1/1.10–1.00, 1.00–1.10, 1.10–1.20, 
1.20–.

WTCCC data analysis

We also used data from Wellcome Trust Case Control Consortium 1 (WTCCC, 2007) 
for real data analysis [4]. The data consist of ~ 2000 case samples for each of seven 
diseases, and one shared ~ 3000 control samples. We only used data for type 1 diabe-
tes (T1D), rheumatoid arthritis (RA), and Crohn’s disease (CD). We followed the full 
overlap design from the FOLD study [26], which performed a GWAS by fitting a logis-
tic regression model to the genotype data for each of the three diseases. After qual-
ity control, 1748 CD samples, 1860 RA samples, and 1963 T1D samples were left. We 
extracted eight significant loci related to the three autoimmune diseases (Additional 
file 1: Table S2). Two of these loci were identified in the WTCCC GWAS, and the other 
six were identified in ImmunoBase (http://​www.​immun​obase.​org). After applying three 
methods, we calculated the p-value ratios of PASTRY (and LS method) over the p-value 
of splitting approach for eight loci.

Results
Unexpected power asymmetry of the standard framework

We identified an asymmetry in the power of Lin and Sullivan’s (LS) method, which is 
the most widely used framework for addressing sample overlap in meta-analysis. LS 
method can be considered the standard framework, since this was the first method that 
derived the correlation estimator, and the similar estimator was adapted by subsequent 
methods. We compared the power of LS method to the splitting approach, which splits 
overlapping samples into separate studies. Splitting method is undoubtedly the sim-
plest solution to deal with sample overlap, but it is not applicable in practice because 
only summary statistics, not the genotype data, are available for meta-analysis in most 
situations.

We used the following simulation scheme. We generated a meta-analysis of five studies 
( K = 5 ) where each study had 3,000 cases and 3,000 controls ( N+ = N− = 3, 000 ) for 
all studies, assuming that all controls were shared among studies. We considered two 
scenarios. First, we varied the minor allele frequency (MAF) from 0.1 to 0.5. In this sce-
nario, we assumed a relative risk (RR) of 1.30 for a risk allele and 1/1.30 for a protec-
tive allele. Second, we varied RR. We simulated different RRs from 1.05 to 1.30 for the 
risk allele, and from 1/1.05 to 1/1.30 for the protective allele. In this scenario, we fixed 
MAF as 0.1. We replicated each simulation setting 100 K times to estimate the power for 
LS method and the splitting approach. Here, we adjusted the significance threshold to 
maintain the overall power of the splitting approach at approximately 70%.

Before evaluating the power of PASTRY, we assessed the false positive rate (Addi-
tional file  1: Figure S1) at various minor allele frequencies (MAFs). Our false-positive 

http://www.immunobase.org
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rate simulations demonstrated that our method consistently maintains a well-controlled 
Type I error rate under a range of diverse MAFs.

Figure  1A illustrates the first scenario where we varied MAF. In the case where the 
allele was protective (RR = 1/1.30), the power of the LS method was lower than that 
of the splitting approach. The power difference was the greatest at the small MAF of 
0.1. At this MAF, the power of LS was 56%, while that of splitting was 69%. In the case 
where the allele was risk (RR = 1.30), the power of the LS method was higher than that 
of the splitting approach. Again, the power difference was the greatest at the small MAF 
of 0.1. At this MAF, the power of LS was 80%, while that of splitting was 69%. These 
results implied that at MAF of 0.1, depending on the direction of effects, the power of LS 
method can drastically vary between 56 and 80%. When we examined the EUR dataset 
of 1000 Genomes phase3 data on GRCh38, 76,014,324 out of 84,805,772 SNPs (89.63%) 
had MAF < 0.1. Thus, if one uses LS method for these SNPs, the power for detecting risk 

Fig. 1  Powers of LS method and splitting approach with different minor allele frequencies (MAF) and relative 
risks (RRs). A We assessed the power of the LS method and the splitting approach as we varied MAF from 0.1 
to 0.5. In this case, we assumed risk minor alleles (RR = 1.30; pink) and protective minor alleles (RR = 1/1.30; 
skyblue). B Also, we assessed the power of the LS method and the splitting approach as we varied the RRs 
from 1.05 to 1.30 for risk minor alleles (pink) and 1/1.05 to 1/1.30 for protective minor alleles (skyblue). In this 
case, we assumed MAF of 0.1
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minor alleles and the power for detecting protective minor alleles will be dramatically 
different.

Figure 1B illustrates the second scenario where we varied RRs. As the absolute value of 
RR increased, the difference in power between the LS method and the splitting approach 
became more pronounced. At the largest RR we simulated (RR: 1.3 or 1/1.3), the power 
of LS varied between 56 and 80% (This was an equivalent situation that we observed 
in Fig. 1A). Thus, overall, our results showed that the power asymmetry of LS method 
exists, and the degree of asymmetry was exacerbated as the MAF decreased and as the 
magnitude of RR increased.

Comparison of correlation estimators

We investigated on why the power asymmetry occurs in the standard framework and 
found that the errors in the approximated correlation estimator can be the cause. We 
considered the simulation in Fig. 1A and B, assuming five studies with all controls are 
overlapped. In this situation, the correlation estimator of LS was turned out to be exactly 
0.5. When one applies LS method, this constant estimator is used for all SNPs regard-
less of the minor allele’s RR or the MAF, because LS’s formula solely depends on sample 
sizes. However, when we apply our method PASTRY, which calculates more accurate 
correlation taking into account both MAF and effect sizes, different estimate of correla-
tion is used for each SNP.

Tables 1 and 2 show the correlation estimates obtained by PASTRY and LS. At the RR 
of 1.3 (or 1/1.3), the correlation estimator of PASTRY was 0.573 for risk minor alleles 
(RR: 1.3) and 0.464 for protective minor alleles (RR: 1/1.3). Thus, the difference of cor-
relation between the two alleles was 0.109. One may argue that the difference of correla-
tion estimator of PASTRY (0.573 or 0.464) compared to LS (0.5) is overly small to make 
any meaningful difference in power. However, a small difference in correlation estimator 
can indeed change the results, because the small errors can accumulate from the whole 
correlation matrix, as we show below.

Cumulative effect of inaccuracy in correlation

We investigated the cumulative effect of inaccurate correlation on the final meta-analysis 
statistics. We used a similar simulation setting as above, with a fixed sample size for each 
study ( N+ = 3000 and N− = 3000) with fully overlapped controls. We assumed a MAF 
of 0.1, and a relative risk (RR) of 1.30 for risk alleles and 1/1.30 for protective alleles.

Table 1  Comparison of the correlation from the PASTRY and LS with various minor allele 
frequencies

Minor allele 
frequency (MAF)

LS correlation PASTRY correlation of Risk 
minor allele (RR = 1.30)

PASTRY correlation of 
protective minor allele 
(RR = 1/1.30)

0.1 0.5 0.572 0.464

0.2 0.539 0.454

0.3 0.522 0.467

0.4 0.509 0.484

0.5 0.496 0.495
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For simplicity, we assumed the use of LS. Thus, the correlation estimator was fixed as 
0.5 by the LS formula. We then added an error term e to the correlation. We assumed a 
diverse range of error ( e = �r ) from 0 to 0.1. Finally, we varied the number of studies 
( K  ) from 2 to 10, and measured how the power of LS changes depending on e and K .

Figure 2A and B show the power difference between the original LS method and the 
LS method with correlation errors (LSE in short). As expected, the power difference 
became greater as the error ( e ) increased. Notably, we observed that the power differ-
ence depended on the number of studies ( K  ). For example, for protective alleles, when 
e = 0.1 , the power difference was 18% with the number of studies of 10, while it was only 
5% with the number of studies of 2. This result demonstrates that a small error in cor-
relation ( e ) can have dramatic impact on the final power if K  is large, because the impact 
of errors can accumulate over the K × K  correlation matrix.

Table 2  Comparison of the correlation from the PASTRY and LS with various relative risk, assuming 
MAF of 0.1

Allele type Relative risks (RRs) LS correlation PASTRY 
correlation

Risk minor allele 1.05 0.5 0.521

1.10 0.535

1.15 0.545

1.20 0.523

1.25 0.534

1.30 0.572

Protective minor allele 1/1.05 0.500

1/1.10 0.466

1/1.15 0.467

1/1.20 0.442

1/1.25 0.465

1/1.30 0.464

Fig. 2  Power difference between the original LS method and the LS method with correlation errors (LSE) for 
A risk (left) and B protective (right) alleles, respectively. The correlation errors (�r) were varied from 0.0 to 0.1, 
and the number of studies was varied from 2 to 10 for both situations
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PASTRY achieves similar power to the splitting approach

We evaluated the power of PASTRY in a variety of situations, while varying minor allele 
frequency (MAF), relative risk (RR), and the number of studies ( K  ). We assumed K  
studies, each with 3000 samples for both cases and controls with fully overlapped con-
trols. Specifically, we considered four scenarios. First, we varied both MAF (from 0.1 to 
0.5) and RRs (from 1/1.3 to 1.3) while keeping the number of studies to 5 ( K  = 5). This 
gave us power estimates of methods over the two-dimensional space of parameters. Sec-
ond, we only varied MAF (from 0.1 to 0.5) while keeping the number of studies to 5 ( K  
= 5) and keeping RR to 1.30 (or 1/1.30). Third, we only varied RR from 1.05 to 1.30 (or 
1/1.05 to 1.30) while keeping MAF to 0.1 and the number of studies to 5 ( K  = 5). Fourth, 
we only varied the number of studies ( K  ) from 2 to 10 while keeping MAF to 0.1 and 
RR to 1.30 (or 1/1.30). For each scenario, we calculated the power difference of PASTRY 
compared to the splitting approach (Fig. 3). Additionally, we also calculated the power 
difference of LS compared to the splitting approach.

Before evaluating the power of PASTRY, we assessed the false positive rate (Additional 
file 1: Table S3) at various minor allele frequencies (MAFs) and the number of studies 
( K  ). Our false-positive rate simulations demonstrated that our method consistently 
maintains a well-controlled Type I error rate under a range of diverse conditions.

Figure 3A and B illustrate the first scenario where we varied both MAF and RR. As 
expected, PASTRY (3A) generally achieved similar power to splitting, while LS (3B) 

Fig. 3  Power difference of PASTRY and LS methods over splitting approach in various settings. A, B 
Three-dimensional surface plots of the power difference between A PASTRY and B LS methods over splitting 
approach for various MAFs and RRs. C, D Line plots comparing the power difference between PASTRY and LS 
methods over splitting approach for C risk minor alleles and D protective minor alleles in various settings
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deviated from splitting. For example, when MAF was 0.1 and RR was 1.3 (or 1/1.3), the 
power difference of PASTRY was only 3.90 for risk minor allele and −3.10% for protec-
tive minor allele. In contrast, the LS method showed power difference of 10.07% for risk 
minor allele and −11.34% for protective minor allele. The power of both methods tended 
to deviate from splitting as MAF decreased and RR moved further away from 1. How-
ever, the deviation was much greater for LS than PASTRY.

Figure 3C and D show the second, third, and fourth scenarios for risk and protective 
alleles, respectively. In the second scenario, the power difference between PASTRY and 
LS was the largest when the MAF value was 0.1. As the MAF value increases, LS and 
PASTRY showed similar power. In the third scenario, the power difference between 
PASTRY and LS was the largest when the effect size was greater (RR value of 1.30 or 
1/1.30). In the last scenario, the power difference between PASTRY and LS was the larg-
est when the number of studies was greater ( K = 10 ). In addition, we compared the 
results of PASTRY method and LS method in a wider range of settings (Additional file 1: 
Table  S3). In sum, LS showed considerable power difference from splitting, of which 
the magnitude of difference was increased as MAF becomes lower, effect size becomes 
larger, and the number of studies becomes larger. Although PASTRY also showed power 
difference from splitting, the magnitude of difference was much smaller than that of LS. 
These results suggest that PASTRY can alleviate the power asymmetry problem that the 
current standard framework (LS) has.

Application to diabetes mellitus dataset from UK Biobank data

We evaluated the performance of PASTRY method using the diabetes mellitus data from 
the UK Biobank dataset. This dataset had 768 significant loci, and we only focused on 
these loci (Additional file 1: Table S1). We split the cases into five groups to make five 
studies, which were designed to share the whole controls (See Methods). Using meta-
analysis methods (PASTRY and LS), we obtained the p-values of the significantly associ-
ated SNPs. We then compared the p-values of PASTRY and LS to the splitting approach 
by calculating the ratio of p-values. We evaluated the p-value ratios per each bin of effect 
size (OR).

Figure  4 shows the ratios of p-values for risk minor alleles (OR > 1) and protective 
minor alleles (OR < 1). We divided each into three ranges (protective: −1/1.20, 1/1.20–
1/1.0,1/1.10–1.00 and risk: 1.00–1.10, 1.10–1.20, 1.20–). A p-value ratio closer to 1 indi-
cates better performance of the corresponding method, because it means that the power 
is closer to the splitting method and therefore there is less degree of power asymmetry. 
Consistent with the previous simulation results, LS method (4A) tended to give smaller 
p-values for risk minor alleles and larger p-values for protective minor alleles. The abso-
lute value of the ratio increased as the OR moves away from 1. In contrast, PASTRY 
method (4B) generally maintained a median close to 1. For example, for SNPs with OR 
value of 1/1.20 or smaller, the median value of the p-value ratio of LS was 2.189, while 
the median of PASTRY was 0.985. For SNPs with OR value of 1.20 or greater, the median 
value of the p-value ratio of LS was 0.339, while the median value of PASTRY was 0.912. 
Thus, PASTRY method outperformed LS method in this real data analysis, in terms of 
the power symmetry.
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Application to WTCCC data

Lastly, we performed a similar real data analysis using the Wellcome Trust Case Con-
trol Consortium (WTCCC) data. We conducted the same cross-disease analysis as Kim 
et al. who meta-analyzed three autoimmune diseases: Crohn’s disease (CD), rheumatoid 
arthritis (RA), and type 1 diabetes (T1D), treating them as three studies (see Methods 
for details) [26].

To assess the Type I error rate and the presence of truly effect SNPs, we first gener-
ated quantile–quantile (QQ) plots for the meta-analysis of the three different models 
for all SNPs. Additional file  1: Figure S2 shows the QQ plots for the meta-analysis of 
three different models for all SNPs. These plots show that the most of points are gener-
ally close to the diagonal line, which indicates that our method is maintaining the cor-
rect Type I error rate. However, there are some strong deviations from the diagonal line 
with extremely low p-values, which suggests that there may be SNPs with true effects on 
the phenotype.

For the eight candidate loci defined by Kim et al., we calculated the p-values of split-
ting method, LS, and PASTRY. For LS and PASTRY, we assumed the full overlap of 
controls. Additional file 1: Table 2 shows that the ratios of the p-values for the PASTRY 
method over the splitting approach were all closer to 1 compared to the ratios for the LS 
method. Thus, consistent to previous analyses, this analysis also showed that PASTRY 
achieved similar p-values as splitting and has less degree of power asymmetry problem.

Discussion and conclusions
In this paper, we proposed a method that uses an accurate correlation estimator, called 
PASTRY (A method to avoid Power ASymmeTRY). We identified a phenomenon that 
the widely-used method (LS) can lead to asymmetry in power for detecting protective 
and risk minor alleles. We investigated this problem and found that this phenomenon 

Fig. 4  Comparison of p-value ratios of A PASTRY method and B LS method over the splitting approach for 
diabetes mellitus dataset from UK Biobank data. The x-axis shows the odds ratios (ORs) of the significant loci, 
and the y-axis shows the p-value ratios. The green boxes show the p-value ratios for the risk minor alleles, and 
the pink boxes show the p-value ratios for the protective minor alleles. The protective minor alleles and risk 
minor alleles were divided into three ranges each (protective: − 1/1.20, 1/1.20–1/1.0,1/1.10–1.00 and risk: 
1.00–1.10, 1.10–1.20, 1.20− ). The blue dashed line represents y = 1, where the two methods’ p-values are the 
same
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was mainly due to incorrect correlation approximation. We then developed PASTRY, 
which uses more accurate correlation estimator that accounts for both MAF and effect 
size. Using simulations, we showed that power asymmetry can be alleviated by using our 
proposed method PASTRY. Real data analysis using the UK Biobank and WTCCC data 
also produces concordant results.

However, there are some limitations to consider regarding our approach. Our study 
modeled genotype as 0 and 1, assuming the multiplicative model to be true (additive 
model under the log scale). Under the multiplicative model, the allelic model (0/1) and 
the genotypic model (0/1/2) give the same asymptotic power under the HWE [27]. How-
ever, when the model deviates from the multiplicative model, genotypic modeling will be 
more powerful. Similar to the Lin-Sullivan study from which we derive our method as 
an extension, we employed the allelic model in our study. However, it will be possible to 
extend our method to incorporate the genotypic model in the future.

Another limitation of our approach is that PASTRY requires separate MAFs for cases 
and controls of each SNP. In real-world applications, it might not always be possible 
to access distinct MAFs for cases and controls directly, especially when dealing with 
summary statistics data sets. However, it is possible to recalculate the case and control 
MAF using the population MAF and prevalence. Since the population MAF is available 
through public data such as 1000 Genomes project and the prevalence is available for 
many diseases for different ancestries, we expect that this additional information will be 
obtainable.

A final limitation of our approach is that it can only be applied for genotype-based 
case–control studies. The challenge of overlapping subjects is indeed a significant issue 
that also arises in meta-analyses of clinical trials or cohort studies. At present, PASTRY 
is primarily designed for genotype-based case–control studies due to its specific meth-
odology and underlying assumptions. However, extending PASTRY to non-GWAS stud-
ies will be a fascinating avenue worth exploring in the future studies.

Our method PASTRY method extended LS method, but they differ in their input sta-
tistics. The LS method requires the effect size and standard errors from each study, as 
well as the number of subjects and overlapping subjects. The PASTRY method, in addi-
tion to these inputs, also requires separate MAFs for cases and controls for each SNP. 
This additional requirement is necessary for PASTRY to account for potential differ-
ences in allele frequencies between cases and controls.

There are several specific conditions that PASTRY and LS will give the same output. 
As the correlation difference between PASTRY and LS is a function of effect size (beta), 
when the effect size estimate used by PASTRY is zero, the two statistics will be equal. 
Another condition is when there are no overlapping subjects. Under this condition, no 
correlation exists, and therefore the two methods will give an identical result.

To our knowledge, our study is the first study that reported the power asymmetry phe-
nomenon of the standard framework. Moreover, our study is the first to discover the pri-
mary cause (error in correlation estimator) and to provide a possible solution. However, 
the limitation of our approach is that although the power asymmetry was considerably 
alleviated by our method, the correction was not perfect. Even with our method, there 
was a small amount of difference in power compared to splitting. This could be because 
our PASTRY estimator is still not perfect, or because there can be other causes.
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A philosophical question might be whether we really need a symmetrical (balanced) 
power to find risk and protective minor alleles. One could argue that the direction is 
not important as long as the union of identified associations gets larger. However, sub-
sequent interpretative analysis may be affected by this asymmetry [28–31]. In addition, 
rare variants that cause deleterious effects on a gene may have different clinical implica-
tion than rare variants that add a protective function to a gene [32]. Assessing how much 
this asymmetry may affect downstream analysis is beyond the scope of this study, but 
will certainly be an interesting topic for investigation in future studies.

In sum, in this study, we identified the power asymmetry problem of the current meta-
analysis framework for overlapping controls and developed the solution, PASTRY. We 
believe that PASTRY will be the method of choice for meta-analyzing genomic stud-
ies that share controls, as it can provide balanced power for risk and protective minor 
alleles.

Appendix: Detailed derivation of PASTRY​
Information matrix

Let Xki and Yki denote the genotype and phenotype of the ith individual in study k , 
respectively. The maximum likelihood estimation (MLE) is widely used for estimating 
the parameters of a logistic regression model. The likelihood for the logistic regression 
model of study k is

where αk and βk denote the intercept and regression parameters of study k , respectively.
Typically, a log-likelihood function is used to simplify the derivative. The log-likeli-

hood function is

The corresponding score function, which is the gradient of log-likelihood function, is 
as follows:

where X̃ki =
[

1

Xki

]
.

Next, the information matrix Ik is the variance–covariance matrix of the score func-
tion. According to the information matrix equality [33], Ik can be defined as:

(13)L(αk ,βk) =
nk∏

i

e(αk+βkXki)Yki

1+ eαk+βkXki
,

(14)lk(αk ,βk) =
nk∑

i

Yki(αk + βkXki)−
nk∑

i

ln
(
1+ eαk+βkXki

)
,

(15)Uk(αk ,βk) = l′(αk ,βk) =
nk∑

i

(
Yki −

eαk+βkXki

1+ eαk+βkXki

)
X̃ki,
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where X̃kiX̃
T

ki =
[

1 Xki

Xki X
2
ki

]
.

On the other side, we can get the odds function (from Eq. (1)) by inversing the standard 
logistic function and exponentiating both sides:

We can modify this logit function to express it in terms of the estimate of eα:

where we replaced p (probability of disease) with nk+
nk++nk−

 and 1− p with nk−
nk++nk−

 which 

are the expectations of p and 1− p in the k th study, respectively. Xk is genotype score by 
definition, so we can reformulated it as MAF+×nk++MAF−×nk−

nk++nk−
 which is the expectation of 

X in the k th study; nk+ and nk− are the number of sample sizes of case and control in 
study k , and MAF+ and MAF− denote the minor allele frequencies of case and control, 
respectively [15].

Since we don’t know the true beta ( βk ) of formula (18), we substitute the LS estimator 
( β̂LS ) for βk in our method. Recall that from formula (8) above, LS estimator βLS is:

Then, we can divide eαk+βkXki (in Eq. (16)) into two cases:
If Xki = 0,

and if Xki = 1,

Similarly, we can also calculate X̃kiX̃
T

li  according to two Xki:
If Xki = 0,

(16)Ik(αk ,βk) = E[−l′′(αk ,βk)] =
nk∑

i

eαk+βkXki

(
1+ eαk+βkXki

)2 X̃kiX̃
T

ki,

logit(pi) = log

(
pi

1− pi

)
= αk + βkXki + ǫi,

(17)
pi

1− pi
= eαk+βkXki+ǫi .

eα̂k ≈ exp

(
log

( nk+
nk++nk−

nk−
nk++nk−

)
− βk

(
MAFk+ × nk+ +MAFk− × nk−

nk+ + nk−

))

(18)= exp

(
log

(
nk+
nk−

)
− βk

(
MAF+ × nk+ +MAF− × nk−

nk+ + nk−

))
,

(19)β̂LS = eT�−1
LS β̂

eT�−1
LS e

(20)eαk+βkXki ≈ eα̂k ,

(21)eαk+βkXki ≈ eα̂k+β̂LS .

(22)X̃kiX̃
T

ki =
[

1 Xki

Xki X
2
ki

]
=

[
1 0

0 0

]
,
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and if Xki = 1,

Now, we can write the information matrix of study k as

where the general structure of information matrix, defined by formula (16), is decom-
posed into four parts, each representing specific conditions: (1) case group having non-
risk allele ( Xki = 0 and Yki = 1 ), (2) case group having risk allele ( Xki = 1 and Yki = 1 ), 
(3) control group having risk allele ( Xki = 1 and Yki = 0 ), and (4) control group having 
non-risk allele ( Xki = 0 and Yki = 0 ). Next, each component in formula (16) is substi-
tuted with the corresponding formulas, namely formula (18), (20), (21), (22), and (23), 
which gives us the matrix.

Covariance matrix

Let θk = (αk ,βk) be the set of parameters for the logistic regression model in the study k . 
Then, according to the maximum likelihood theory, the MLE of θk follows:

and the covariance between the parameters of two studies is known to be [15]:

By the definition of covariance, the covariance between score functions of study k and l :

(23)X̃kiX̃
T

ki =
[

1 Xki

Xki X
2
ki

]
=

[
1 1

1 1

]
.

(24)

IPASTRY ≈ nk+
(
1−MAFk+

) eα̂k

(
1+ eα̂k

)2

[
1 0

0 0

]

+ nk+ ×MAF
k+

eα̂k+β̂LS

(
1+ eα̂k+β̂LS

)2

[
1 1

1 1

]

+ nk−
(
1−MAFk−

) eα̂k

(
1+ eα̂k

)2

[
1 0

0 0

]

+ nk− ×MAF
k−

eα̂k+β̂LS

(
1+ eα̂k+β̂LS

)2

[
1 1

1 1

]
,

(25)θ̂k ∼ N
(
θk , I

−1
k (θk)

)

(26)Cov
(
θ̂k , θ̂ l

)
≈ Ik

−1(θk)Cov(Uk(θk),Ul(θ l))Il
−1(θ l).

Cov(Uk(θk),Ul(θ l))

= E[(Uk(θk)− E[Uk(θk)])([Ul(θ l)− E[Ul(θ l)])]

= E[(Uk(θk))(Ul(θ l))]

(27)≈
nkl∑

i

(
Yki −

eαk+βkXki

1+ eαk+βkXki

)(
Yli −

eαl+βlXli

1+ eαl+βlXli

)
X̃kiX̃

T

li ,
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where nkl denotes the number of overlapping samples between two studies ( k and l ). 
Here, we can decompose overlapping samples to cases and controls:

where we can put nkl+ term as zero because we only consider the shared controls in this 
study. The corresponding variance–covariance matrix of score functions between study 
k and l is therefore,

where each component in formula (27), representing the general variance–covariance 
matrix of score function formula, is decomposed into two parts, excluding nkl+ part. 
Subsequently, we replaced these components with the corresponding formulas, namely 
formulas (18), (20), (21), (22), and (23), which gives us the matrix. Lastly, we can get the 
variance–covariance of PASTRY between study k and l (denoted in formula (10)) using 
formula (26).
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