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Abstract 

Background: With the exponential growth of high-throughput technologies, mul-
tiple pathway analysis methods have been proposed to estimate pathway activi-
ties from gene expression profiles. These pathway activity inference methods can 
be divided into two main categories: non-Topology-Based (non-TB) and Pathway 
Topology-Based (PTB) methods. Although some review and survey articles discussed 
the topic from different aspects, there is a lack of systematic assessment and compari-
sons on the robustness of these approaches.

Results: Thus, this study presents comprehensive robustness evaluations of seven 
widely used pathway activity inference methods using six cancer datasets based 
on two assessments. The first assessment seeks to investigate the robustness of path-
way activity in pathway activity inference methods, while the second assessment 
aims to assess the robustness of risk-active pathways and genes predicted by these 
methods. The mean reproducibility power and total number of identified informa-
tive pathways and genes were evaluated. Based on the first assessment, the mean 
reproducibility power of pathway activity inference methods generally decreased 
as the number of pathway selections increased. Entropy-based Directed Random Walk 
(e-DRW) distinctly outperformed other methods in exhibiting the greatest reproduc-
ibility power across all cancer datasets. On the other hand, the second assessment 
shows that no methods provide satisfactory results across datasets.

Conclusion: However, PTB methods generally appear to perform better in produc-
ing greater reproducibility power and identifying potential cancer markers compared 
to non-TB methods.

Keywords: Pathway analysis, Reproducibility power, Robustness, PubMed text data 
mining, Literature validation, Pathway activity inference, Cancer classification

Background
The emergence of high-throughput technologies facilitates the measurement of gene 
expression levels of tens of thousands of genes in the scope of a single experiment [1, 2]. 
Most of these experiments involve the comparisons of gene expression patterns across 
groups/classes, such as cases vs. controls or exposed vs. unexposed. Such comparison 
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between phenotypes seeks to identify diagnostic markers of various disease states, out-
comes, or responses to treatment [3]. Various differential expression analyses evolved to 
identify genes that may have roles in a given phenomenon or phenotype. These analyses 
typically yield a list of differentially expressed genes or proteins computed based on test 
statistics/p-values (e.g., T-test, Z-score, fold change, ANOVA, etc.) [4–7]. Although such 
lists of genes effectively differentiate between phenotypes, it fails to provide mechanis-
tic insights into the underlying complex mechanisms involved in a given condition [8, 
9]. The selection of differentially expressed genes (DEGs) is often subjective and these 
DEGs are only mapped to a small fraction of pathways [10]. This results in the exclu-
sion of many highly expressed genes from pathway level analyses and does not elucidate 
pathway activities as a whole.

Another challenge in the analysis of genome-wide expression profiles is the robust-
ness of individual gene biomarkers identified in microarray gene expression analysis. 
The prediction performance of identified gene markers in one dataset often decreased 
drastically when applied in an independent dataset of the same disease phenotype 
[11, 12]. This variation is typically due to the cellular heterogeneity within tissues, the 
inherent genetic heterogeneity across patients, and the measurement error in microar-
ray platforms [13]. In addition, the large dimension small sample size problem and the 
redundant information produced from independent selection of gene markers further 
deteriorate the classification and prediction performance [14]. Hence, it is crucial to 
transform the gene-level results into a broader biological context to obtain a global view 
of expression changes and identify robust biomarkers at the level of functional catego-
ries. It is also much easier to investigate variations of samples at the pathway level rather 
than gene level to generate abstract quantification of pathways for characterising under-
lying biological mechanisms [15, 16].

One of the most common approaches used to address this goal is by grouping the 
long lists of individual genes into smaller sets of function-related genes or proteins [9]. 
Such an approach is known as Gene Set Analysis, or commonly referred to as Pathway 
Analysis (PA). In PA methods, knowledge bases (i.e. database collections of molecular 
knowledge) are utilised to aggregate genes into gene sets that share similar biological or 
functional properties. The resultant gene sets are analysed as a whole to identify which 
of these properties are relevant to the phenotype of interest [3]. PA methods overcome 
the limitations of interpreting overwhelmingly long lists of significant but isolated genes 
removed from biological context in differential expression analysis [17]. By leverag-
ing the knowledge contained in various pathway databases (e.g. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [18], Reactome [19], NCI-PID [20], WikiPathways [21], 
etc.), it aims to detect pathways significantly enriched between two experimental con-
ditions [22]. The activity of groups of biologically related genes rather than individual 
genes are analysed to investigate sample-wise variations at the pathway level.

Traditional PA methods treat pathways as unstructured gene sets and define pathway 
activity as the enrichment of the pathway genes among the top detections. These meth-
ods are commonly referred to as non-Topology Based (non-TB) methods, or Gene Set 
Analysis methods. Non-TB methods discard a substantial amount of knowledge regard-
ing the positions and roles of the genes within the pathways, as well as the directions 
and types of the signals transmitted from one gene to another [8]. Another modern PA 
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methods called Pathway Topology Based (PTB) methods have been developed in an 
attempt to include all this biological knowledge in analysis. It considers the underly-
ing graphical structure or pathway topology when determining pathway activities. Such 
approaches model the whole biological system as networks, in which nodes represent 
related genes or proteins, and edges indicates interactions among them based on prior 
knowledge [8]. This enrichment analysis has been achieved by coupling pathway data-
bases with statistical testing, mathematical analyses, and computational algorithms [23].

Although PA methods have been developed and used for well over a decade, there still 
exist a limited number of formal assessments and comparisons of tools and algorithms. 
There are several reviews [17, 23] and benchmark [10, 22, 24, 25] articles published 
offering guidance on the selection of PA methods. Most of these review [9, 26–28] arti-
cles covered an overview of the existing PA methods, ranging from Non-TB methods to 
PTB methods. These published works mainly focused on their theoretical definitions or 
underlying statistical concepts. There are some studies [24, 29, 30] that extensively com-
pared the performance of PA methods based on benchmark data. However, these com-
parative studies are limited to Gene Set Analysis Methods (Non-TB). The comparison 
between Non-TB and PTB methods are outside of the scope of these analyses. Addition-
ally, some former surveys [8, 22] performed a wide range of assessment encompassing 
accuracy, sensitivity, specificity, and the area under the receiver operating characteristic 
curve (AUC). These studies do not take into account the robustness evaluations of PA 
methods.

In this study, a systematic comparison of the performances of seven different path-
way activity inference methods on six microarray gene expression datasets are presented 
based on two assessments. The main focus of this work is to provide a meaningful com-
parison of established pathway activity inference methods in terms of their ability to (i) 
generate high reproducibility power (robustness of pathway activity), and (ii) identify 
potential pathway markers and gene markers based on reproducibility of predictions 
(robustness of predicted risk-active pathways and genes). For comparability of the meth-
ods, four Gene Set Analysis methods and three PTB methods were implemented in the 
R statistical computing environment (see Table 1). These seven methods represent both 

Table 1 General information on the tested pathway activity inference methods

non-TB: non-topology based method, PTB: pathway topology based method; GS: gene set, PT: pathway topology.

Method Description Category Pathway 
representation

References

COMBINER Multi-level optimisation framework for core module 
inference

Non-TB GS [31]

PAC Pathway activity inference scheme in a condition-
specific manner

Non-TB GS [16]

PLAGE Pathway level analysis of gene expression based on 
singular value decomposition (SVD)

Non-TB GS [32]

GSVA Gene set enrichment based on Kolmogorov Smirnov-
like random statistic

Non-TB GS [33]

DRW Random walk restart on KEGG network PTB PT [13]

sDRW Random walk restart on KEGG network PTB PT [34]

e-DRW Bi-random walk restart on KEGG and NCI-PID network 
separately

PTB PT [35]
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Non-TB and PTB approaches. The selection criteria are based on their mathematical 
basis to represent clearly different approaches, as well as their availability and function-
ality for applications. Besides, six gene expression data and pathway data are prepared 
for the robustness evaluations. Each of these methods and input data as well as the 
workflow of the two assessments will be described thoroughly in the following sections.

To perform a fair comparison of different pathway activity inference methods, it was 
necessary to employ the gene expression data that are processed and filtered in the same 
way. The relevant data pre-processing steps are described in detail in the second sec-
tion of Materials and Methods. As the integration of topological pathway data repre-
sents a key component in the analysis of pathway activity inference tools, the number 
of pathway data inputs were retained as implemented in the original article to ensure 
the objectivity of evaluations and maximise the performances of different pathway activ-
ity inference methods when analysing the large number of cancer datasets. The pathway 
data used for evaluations are provided in the third section of Materials and Methods. 
Moreover, all classification evaluations for the seven tested methods are fixed the same 
for an effective comparison of prediction performances. The relevant classification eval-
uations are elaborated in the Comparative Approach section.

Results
This section presents the results of two comparative assessments for the seven tested 
methods across six cancer datasets. The first assessment evaluates and compares the 
mean reproducibility power of different pathway activity inference methods. The second 
assessment investigates the number of identified informative pathway markers and gene 
markers for each method.

Robustness of pathway activity

The selected pathway activity inference methods were applied to each of the six gene 
expression datasets, and the top-k active pathways (50, 40, 30, 20, 10) were selected for 
evaluations. The mean reproducibility power quantified using the Cscore method pro-
posed by Yang et al. [31], of the top-k pathways for four Non-TB methods: COMBINER, 
PAC, PLAGE, GSVA, and three PTB methods: DRW, sDRW, and e-DRW were com-
pared. Figure 1 shows the comparison of mean reproducibility power for seven pathway 
activity inference methods across all datasets.

Based on Fig. 1 above, the mean reproducibility power of pathway activity inference 
methods generally decreased as the number of pathway selections (Top-k pathways) 
increased—a trend observed for all six gene expression datasets. This observation 
reflects the dimensions of pathway selections can affect the reproducibility performance 
encountered with any methods. Notably, the PTB methods are significantly more robust 
than non-TB methods in generating greater reproducibility power. Specifically, the range 
of reproducibility power scores obtained by PTB methods (from 43 to 766) are much 
higher than non-TB methods (from 10 to 493) for all pathway selections across data-
sets. Among the non-TB methods, COMBINER consistently performs better than any 
other methods (PAC, PLAGE, and GSVA) for top-k pathway selections across six cancer 
datasets.
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Compared individually with other pathway activity inference methods, e-DRW almost 
always produced the highest mean reproducibility power across all datasets except for 
breast cancer dataset, whereas PAC consistently produced the lowest mean reproduc-
ibility power for all pathway selections across majority of the datasets. This indicates that 
e-DRW exhibited the greatest power to discriminate between tumour and normal sam-
ples for all five datasets. On the other hand, DRW presented exceptionally high mean 
reproducibility power for top-40, 30, 20, 10 pathway selections in breast cancer dataset, 
although the reproducibility performances were slightly higher than e-DRW. Additional 
file  1 summarised the mean reproducibility power of each pathway activity inference 
methods across six cancer datasets, and Additional files 2, 3, 4, 5, 6, 7 corroborated the 
findings in detail for the seven tested methods.

Fig. 1 Comparison of mean reproducibility power for seven pathway activity inference methods
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In addition, another comparison of reproducibility power based on coefficient of var-
iation (CV) was conducted to evaluate the performance of pathway activity inference 
methods. CV was calculated as a statistical measure of the method’s robustness based on 
the ratio of the standard deviation to the mean [36]. The higher the CV, the greater the 
degree of dispersion around the mean. Based on the evaluations, three out of four non-
TB methods (COMBINER, PAC, and GSVA) exhibited low CV (below 60%) compared 
to PTB methods which reported a higher degree of variation to its mean (above 60%). 
This indicates that the dispersion of reproducibility power scores for non-TB methods 
are much better than PTB methods across all datasets. Compared CV individually with 
other methods, PAC delivered the lowest CV whereas PLAGE generated the highest 
variability of reproducibility power scores. Figure 2 illustrates the CV of each pathway 
activity inference methods.

Robustness of predicted risk‑active pathways and genes

To assess the robustness of risk-active pathways and genes predicted by different path-
way activity inference methods, classifier that produces the highest mean accuracy 
across majority of the cancer datasets for each method was chosen for further evalua-
tions. For methods that generate comparable results across datasets, the classifier that 
predicts the highest number of pathways was selected for analysis. Additional file 8 sum-
marised the mean classification accuracy of pathway activity inference methods across 
six cancer datasets using three different classifiers (NB, KNN, LR). Besides, Additional 
files 9, 10, 11, 12, 13, 14 details the mean accuracy and prediction results of selected clas-
sifier across 10 experiments for the seven tested methods. Table 2 outlines the number 
of predicted pathway markers for seven pathway activity inference methods across all 
datasets. The number of predicted pathway markers refers to the number of pathways 
determined by the seven computational methods after classification.

Based on Table 2 above, PAC predicted the highest number of pathway markers across 
majority of the datasets compared to other pathway activity inference methods. How-
ever, highest prediction performance does not guarantee the robustness of predicted 

Fig. 2 Coefficient variation of pathway activity inference methods
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pathway markers. Thus, literature validation of pathways possesses a significant role to 
assess whether the candidate pathways is indeed associated not only with cancer, but 
also with other diseases or conditions. To ensure comparability of validation results 
between the computational methods, top-k pathways were selected from each method 
across all datasets based on the minimum number of predicted pathway markers (i.e. 
6 pathway markers) as shown in Table  2. Figure  3 presents the number of identified 
informative pathways for seven pathway activity inference methods across all datasets. 
The number of identified informative pathways refers to the number of pathway (or 
gene) markers with PMIDs identified by PubMed text data mining.

According to Fig. 3 above, PTB methods (DRW, sDRW, and e-DRW) evidently iden-
tified higher number of informative pathways compared to non-TB methods (COM-
BINER, PAC, PLAGE, and GSVA) across all datasets. Among the PTB methods, there 
is a subtle difference in performance for the identified informative pathway markers. 
Particularly, sDRW produced the highest number of identified informative pathways 
across five datasets except for stomach cancer dataset, whereas DRW and e-DRW 
each outperformed other pathway activity inference methods across four cancer 
datasets. In contrast, GSVA consistently identified the lowest number of informative 

Table 2 Number of predicted pathway markers

Pathway activity 
inference methods

Gene expression dataset

Lung 
GSE10072

Stomach 
GSE13911

Liver 
GSE17856

Kidney 
GSE15641

Thyroid 
GSE33630

Breast 
GSE3494

COMBINER 10 12 13 18 14 22

PAC 13 18 32 15 19 22

PLAGE 41 16 20 8 37 8

GSVA 15 15 18 29 12 6

DRW 10 12 12 26 16 17

sDRW 11 8 13 20 10 20

e-DRW 8 13 7 12 9 12

Fig. 3 Comparison of number of identified informative pathways
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pathway markers across all datasets. Among the non-TB methods, PLAGE encoun-
tered more identified pathway markers across three datasets, which are lung cancer, 
liver cancer, and breast cancer datasets. On the other hand, COMBINER, PAC, and 
GSVA generally produced lower number of identified pathway markers across major-
ity of the datasets. GSVA turns out to deliver only one cancer pathway marker in thy-
roid cancer and breast cancer dataset which represents the lowest figure shown in 
the chart. Additional file 15 presents the top-6 frequently selected pathway markers 
with their PMIDs identified by PubMed text data mining. By selecting the top-6 fre-
quently selected pathway markers, candidate genes were extracted from these risk-
active pathways for further robustness evaluation based on PubMed text data mining. 
Figure 4 illustrates the number of identified informative gene markers for the seven 
pathway activity inference methods across all datasets.

Based on Fig.  4 above, there is a mixed findings reported from the evaluations. 
Notably, non-TB methods outperformed PTB methods by delivering highest num-
ber of identified informative gene markers across four datasets, which include lung 
cancer and stomach cancer datasets identified by GSVA, as well as liver cancer and 
breast cancer datasets detected by COMBINER. Whereas PTB method or specifically 
e-DRW performed better for kidney cancer and thyroid cancer datasets. In contrast, 
PAC consistently generated the lowest number of identified informative gene mark-
ers across four cancer datasets, ranging from lung cancer, liver cancer, kidney cancer, 
and breast cancer datasets. Whereas PLAGE identified the lowest informative gene 
markers for stomach and thyroid cancer datasets. Apart from that, DRW and sDRW 
delivered comparable results with subtle differences in performance. The identified 
informative gene markers are roughly proportional to each other across all datasets. 
Of the seven pathway activity inference methods, PLAGE identified the lowest figure 
in thyroid cancer dataset as shown in the bar chart. Additional files 16, 17, 18, 19, 20, 
21 provides the genes in the frequently selected pathway markers (Top-6) with their 
PMIDs identified by PubMed text data mining across all datasets.

Fig. 4 Comparison of number of identified informative genes
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Discussions
The goal of pathway level analysis is to transform a potentially large list of differentially 
expressed genes (hundreds or a few thousands) into a smaller list of meaningful biologi-
cal phenomena. A wide range of PA methods have been proposed that focuses on the 
collective activity of genes within biologically relevant entities such as pathways. These 
approaches seek to investigate enriched pathways by measuring the pathway activities 
across given phenotypes. Although there have been few published works guiding users 
on the selection of these methods, they are collectively limited in the following ways: (i) 
several reviews only discussed the theoretical or methodological aspects of the meth-
ods; (ii) some comparative studies limited to the performance evaluations of non-TB 
methods, and (iii) majority of the surveys specifically focused on popular metrics (e.g. 
prioritisation, sensitivity, specificity, and accuracy) for performance evaluations. Thus, 
to address the aforementioned issues, this study provides a systematic assessment and 
comparison of seven widely used pathway activity inference methods (4 non-TB and 
3 PTB methods) to evaluate the robustness of pathway activities and predicted cancer 
markers.

Based on the first assessment that evaluates the robustness of pathway activities in 
pathway activity inference methods, decreasing the number of pathway selections stead-
ily increased the performance of reproducibility power. This observation is due to the 
fact that as the dimensions of pathway selections decreased, statistically significant path-
way activities (high absolute t-scores) were selected from training-test pair datasets for 
evaluations. Pathway activities are considered reproducible if it provides similar dis-
criminative power on both datasets. Besides, although each method attained different 
mean reproducibility power scores for different datasets, which presumably reflects the 
disparate biological processes represented in each dataset, it can be clearly observed that 
PTB methods consistently ranked higher than non-TB methods across all datasets. In 
particular, e-DRW was always ranked highest, followed by DRW and sDRW, whereas 
PAC and PLAGE fell to a low rank as seen in Fig. 1. This could be attributed to the con-
struction of pathway topology and the robust gene-weighting method proposed by PTB 
methods. Comprehensive pathway topology helps clarify the roles that genes play in the 
pathway and weigh the genes more precisely. It also enables a more accurate prediction 
of disease status in PTB methods [13]. In addition, the application of gene-weighting 
method based on topological importance further maximises the ability of PTB methods 
to discriminate between tumour and normal samples compared to non-TB methods.

Moreover, based on the coefficient variation of mean reproducibility power evaluated 
on the seven tested methods across datasets, non-TB methods surprisingly performed 
better than PTB methods. This reflects the relative variability of reproducibility power 
scores produced by non-TB methods provides a more stable and precise performance 
across different cancer datasets. However, although non-TB methods generated robust 
performance across all datasets, the reproducibility power scores were steadily low com-
pared to PTB methods. Hence, the reproducibility performance of PTB methods were 
still favourable as it exhibited greater robustness and discriminative power of pathway 
activity. On the other hand, based on the second assessment that evaluates the robust-
ness of risk-active pathways and genes predicted by seven pathway activity inference 
methods, it was complicated to conclude the robustness performances as there was no 
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outstanding methods that successfully delivered favourable outcomes in both the num-
ber of identified informative pathway markers and gene markers. However, PTB meth-
ods appear to outperform non-TB methods for the number of identified informative 
pathway markers across datasets. Specifically, sDRW performed well across five cancer 
datasets, while GSVA constantly detected lowest figures as shown in Fig. 3. The relia-
ble performance of PTB methods could be attributed to the efficient pathway scoring 
incorporated in classification. The pathway activity inference schemes proposed by PTB 
methods effectively capture the biological interpretation of gene expression in functional 
categories and predicted reproducible pathway markers across datasets.

Furthermore, according to the robustness evaluations of predicted risk genes, there 
was a disparate result obtained from the assessment. In particular, non-TB methods 
successfully outperformed PTB methods across four datasets, which include lung can-
cer and stomach cancer datasets identified by GSVA, as well as liver cancer and breast 
cancer datasets detected by COMBINER. Whereas kidney cancer and thyroid can-
cer datasets were effectively identified by PTB method (e-DRW). The possible reason 
could be due to the pathway size utilised in the experiments. GSVA, COMBINER, and 
e-DRW each employed larger pathway sample size (see Table  4) compared to other 
methods. Not surprisingly, having more complete biological pathway information not 
only increases the method’s performance, but also enables a more accurate prediction of 
informative biomarkers for clinical utility towards prediction and treatment [13, 16, 37]. 
In contrast, PAC consistently produced the lowest number of identified informative gene 
markers across majority of the datasets. This is possibly due to the ignorance of struc-
ture information embedded in the pathway network. PAC disregards member genes that 
have consistent, but low-level expression changes under different phenotypes [38]. Thus, 
a flexible pathway topological information mining method is critical to produce reliable 
pathways and biomarkers for further diagnosis and prognosis applications.

To choose the best pathway activity inference methods, some guidance is provided to 
researchers based on the extensive assessments and comparisons. PTB methods provide 
better ability in generating greater reproducibility power and identify potential path-
way markers. It was recommended for applications as the topology-based approach not 
only reflects the interactions between genes at the network level, but also considers the 
perturbation of high connectivity hub genes on pathways [39]. Besides, the scoring of 
pathway activity adopted by PTB methods effectively disregards genes with little topo-
logical importance to compute the activity of the pathways or subnetworks. Conversely, 
the results of non-TB methods are not very suitable in the context of pathway analysis. 
Although it demonstrates the capabilities in the identification of potential gene markers, 
the performance was highly dependent on the coverage of human pathway information. 
Non-TB methods treated all genes in the pathway equally and consider rather simple 
summary of expression values of the member genes for pathway activity inference [38].

Conclusion
In this study, robustness evaluations of pathway activity inference methods are pre-
sented based on two assessments: (i) robustness of pathway activity based on repro-
ducibility power, and (ii) robustness of predicted risk-active pathways and genes based 
on number of identified informative cancer markers. Reproducibility power metric 
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quantifies the robustness of pathway activities, which aids in assessing the strength of 
different pathway analysis methods in discriminating between tumuor and normal sam-
ples or between different cancers. Besides, the number of identified informative pathway 
markers and gene markers assess the ability of pathway activity inference methods in 
identifying potential cancer markers that aid in future predictive and personalised medi-
cine. Experimental results illustrated the feasibility of Pathway Topology-Based meth-
ods consistently produce larger reproducibility power and robust informative cancer 
markers across majority of the gene expression datasets. This could be attributed to the 
construction of pathway topology, gene-weighting based on topological importance, as 
well as the pathway scoring method employed by different topology-based approaches. 
While the current work assesses the robustness of pathway activity inference methods 
on gene expression data may be too narrow to accurately reflect the broad pool of path-
way analysis methods proposed by other researchers. Therefore, this study presented 
possible variability of enrichment results that assesses the inherent capability of different 
pathway analysis methods.

Materials and methods
This section presents the materials and methods used to evaluate the performance of 
pathway activity inference methods. The mathematical basis and concepts of each of 
the seven tested methods are described shortly. Detailed descriptions of these methods 
can be found in the original articles. Four of these Gene Set Analysis (Non-TB) methods 
include: COMBINER [31], PAC [16], PLAGE [32], and GSVA [33]. The other three PTB 
methods consist of: DRW [13], sDRW [34], and e-DRW [35]. Moreover, the pre-process-
ing of gene expression data and pathway data is presented in detail. The statistical meas-
ures used for performance evaluations are also provided in this section.

Non‑TB pathway activity inference methods

COMBINER

COMBINER (COre Module Biomarker Identification with Network ExploRation) is pro-
posed as a pathway-based biomarker identification framework to identify core modules 
that are consistently differentially expressed as a whole in the data cohorts of interest 
[31]. It adopts Core Module Inference (CMI) method by considering CORGs from both 
up- and downregulation genes with the most discriminative power to infer consistent 
pathway activities and identify driver genes within the core module. In COMBINER, 
given a pathway Pj consists of DEGs {g1, g2,…, gnj} ranked by descending order of their 
absolute t-scores with their normalised expression values, the pathway activity can be 
defined as:

where a(Pj) is the pathway activity of differential expression genes with p-value ≤ 0.05 in 
a two-tailed t-test, Z(gi) is the normalised expression values of gene gi, sign(Tscore(gi)) is 
the sign function of the the t-test statistics of gene gi from a two-tailed t-test with equal 
variances. j denotes the number of differential expression genes in the pathway where 

(1)a Pj =
nj
i=1

Z gi ∗ sign Tscore gi

j
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the markers are limited to maximum size of 20 genes. The above calculations of pathway 
activity were implemented in R.

PAC

PAC (Pathway Activity inference using Condition-responsive genes) is proposed as a 
gene expression-based diagnostic by incorporating pathway information in a condition-
specific manner. It is motivated by the fact that only a subset of genes in a pathway are 
DEGs rather than the whole [10]. Thus, the markers are encoded as subset of “condition-
responsive genes (CORGs)” in the pathway whose combined expression delivers optimal 
discriminative power for the disease phenotype [16]. To construct the CORGs set, t-test 
scores are computed to rank the member genes in ascending order if the average t-score 
among all member genes was negative, and in descending order otherwise. Within each 
pathway Pj, the pathway activities a(Pj) of CORGs are defined as:

where Z(gij) is the normalised z-transformed score which for each gene gi have mean 
µi = 0 and standard deviation σ i = 1 over all samples gj. k refers to number of member 
genes in the CORGs set, which is used in the denominator to stabilise the variance of 
the mean. The PAC’s pathway activity matrix was calculated by utilising the gsva ‘zscore’ 
function in GSVA library of R.

PLAGE

PLAGE (Pathway Level Analysis of Gene Expression) is a pathway-based method that 
works by transforming gene expression levels into pathway activity levels based on SVD 
strategy [32]. It begins by standardising gene expression profiles into z-scores over the 
samples and then calculates the SVD on the z-scores of the genes in the gene set. For 
each pathway Pj, the pathway activity a(Pj) at a single pathway-level value can be com-
puted by:

where U is a m x n matrix, D is a n x n diagonal matrix, and V is also a n x n matrix. The 
columns of U are known as the left singular vectors that used as an eigensample. The 
rows of V contain the elements of the right singular vectors that used as an eigengene. 
The coefficients of the first right-singular vector (first column of V) are taken as the gene 
set summaries (pathway activities) of expression over the samples. This is aimed to cap-
ture both pathway activity at the level of a single sample and the component that con-
tributed most to the total variance. Practically, gsva ‘plage’ function in GSVA library of R 
was utilised for implementation.

GSVA

GSVA (Gene Set Variation Analysis) is a non-parametric and unsupervised Gene Set 
Enrichment (GSE) method that estimates the variation of pathway activity over a sample 
population [33]. It works analogously by calculating sample-wise gene set enrichment 
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scores as a function of genes inside and outside the gene set to a competitive gene set 
test. It then further estimates the variation of gene set enrichment over the samples 
independently of any class label by using Kolmogorov Smirnov (KS)-like random sta-
tistic. This method can be conceptualised as a transformation of coordinate systems for 
gene expression data, from genes to gene sets. The GSVA pathway enrichment scores are 
calculated by:

where ES+jk and ES−jk are the largest positive and negative random walk deviations from 
zero, respectively, for sample j and gene set k. The above calculation procedures were 
implemented using gsva function by default in GSVA library of R.

TB pathway activity inference methods

DRW

DRW (Directed Random Walk) is aimed to capture the topological information embed-
ded in global directed pathway network and infer a robust pathway activity for cancer 
classification. It considers directed edges in the network and utilises the strategy of 
weighting genes based on t-test statistics score to enhance the reproducibility of path-
way activities. DRW starts random walker on a source node s (or a set of source nodes 
simultaneously). The walker transitions from its current node to a randomly chosen 
neighbour (based on edge weights) at each time step, or returns to source node s with 
probability r. DRW with restart is defined as:

where Wt is a vector which the i−th node holds the probability of being at node i at time, 
t. M is the row-normalised adjacency matrix of the graph, G. Random walk is initiated 
by assigning the initial probability vector, W0 to each node whose initial probability was 
0. W0 is an absolute t-test score, which will be further normalised into a unit vector 
[5]. The restart probability r was set as 0.7. Wt converges to a unique steady state in the 
presence of the ground node. This was obtained by performing the iteration until the 
normalisation fall between Wt and Wt+1 <  10–10. For each pathway, those genes that are 
differentially expressed with p-values less than 0.05 are selected to construct the path-
way activity [13]. The pathway activity score of pathway Pj is calculated as follows:

where a(Pj) is the pathway activity (or expression value vector), W∞ is the output of 
genes (or weight vector), Tscore(gi) is the t-test statistics of gene gi from a two-tailed 
t-test with equal variances on expression values between two classes, z(gi) is normalised 
value vector of gene gi across all the dataset, and sign() is the sign function that returns 
(+ 1) for positive numbers and (-1) for negative numbers. The above same procedures 
were implemented in R as described in the original article.
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sDRW

sDRW (significant Directed Random Walk) is aimed to improve the accuracy and 
sensitivity of cancerous gene predictions in conventional DRW. It improves DRW by 
tuning the parameter selection in formula (5) in order to identify the optimal restart 
probability for selected cancer datasets. An additional weight variable has also been 
added to enhance the connectivity between nodes for cancer classification. sDRW 
developed by Seah et. al. [34] starts random walker from a single node. At every time 
step, the walker transitions from its current node to a randomly selected neighbour 
(based on edge weights) or goes back to previous node with probability r. r can vary 
according to the datasets due to the attraction of nodes [34]. sDRW can be defined as:

where, Wt is a vector of i node which is transmitted from i-1 node while M is an adja-
cency matrix developed from the original directed graph (with edges) to a more strongly 
connected directed graph. N1 and N2 represent the weight of two connected nodes 
implemented in the equation. sDRW calculates significant pathway activities from path-
way expression profiles based on formula (6) for cancer classification. The above similar 
procedures were computed in R based on the original article, except for the restart prob-
ability parameter r which was set to 0.7 as the classification performance did not change 
much with the change in the value of restart probability r [13].

e‑DRW

e-DRW (entropy-based Directed Random Walk) is aimed to enhance the accuracy 
of conventional DRW by introducing a more robust gene weighting strategy and 
incorporates entropy metric to perform random walk process. It enhances the cover-
age of human pathway information by constructing two input networks (i.e. KEGG 
and NCI-PID networks) for efficient pathway activity inference. The proposed gene 
weighting method utilises the combination of Point Biserial Correlation (PBC) coeffi-
cients and t-test values to run the algorithm. In e-DRW, a random walker begins from 
a single node and transits from its current node either to another randomly selected 
neighbour (forward) node based on the edge weights or returns to the previous node 
with probability r. r was set between 0.1–0.9 to discover the best restart probability 
correspond to each cancer datasets. e-DRW on KEGG and NCI-PID networks can be 
defined as:

where Ht represents transition probability of ith node which is transmitted from i-1 node. 
H0 is the initial entropy probability vector and ET is an adjacency matrix developed 
from the original directed graph (with edges) and Ht+1 denotes the final entropy prob-
ability vector. This was obtained by performing the iteration until the normalisation fall 
between Ht and Ht+1 <  10–10. To infer the activity score for each pathway, e-DRW path-
way activity inference method is computed as follows:

(7)Wt+1 = (1− r)M

(

N1 + N2

2

)

+ rWt

(8)Ht+1 = (1− r)ETHt + rH0
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where a(Pj) is the pathway activity of pathway Pj, H∞ is the output of genes (or weight 
vector), PCTscore(gi) is the summation of PBC between gene gi and class label (normal 
and tumour samples), and t-test statistics of gene gi from a two-tailed t-test with equal 
variances on expression values between two classes. z(gi) is normalised value vector of 
gene gi across all the dataset, and H∞

(

1−gi

sum(1−gi)

)

 is the entropy weight of gene gi. Prac-

tically, the eDRW library of R was applied for pathway activity calculation and the restart 
probability parameter r was set to 0.7 as opposed to original parameter value settings 
(0.1–0.9) for comparability with other PTB methods.

Gene expression data

Six gene expression datasets were obtained from the National Centre for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus (GEO) database, which are lung 
[40], stomach [41], liver [42], kidney [43], thyroid [44], and breast [45] cancer datasets. 
The collected raw gene expression datasets undergo data pre-processing based on 
the method proposed by Hui et. al. to remove missing values, noisy data, incomplete 
data, and inconsistent data for performance evaluations of pathway activity inference 
methods [46]. The data pre-processing method consists of three phases: (i) data clean-
ing and imputation, (ii) normalisation of gene expression data, and (iii) data filtering. 
In the first phase, data cleaning involves removing the unwanted and empty values of 
attributes in raw gene expression datasets. Then, mean imputation was implemented 
to fill in the rows with incomplete values of attributes. Before proceeding to the next 
phase, data rearrangement was run through to prepare an organised data used for 
pathway activity inference. In the second phase, data normalisation was carried out 
using Gene Pattern to tune the gene expression data into a proper format suitable for 
analysis [47]. Data filtering was further conducted in the last phase to remove redun-
dant features and reduce the size of the gene expression datasets. Table 3 shows the 
details of the selected gene expression datasets after pre-processing.
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Table 3 Gene expression datasets after pre-processing [46]

Cancer dataset GEO ID Platform ID Number of 
cancerous 
sample

Number of 
normal sample

Number of genes

Raw Cleaned

Lung GSE10072 GPL96 58 49 22,283 12,986

Stomach GSE13911 GPL570 38 31 54,675 12,419

Liver GSE17856 GPL6480 43 44 25,075 13,802

Kidney GSE15641 GPL96 69 23 22,283 11,593

Thyroid GSE33630 GPL570 60 45 54,675 12,986

Breast GSE3494 GPL96 60 176 22,283 12,986
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Pathway data

Real pathway data available from public resources were used in this work. For Non-TB 
methods, the gene sets were obtained from Molecular Signature Database (MSigDB) C2 
collection [48]. The curated gene sets are divided into two subcollections: Chemical and 
genetic perturbations (CGP) and Canonical pathways (CP). To integrate gene sets into 
pathway activity inference methods, msigdbr [49] software R-package was applied to 
import the human pathway data and convert the gene sets into simple lists of genes. On the 
other hand, PTB methods require specific pathway topology inputs for enrichment analy-
ses. Thus, KEGG and NCI-PID pathway data were collected from their respective pathway 
databases to construct directed pathway networks for analysis. NetPathMiner [50] software 
R-package was utilised to transform KEGG pathways into KEGG network. Subsequently, 
PaxtoolsR [51] software R-package was applied to convert PID pathways into PID network. 
The constructed directed pathway networks consist of nodes and edges where each node 
in the graph represented a gene, while each directed edge represented how the genes inter-
acted and controlled each other. The directions of the edges were determined by the type 
of interaction between the two genes found in both KEGG and PID pathway databases. 
Table  4 presents the pathway data used by each pathway activity inference methods for 
evaluation analysis.

Statistical measures

Reproducibility power

Reproducibility power metric was proposed by Yang et. al. [31] to measure the consistency 
or the degree of correlations of pathway activities between different datasets for assessing 
the robustness of pathway activity inference methods. Based on the principle proposed, the 
higher the reproducibility power, the stronger the robustness and discriminative power of 
pathway activity [16, 22]. The reproducibility power is shown as below:

where tscore(P) is the t-scores of P from a two-tailed T-test with equal variances on path-
way activities between two classes, P i

T
 is the i-th pathway activity (ranked by absolute 

(10)Cscore(N ) =
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N

N
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Table 4 Pathway data used for each method in benchmark analysis

Method Number of pathway 
input

Pathway database Directed pathway network

COMBINER 624 MsigDB –

PAC 472 MsigDB –

PLAGE 400 MsigDB –

GSVA 3225 MsigDB –

DRW 300 KEGG 6618 nodes and 111,730 edges

sDRW 300 KEGG 6618 nodes and 111,730 edges

e-DRW 536 328 KEGG, 208 NCI-PID KEGG: 6667 nodes and 116,773 
edges, PID: 2817 nodes and 39,289 
edges
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t-scores in descending order) in the training dataset, P i
V

 is its corresponding pathway 
activity in the test dataset, and N is the number of selected pathways.

Number of identified informative pathways and genes

Number of identified informative pathway markers and gene markers are statistical 
measures proposed by Nies et. al. [52] to assess the ability of pathway activity inference 
methods in identifying potential cancer markers. PubMed text data mining automa-
tion was developed as the text mining technique to extract potential prognostic markers 
from scientific articles in PubMed database. This technique explores the relationships 
between pathways, genes, and cancers (pathway-disease and gene-disease relationships) 
based on Natural Language Processing (NLP). The basic concept of PubMed text data 
mining automation takes a list of genes (or pathways) as input and matches the keywords 
defined to PubMed database. The main keyword terms to be extracted include "pathway 
name", "gene name", "prognostic", and "cancer types" [52]. This concept was employed 
to illustrate the pathways and genes that exhibit biological traits related to cancers [52]. 
The keyword cancer markers specific to each cancer type include “Lung Cancer”, “Gas-
tric Cancer”, “Hepatocellular Cancer”, “Renal Cell Cancer”, “Thyroid Cancer”, and “Breast 
Cancer”. During the mining process, disease-related text data in the PubMed database 
was optimised while the text data that are not related to biomarkers (or pathways) and 
diseases were ignored. Thus, PubMed identifiers (PMIDs) were acquired as a proof to 

Fig. 5 PubMed text data mining automation based on pathways and genes [52]



Page 18 of 24Hui et al. BMC Bioinformatics           (2024) 25:23 

determine the connection between pathways, genes, and diseases [53, 54]. The total 
number of pathway markers and gene markers with identified PMIDs were calculated 
to reflect the robustness of risk-active pathways and genes predicted by each pathway 
activity inference methods. Figure  5 illustrates the process flow of PubMed text data 
mining [52].

In the keywords matching process, this technique utilises easyPubMed R package to 
retrieve data from PubMed database. It automatically queries PubMed records from the 
Entrez History Server for an easy and smooth programmatic access [55]. If the genes or 
pathways do not match the keywords with the PubMed database, the mining process will 
continue to look for the following genes or pathways [52]. The entire process is repeated 
until each and every gene and pathway is verified and validated.

Comparative approach

This section introduces two comparative assessments for performance evaluations of 
pathway activity inference methods. The first assessment is aimed to investigate the 
robustness of different pathway activity inference methods based on reproducibility 
power score. The second assessment focuses on evaluating the ability of the seven tested 
methods in identifying potential pathway markers and gene markers based on number 
of identified informative pathways and genes.

Assessment 1: Robustness of pathway activity

To evaluate different pathway activity inference methods, reproducibility power met-
ric was utilised to evaluate the robustness of pathway activities generated from each 
method. This metric measures the discriminative power and robustness between the 
pathway activities in training set and the pathway activities in test set [9]. To calculate 
the reproducibility power of pathway activity, the samples in normalised gene expression 
data begin by randomly divided into five subsets of equal size. Four of these subsets were 
used as the train set, whereas the remaining subset was used as the test set. Then, the 
train set, test set, and pathway data (either in the form of GS or PT) are supplied for the 
implementation of pathway activity inference methods. The enrichment analysis pro-
duces train set and test set pathway expression profiles for each experiment. After that, 
the reproducibility power of pathway activities were computed based on formula (10). 
Each subset was used in turn as the test set to evaluate the reproducibility. For unbiased 
evaluation, these experiments were repeated for 100 random partitions for the entire 
dataset. The mean reproducibility power (Cscore) over 500 experiments were reported 
as the overall performance [13]. Figure  6 shows the workflow of evaluating pathway 
activity inference methods based on the robustness of pathway activity.

Assessment 2: robustness of predicted risk‑active pathways and genes

To evaluate the robustness of risk-active pathways and genes predicted by each 
method, normalised gene expression data were first split into three subsets whereby 
60% of the datasets were used as the training set, 20% used as the validation sets, and 
another 20% used as the test sets. The three subsets and the prepared pathway data 
were then utilised for the implementation of pathway activity inference methods. The 
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enrichment analysis produces pathway expression profiles of training set, validation 
set, and test set ranked by absolute t-test statistics in descending order. Then, within-
dataset experiments proposed by Tay et. al. [35] were implemented for the seven 
tested methods across six cancer datasets. The R caret software package was applied 
to obtain the classification accuracy. Three classifiers were selected to evaluate the 
classification performance, which include Naïve Bayes (NB), K-Nearest Neighbours 
(KNN), and Logistic Regression (LR). The top 50 pathways in the training set were 
used as candidate features to build the model. Subsequently, pathways were added 
sequentially to train the classification model. The performances of the classifiers were 
measured based on accuracy calculated from confusion matrix. The added pathway 
marker was maintained in the feature set if the AUC increased, but was removed if 
otherwise [13]. This process was repeated for the top 50 pathway markers to opti-
mise the classifier and to yield the best feature set. The performance of the optimised 

Fig. 6 Workflow of evaluating pathway activity inference methods based on the robustness of pathway 
activity
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classifier was evaluated on the test set using pathway markers from the best feature 
set. This process was repeated 10 times to ensure unbiased evaluation and to estimate 
the variation of the accuracy. As the final step, the mean accuracy across 10 classifiers 
was estimated to represent the overall performance of the classification method.

After completing the classification evaluations for the seven tested methods, the 
classifier that produces the highest mean accuracy across majority of the cancer data-
sets for each method was chosen for further evaluations of predicted pathways and 

Fig. 7 Workflow of evaluating pathway activity inference methods based on the robustness of predicted 
risk-active pathways and genes
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genes. Top-k frequently selected pathway markers across 10 experiments were cho-
sen for literature validation based on PubMed text data mining. The process flow of 
evaluating the risk-active pathways and genes predicted by pathway activity inference 
methods is shown in Fig. 5. The total number of identified informative pathway mark-
ers and gene markers were calculated to statistically measure the robustness of pre-
diction results as well as to assess their ability in identifying potential cancer markers. 
Figure  7 presents the workflow of evaluating pathway activity inference methods 
based on the robustness of predicted risk-active pathways and genes.
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