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Abstract 

Background: Metabolic syndrome (MetS) is a cluster of metabolic abnormalities 
(including obesity, insulin resistance, hypertension, and dyslipidemia), which can be 
used to identify at‑risk populations for diabetes and cardiovascular diseases, the main 
causes of morbidity and mortality worldwide. The achievement of a simple approach 
for diagnosing MetS without needing biochemical tests is so valuable. The present 
study aimed to predict MetS using non‑invasive features based on a successful random 
forest learning algorithm. Also, to deal with the problem of data imbalance that natu‑
rally exists in this type of data, the effect of two different data balancing approaches, 
including the Synthetic Minority Over‑sampling Technique (SMOTE) and Random Split‑
ting data balancing (SplitBal), on model performance is investigated.

Results: The most important determinant for MetS prediction was waist circumfer‑
ence. Applying a random forest learning algorithm to imbalanced data, the trained 
models reach 86.9% and 79.4% accuracies and 37.1% and 38.2% sensitivities in men 
and women, respectively. However, by applying the SplitBal data balancing technique, 
the best results were obtained, and despite that the accuracy of the trained models 
decreased by 7.8% and 11.3%, but their sensitivity improved significantly to 82.3% 
and 73.7% in men and women, respectively.

Conclusions: The random forest learning method, along with data balancing tech‑
niques, especially SplitBal, could create MetS prediction models with promising results 
that can be applied as a useful prognostic tool in health screening programs.

Keywords: Metabolic syndrome, Machine learning, Random forest, Data balancing, 
SMOTE, SplitBal

Background
Metabolic syndrome (MetS), a public health problem worldwide, is a condition asso-
ciated with multiple metabolic abnormalities (including obesity, hyperglycemia, 

*Correspondence:   
hoseinzade.mahdie@gmail.com

1 School of Public Health, Bam 
University of Medical Sciences, 
Bam, Iran
2 Research Center for Food 
Hygiene and Safety, School 
of Public Health, Shahid 
Sadoughi University of Medical 
Sciences, Yazd, Iran
3 Present Address: Department 
of Nutrition, School of Public 
Health, Shahid Sadoughi 
University of Medical Sciences, 
Yazd, Iran
4 Computer Engineering 
Department, Shahid Bahonar 
University of Kerman, Kerman, 
Iran
5 Yazd Cardiovascular Research 
Centre, Non‑Communicable 
Diseases Research Institute, 
Shahid Sadoughi University 
of Medical Sciences, Yazd, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05633-9&domain=pdf


Page 2 of 14Mohseni‑Takalloo et al. BMC Bioinformatics           (2024) 25:18 

hypertension, and dyslipidemia), which can be used to identify at-risk populations for 
numerous non-communicable diseases, including cardiovascular diseases, type 2 dia-
betes, and stroke [1]. The economic burden of healthcare, social costs, and lost pro-
ductivity associated with these diseases are trillions of dollars per year [2]. Therefore, 
it is very valuable to achieve a simple and effective approach to diagnosing MetS using 
non-invasive features without requiring biochemical tests [3].

One of the prominent topics in public health and preventive medicine is to pre-
dict diseases, such as MetS, with acceptable accuracy using existing datasets and to 
perform appropriate interventions [4]. Compared to classical approaches (e.g., logis-
tic regression), some recent machine learning algorithms have better performance in 
MetS prediction [5]. In fact, these algorithms consider the nonlinearity and complex 
relationships between multiple risk factors and discover unknown patterns, making 
the diagnostic process more objective and reliable [6]. One of the machine learning 
methods that yielded promising results in disease prediction is the Random Forest 
(RF) algorithm, a method that develops multiple decision trees (predictors) based on 
a different combination of data features and shows the importance of these features 
used in its predictions [5]. It has been shown that random forest is one of the best 
machine-learning methods for predicting metabolic syndrome [3, 5, 7–10]. Also, the 
random forest has performed better than traditional models such as logistic regres-
sion in predicting metabolic syndrome [5, 8]. The accuracies of MetS prediction based 
on random forest using non-invasive features in two previous studies were 78.8% and 
83.8%, respectively, depending on the population characteristics and input features 
[5, 11].

However, one of the main challenges that affect the performance of machine learn-
ing methods (including random forest) is data imbalance, a problem commonly found 
in medical science data [12]. Generally, in a population, the number of healthy people 
is greater than the number of patients, which usually encourages or biases the learn-
ing process to be done mostly based on the larger class, i.e., healthy subjects, while the 
smaller class might be ignored. Consequently, the learned model might have promis-
ing performance in classifying healthy subjects, but its performance is not acceptable 
in diagnosing disease in patients [12], which has higher importance. To deal with this 
common challenge, data balancing approaches are used as over-sampling or under-
sampling techniques. Although the purpose of both approaches is to balance the data 
so that different classes contain a similar amount of data, they use different points of 
view. Over-sampling is the process that increases the number of data samples in the 
minority class either randomly through the repetition of existing data or by gener-
ating new samples. On the other side, under-sampling removes some samples from 
the majority class randomly or divides the majority class into several smaller ones 
based on different criteria [13]. In this regard, previous studies have shown that using 
over-sampling approaches can improve the performance of machine learning models 
in predicting MetS [5, 14].

Due to the high prevalence of MetS in our population (about 30%) [15], the present 
study aimed to (1) predict MetS using non-invasive features based on the random forest 
models and (2) investigate the effects of both over-sampling and under-sampling on the 
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prediction capabilities of the learned models, as each one has its own advantages and 
disadvantages.

Methods
Study design and population

The present cross-sectional study was performed under the framework of the baseline 
survey of two population-based cohort studies, the Shahedieh Cohort Study and the 
Yazd Health Study (YaHS), which included 19,933 adults from the Yazd Greater Area 
located in the central part of Iran. Detailed information about the design and population 
of these studies was published elsewhere [16, 17]. In brief, the YaHS study recruited 9962 
people aged 20–70 years from the urban areas of Yazd in 2014–2015, and biochemical 
assessment was done only in 3,748 persons who gave consent. Also, the Shahedieh study 
included 9971 adults aged 35–70 years from Yazd Greater Area, including Shahedieh, 
Zarch, and Ashkezar in 2016. In the current study, participants were excluded if they 
met any of the following criteria: (1) incomplete data on demographic, anthropomet-
ric, biochemical, blood pressure, physical activity, family history of diseases, smoking, or 
drug use; (2) had a history of cardiovascular disease, diabetes, hypertension, fatty liver 
disease, thyroid disease, or different types of cancer; (3) body mass index (BMI) < 18.5 
kg/m2 or BMI > 40 kg/m2; and (4) pregnancy or lactation. Finally, 5910 individuals 
(1314 from YaHS and 4596 from Shahedieh) were eligible for inclusion in our analysis. 
Informed consent was obtained from all participants, and the present study has been 
approved by the ethics committee of Shahid Sadoughi University of Medical Sciences 
(approval code: IR.SSU.SPH.REC.1399.202).

Clinical and biomedical assessment

All anthropometric indices were measured by trained investigators. Weight was 
recorded with minimum clothing using a portable digital scale (Omron BF511, Nagoya, 
Japan) with an accuracy of 0.1 kg. Height was measured in the standing position with-
out shoes while their heads, shoulders, buttocks, and heels were touching the wall, 
using a non-stretchable tape meter to the nearest centimeter. Waist circumference and 
hip circumference were measured in the standing position by non-stretch tape placed 
midway between the iliac crest and the lowest rib and over the largest part of the but-
tocks, respectively, with an accuracy of 0.5 cm. BMI was obtained by dividing weight in 
kilograms by the square of height in meters. Systolic and diastolic blood pressures were 
measured in the sitting position three times at 5-min intervals using Reichter electronic 
sphygmomanometers (Model N-Champion, Reister GMBH, Germany), which were cali-
brated regularly. The mean of the measurements was recorded as the individual’s blood 
pressure. Participants were asked to fast over the night (for 8 to 12 h), and then blood 
samples were collected from each enrollee. Glucose and lipid concentration measure-
ments were performed according to a standard laboratory protocol using Pars Azmoon 
kits and calibrated auto-analyzers [16].
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Other variables assessment

The demographic and medical history data were collected by applying a validated ques-
tionnaire containing age, gender, physical activity level, smoking status, education level, 
drug consumption, and family history of chronic diseases. Moreover, the Iranian version 
of the International Physical Activity Questionnaire (IPAQ) was used to obtain individ-
ual physical activity data (type, frequency, and time of each exercise) [18]. Finally, physi-
cal activity was reported on a metabolic equivalent per week (MET-h/wk) basis [19].

Diagnosis of metabolic syndrome

According to the National Cholesterol Education Program Adult Treatment Panel III 
(ATP III) guidelines [20], having at least three of the following criteria shows the pres-
ence of MetS: (1) waist circumference (WC) > 88 cm in women and > 102 cm in men; (2) 
fasting blood glucose (FBG) ≥ 100 mg/dl; (3) serum high-density lipoprotein cholesterol 
(HDL-C) < 50 mg/dl in women and < 40 mg/dl in men; (4) serum triglycerides (TG) ≥ 150 
mg/dl; and (5) systolic blood pressure (SBP) ≥ 130 mmHg and/or diastolic blood pres-
sure (DBP) ≥ 85 mmHg.

Dataset creation

According to the previous literature, 20 potential MetS predictors and outcome vari-
ables were extracted from the Shahedieh Cohort Study and Yazd Health Study datasets, 
including clinical and biomedical data (weight, height, BMI, WC, hip circumference 
(HC), waist-to-height ratio (WHiR), waist-to-hip ratio (WHR), SBP, DBP, TG, HDL-C, 
FBG), and demographic and medical history data (sex, age, physical activity, education 
status, smoking status, drug consumption, family history in first-degree relatives for dia-
betes and cardiovascular disease).

Data preprocessing

Figure  1 illustrates the steps of this research. After gathering the dataset, considering 
that the ranges of features’ values were different, which can affect the learning process in 
learning models, the "standard scaler" normalization method was used to make sure that 
the values of all features were in the [−1, 1] interval [21].

As mentioned before, another factor that promisingly affects the performance of pre-
diction models is data balancing. According to the data imbalance between the two 
available classes (MetS and healthy classes) in the present study and being aware of the 
negative effects of imbalanced data on the learning process, it is a good idea to investi-
gate how data balancing methods may influence the learning process.

To have a fair judgment, one has to consider both over-sampling and under-sampling 
viewpoints when balancing the data. In the present study, we have used the famous Syn-
thetic Minority Over-sampling Technique (SMOTE) method [22] from the over-sam-
pling viewpoint and the Random Splitting data balancing (SplitBal) method [23] from 
the under-sampling viewpoint. The SMOTE aims to extend the minority class by gen-
erating synthetic data samples using the neighborhood principle approach. It generates 
new samples based on combining available neighbor samples, so each generated data 
sample lies among its neighbors and has similar characteristics to them. In the SplitBal 
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method, the imbalanced dataset is balanced by randomly dividing the majority class 
data into N groups, so that the number of samples in each group is almost the same as 
the number of samples in the minority class. Then, the samples of each group from the 
majority class are merged with the samples of the minority class to create N balanced 
sub-datasets, which are used to train N separate learning models. Therefore, N separate 
models are trained, and their results are combined using an ensemble technique.

In summary, after normalizing the data using “standard scalar” the data is divided 
into a training set and a test set. Then, data balancing is done on the training set by the 
SMOTE or SplitBal method before training the model. However, the performance of 
each trained model is investigated on the test set and the unseen data during the training 
process.

Random forest method

Random forest is a supervised machine learning method that is widely used in disease 
prediction. In order to achieve high accuracy, this ensemble-based technique integrates 
multiple decision trees based on the bagging method. Each tree is designed using ran-
domly selected features from all data features and defines classification as the vote. 

Fig. 1 Flowchart of data processing for metabolic syndrome classification with RF. RF: Random Forest; 
SMOTE: Synthetic Minority Oversampling Technique; SplitBal: Random Splitting data balancing
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Finally, the data class is determined based on the most votes among all the trees in the 
forest. In the present research, the most proper values for random forest parameters 
(including m, the number of features chosen to create each decision tree, and J, the num-
ber of decision trees to be used in the forest) were determined using a grid search. In 
addition, by using a random forest, the importance of each variable in data classification 
is determined [24].

Evaluation of model performance

As mentioned before, each trained model should be evaluated on data unseen in train-
ing. The present research has applied a fivefold cross-validation method (splitting the 
dataset into 5 equal subsets: 4 subsets are considered the training set, and 1 subset forms 
the test set). Also, to increase the results’ reliability, cross-validation was repeated five 
times and the mean of all the results was reported as the performance of the model.

The performance of the models was measured using the following criteria: accuracy 
(ACC), sensitivity (Sen), specificity (Spe), Positive Prediction Value (PPV), Negative 
Prediction Value (NPV), F1-score, and receiver operating characteristic (ROC) curve. 
Considering the high importance of sensitivity over specificity in the timely diagnosis 
and treatment of disease, as well as the ultimate purpose of these models (which was to 
screen people with MetS), parameter tuning was done such that selected models had the 
highest sensitivity while maintaining acceptable accuracy. It is worth mentioning that 
the performance of the MetS prediction models was assessed before and after data bal-
ancing techniques.

Statistical analysis

All machine learning analyses were performed using the Python software package 
incorporated in the ANACONDA NAVIGATOR (version 1.00). Also, the SPSS statisti-
cal package, version 22.0, was applied for statistical analyses. Two independent t-tests 
and chi-square were used to compare the two studied groups (the MetS group and the 
healthy group). A P-value < 0.05 was considered statistically significant.

Results
Characteristics of the study population

A total of 5910 participants (58.6% men and 41.4% women) were included in the study, 
and 18.8% of men and 34.0% of women were classified as MetS according to ATP III 
criteria. In both sexes, the mean age of the healthy group was significantly lower than 
the MetS group (age: 48.6 ± 10.5 vs 51.1 ± 10.3 years in men and 46.1 ± 10.2 vs 49.7 ± 9.8 
years in women; P < 0.001). In addition, by increasing educational level, the prevalence 
of MetS decreased (P = 0.001 in men and P < 0.001 in women). Also, no significant dif-
ference was observed in the current smoking status, use of drugs, and history of diabe-
tes and cardiovascular diseases in the first-degree relatives between the two groups. The 
participant characteristics are detailed in Table 1.

The obtained results from training random forest models on this population are 
presented here from different perspectives. First, we show how different data balanc-
ing methods affect the performance of learned models in predicting MetS. Then, we 
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investigate whether they influence the importance of different features in the learned 
models. This way, one can infer how learning methods are affected by imbalanced data 
and if data balancing can improve the performance of these methods or change the 
importance of different features used by these methods.

Comparison of random forest algorithms according to different data balancing methods

To investigate the effects of data balancing methods, the performance of different 
trained models is demonstrated in Table 2. When MetS was predicted using imbal-
anced data based on random forest, although the accuracy was high in men, women, 
and the whole population (86.9%, 79.4%, and 83.6%, respectively), the sensitivity, i.e., 
the ability to distinguish patients, of the models was low (37.1%, 38.2%, and 35.5%, 
respectively). Using the SMOTE method, the accuracy of the models decreased a lit-
tle (79.1%, 67.6%, and 72.1% in men, women, and the whole population, respectively), 
but their sensitivity improved significantly (78.1%, 73.4%, and 77.6% in men, women, 
and the whole population, respectively). Applying the SplitBal technique slightly 
improved the performance of the models compared to the SMOTE, so the sensitivity 
increased by 3.8% in men and 0.3% in women.

Figure 2 displays the models’ performance based on the ROC curve. The ROC curve 
illustrates the true positive rate against the false positive rate at various threshold set-
tings to indicate the predictive ability of a binary classifier system. The average area 
under the curve was almost equal before and after using data balancing methods (0.86 
in men and 0.79 in women).

Comparison of variables’ importance in the unbalanced and balanced datasets

The importance of variables with and without data balancing techniques by sex is 
shown in Fig. 3. In all models, there were six determining features for predicting MetS 
(including WC, WHiR, WHR, SBP, DBP, and BMI). The considerable issue was that, 
by using the SMOTE technique, the discriminating power of models in determining 
important features was improved.

Table 2 Models performance in prediction of metabolic syndrome based on non‑invasive features

PPV: Positive Prediction value; NPV: Negative Prediction value; m: the number of variables to create each decision tree; J: the 
number of decision trees to be used in the forest

Data status Accuracy Sensitivity Specificity PPV NPV f1-Score ROC Model 
type & 
parameters

Imbalance data Men 86.9 37.1 96.2 65.2 89.1 47.2 0.86 J = 200, m = 6

Women 79.4 38.2 93.4 66.7 81.7 48.3 0.79 J = 200, m = 5

total 83.6 35.9 95.3 65.3 85.8 46.3 0.83 J = 200, m = 6

Balancing data 
based on SMOTE

men 79.1 78.1 79.2 41.5 95.1 54.2 0.86 J = 200, m = 4

women 67.6 73.4 65.7 42.2 88.0 53.5 0.79 J = 200, m = 4

total 72.1 77.6 70.7 39.5 92.8 52.3 0.83 J = 200, m = 4

Balancing data 
based on SplitBal

men 79.1 82.3 78.3 41.7 96.0 55.3 0.86 J = 200, m = 5

women 68.1 73.7 66.1 42.6 88.1 54.0 0.80 J = 200, m = 4

total 74.2 76.3 73.6 41.7 92.7 53.9 0.83 J = 200, m = 4
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Discussion
The results of the present study indicated that the performance of the models on 
imbalanced data was indefensible, and despite the appropriate accuracy of the 
designed models, their sensitivity was low (accuracies were 86.9% and 79.4% and sen-
sitivities were 37.1% and 38.2% in men and women, respectively). Moreover, the out-
comes confirmed that by applying data balancing techniques, especially SplitBal, the 
models’ performance improved, and despite some decrease in accuracy, sensitivity 
increased significantly (accuracies were 79.1% and 68.1% and sensitivities were 82.3% 
and 73.7% in men and women, respectively). These obtained results imply that, gener-
ally, data balancing methods can enhance the learning efficiency of the models by pre-
venting them from being biased toward a specific (or majority) class. As it is obvious 
from Table 2, the specificity is high in the model trained on imbalanced data, which 
means the model is very good at classifying healthy people (the majority class), while 

Fig. 2 MetS prediction ROC curves based on different data balancing methods by sex. A ROC curve in men 
using imbalance data; B ROC curve in women using imbalance data; C ROC curve in men using the SMOTE 
method; D ROC curve in women using the SMOTE method; E ROC curve in men using the SplitBal method; F 
ROC curve in women using the SplitBal method
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sensitivity is very low, and patients with MetS cannot be recognized successfully. 
However, this is not the issue in models trained using balanced data, which proves the 
positive impact of data balancing on the learning process.

As the prevalence of MetS has increased worldwide in recent decades, it has become 
a serious public health problem [25]. Therefore, the early diagnostic prediction of MetS 
without requiring biochemical tests can be considered a health priority. Recently, 
machine learning algorithms have made considerable progress in predicting and diag-
nosing diseases by discovering unknown patterns and relationships [26]. The present 
study applied machine learning technology (random forest) to construct MetS predic-
tion models using non-invasive variables in Iranian adults and evaluated the effect of 

Fig. 3 Feature importance in the MetS prediction model based on different data balancing methods. A 
Features importance on imbalanced data in men; B features importance on imbalanced data in women; 
C features importance based on the SMOTE method in men; D features importance based on the SMOTE 
method in women; E features importance based on the SplitBal method in men; F features importance 
based on the SplitBal method in women. BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic 
blood pressure, FH1: family history in a first‑degree relative
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data balancing techniques on the performance of the models. Due to sex-related differ-
ences in the prevalence of MetS and its risk factors, the analysis was performed on men 
and women separately [27]. Previous studies have shown that among machine learning 
methods, the random forest has one of the best performances in predicting MetS [3, 5, 
7–10]. Also, in comparison with traditional logistic regression approaches, the random 
forest can predict MetS with a 3% increase in accuracy and sensitivity [5]. In another 
study, random forest predicted MetS with 2% and 7% higher accuracy and sensitivity, 
respectively, than logistic regression [8]. The random forest method has three impor-
tant advantages: (1) a large number of decision trees are generated by randomly select-
ing samples and features. For each new sample, each of the decision trees determines the 
class of the sample (here it has MetS or not), and finally, by voting from all the trees, the 
final result of the random forest prediction is determined. (2) Those samples that are not 
used to generate forest trees can be used to determine the performance of the model, 
which reduces the prediction error. (3) This method can provide useful insight into the 
features’ importance, which can be applied to model interpretations [28]. Therefore, in 
the present study, the random forest method was used to investigate the effect of differ-
ent data-balancing techniques on the prediction of metabolic syndrome.

In fact, one of the challenges of using machine learning methods in the field of medi-
cal sciences is data imbalance, which can affect the performance of learned models 
[12]. Over-sampling and under-sampling data balancing approaches (e.g., SMOTE and 
SplitBal) can help to cope with this challenge [29]. Previously, other researchers have 
used machine learning methods to predict MetS. Kim et al. indicated that by using the 
SMOTE balancing technique, the performance of models designed with nine machine 
learning methods, including random forest, improved, so that a significant increase in 
accuracy (from 77 to 81%) and sensitivity (from 62 to 83%) was observed in the ran-
dom forest model based on demographic and anthropometric data [5]. Another study in 
Mexico using data balancing and random forest algorithms was able to achieve accepta-
ble results in predicting MetS (accuracy and sensitivity were 85% and 95%, respectively). 
In this study, biochemical data was used in addition to anthropometric, lifestyle, and 
blood pressure data [7]. Also, Vrbaski et al. predicted MetS with a sensitivity of 91% and 
a specificity of 94% using the random forest method based on low-cost and non-invasive 
variables (sex, age, body mass index, waist-to-height ratio, systolic and diastolic blood 
pressures) in an almost balanced dataset [3]. On the other hand, in the Park et al. study, 
which did not use data balancing techniques, the performance of six machine learning 
methods, including a random forest, in predicting MetS (based on age, sex, education 
level, marital status, body mass index, stress, physical activity, alcohol consumption, and 
smoking variables) was not defensible (accuracy 78% and sensitivity 36%) [11]. Previ-
ously, the Choe et al. study also showed that the performance of predictive models of 
MetS (based on non-invasive clinical data) that were designed using imbalanced data 
was not acceptable (accuracy of 78% and sensitivity of 8% in the random forest model) 
[30].

In the present study, the most important features in MetS prediction were WC, WHiR, 
WHR, SBP, DBP, and BMI in all models in both sexes. These results are aligned with 
other studies that have stated BMI, WC, WHiR, WHR, sex, and age as important non-
invasive features in predicting MetS [5, 7, 10, 11]. The difference in the results of various 
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studies can be related to the balance of the data, the studied population, and the input 
features used (including demographic, clinical, biochemical, blood pressure, genetic 
data, etc.). One noteworthy point in the present study findings was that, although the 
most important predictive features of MetS were the same in all models, the SMOTE 
technique showed more power in differentiating the importance of the features entered 
into the model. This finding is very valuable when the importance of features in predic-
tion is closer to each other.

Several strengths can be considered for the present study. First, the effect of various 
data balancing methods on the performance of predictive models was investigated. Sec-
ond, the importance of non-invasive risk factors was ranked, considering the impact of 
each factor on the prediction of MetS. Third, due to easy access to non-invasive param-
eters, the designed models could be a useful prognostic tool in routine clinical practice 
by physicians and also in personal health applications. In addition, these models can be 
applied in public health screening programs for early diagnosis of MetS, followed by lab-
oratory follow-up for a definitive diagnosis. Encouraging people with MetS to make life-
style changes can significantly reduce metabolic risk factors and prevent many chronic 
diseases such as diabetes, cancer, and cardiovascular disease in the future. However, our 
study also has some limitations. The cross-sectional framework of the study does not 
allow us to find causal relationships between MetS and its risk factors. Also, our data 
were obtained solely from Yazd province in Iran; therefore, the generalizability of the 
results is limited. Adapting and validating these models for different Iranian populations 
is necessary.

Conclusion
The present study indicated that random forest algorithms, using non-invasive features, 
could predict MetS defensively when applying data balancing methods, especially Split-
Bal (accuracies were 79.1% and 68.1% and sensitivities were 82.3% and 73.7% in men and 
women, respectively) in Iranian adults. These models can be applied for early diagno-
sis of MetS in everyday clinical practice, personal health applications, and public health 
screening programs. Also, the investigation of data balancing methods and their influ-
ence on the learning process can be used to train other successful diagnosis systems.
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