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Abstract 

Background: Long reads have gained popularity in the analysis of metagenom-
ics data. Therefore, we comprehensively assessed metagenomics classification tools 
on the species taxonomic level. We analysed kmer-based tools, mapping-based tools 
and two general-purpose long reads mappers. We evaluated more than 20 pipelines 
which use either nucleotide or protein databases and selected 13 for an exten-
sive benchmark. We prepared seven synthetic datasets to test various scenarios, 
including the presence of a host, unknown species and related species. Moreover, 
we used available sequencing data from three well-defined mock communities, 
including a dataset with abundance varying from 0.0001 to 20% and six real gut 
microbiomes.

Results: General-purpose mappers Minimap2 and Ram achieved similar or bet-
ter accuracy on most testing metrics than best-performing classification tools. They 
were up to ten times slower than the fastest kmer-based tools requiring up to four 
times less RAM. All tested tools were prone to report organisms not present in data-
sets, except CLARK-S, and they underperformed in the case of the high presence 
of the host’s genetic material. Tools which use a protein database performed worse 
than those based on a nucleotide database. Longer read lengths made classification 
easier, but due to the difference in read length distributions among species, the usage 
of only the longest reads reduced the accuracy. The comparison of real gut microbi-
ome datasets shows a similar abundance profiles for the same type of tools but dis-
cordance in the number of reported organisms and abundances between types. Most 
assessments showed the influence of database completeness on the reports.

Conclusion: The findings indicate that kmer-based tools are well-suited for rapid 
analysis of long reads data. However, when heightened accuracy is essential, mappers 
demonstrate slightly superior performance, albeit at a considerably slower pace. Never-
theless, a combination of diverse categories of tools and databases will likely be neces-
sary to analyse complex samples. Discrepancies observed among tools when applied 
to real gut datasets, as well as a reduced performance in cases where unknown species 
or a significant proportion of the host genome is present in the sample, highlight 
the need for continuous improvement of existing tools. Additionally, regular updates 
and curation of databases are important to ensure their effectiveness.
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Background
The main task in metagenomic sample analysis is determining its composition—
organisms present in the sample and their quantity. The accuracy of the final result 
depends on many factors, including contamination with other genetic material (i.e. 
host’s DNA), material isolation, sequencing preparation, and used sequencing tech-
nology and classification tools. The recent improvement in both the length and accu-
racy of long-read sequencing technologies promises a more precise analysis. The 
advent of high-throughput sequencing has enabled a detailed analysis of microbial 
communities and their hosts through metagenomics [1, 2]. Together with genetic 
material isolation, an essential component of metagenomics sequencing workflows 
is a computational method for recognising organisms in a sample. Most current 
methods are originally designed to work with short, accurate reads from second-
generation sequencing technologies. However, due to an increase in accuracy and 
throughput, long-read sequencing technologies are gaining popularity. Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technologies (ONT) are the most popular 
long-read sequencing technologies.

Detection of microbes and their abundances using sequencing technologies can be 
divided into marker gene (typically 16S rRNA) sequencing [3] and whole-metagen-
ome shotgun sequencing. Since the 16S rRNA gene consists of both conserved and 
variable regions, it is suitable for cost-effective bacteria and archaea profiling.

On the other hand, whole-metagenome shotgun sequencing covers all genomic 
information in a sample. It enables additional analyses such as binning into Metage-
nome assembled genomes (MAGs) or previously reconstructed genome sequences, 
antibiotic resistance gene profiling, and metabolic function profiling. Metagenomic 
analysis pipelines often begin by detecting and quantifying the taxa in a sample. 
When most of the genomes present in the sample are unknown, metagenomic de 
novo assembly methods (i.e. [4]) are the preferred approach. Otherwise, one can com-
pare sequenced data, mapping it to a reference database that stores genomic informa-
tion related to various taxa in FASTA format.

This work aims to analyse the performance of methods based on comparing long-
read sequencing data with a reference database. Several recent studies have proved 
the value of using long reads in the metagenomic analysis [5–7]. Although there 
are several benchmarking papers on long reads [7–10], our evaluation additionally 
includes HiFi PacBio reads, and standard long reads mappers and incorporates an 
assessment of the influence of the database, read lengths and definition of abundance 
measures on the results in simulated and real use cases. We also assessed trade-offs 
between running time and memory requirement.

We evaluated the performance of thirteen different pipelines using seven synthetic 
datasets, three datasets obtained from mock communities and six real gut microbi-
ome datasets. Some tools are based on nucleotide databases, while others need pro-
tein databases.
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Results
Tested metagenomics classification pipelines could be roughly divided into four 
groups:

1. kmer-based (Kraken2 [11], Bracken [12], Centrifuge [13], CLARK [14], CLARK-S 
[15]),

2. mapping-based (MetaMaps [16], MEGAN-LR with a nucleotide database [17], deS-
AMBA [18]) tailored for long reads,

3. general purpose long read mappers (Minimap2 [19] in alignment and mapping 
mode, Ram [20] in mapping mode),

4. and protein database-based (Kaiju [21] and MEGAN-LR with a protein database 
[17]).

To distinguish between two MEGAN-LR versions, the one which uses a protein data-
base and the one which uses a nucleotide database, we named them MEGAN-P and 
MEGAN-N, respectively. Bracken [12] is a statistical method that computes species 
abundance using taxonomy labels assigned by Kraken/Kraken2. We adapted Minimap2 
and Ram for metagenomics classifications. Mappers usually enable full alignment mode 
(calculating alignment path) and mapping mode (calculating approximate alignments). 
We assessed Minimap2 in both modes and Ram only in mapping mode.

We also have reviewed k-SLAM [22], MetaPhlAn [23], ConStrains [24], Patho-
Scope [25], KrakenUniq [26], Sigma [27], CCMetagen [28], and Gotcha [29], but they 
either crashed during the database creation or performed poorly on long-read data. 
MEGAN-LR using the DIAMOND [30] aligner and a protein database achieved worse 
results than MEGAN-LR with the LAST aligner (MEGAN-P), so we omitted it from 
the analysis. We did not evaluate web-based tools such as BugSeq [31].

There are two main requirements for classification algorithms: identifying present 
organisms using a taxonomic rank (species in this work) and evaluating their abun-
dances. Reaching these objectives highly depends on the community’s content and 
the number of reads for each organism. Therefore, using existing PacBio and ONT 
reads from isolates, we synthesised several simple to more complex communities con-
taining 3 to 50 species, varying from highly abundant to very sparse.

– Datasets ONT1, PB1, and PB4 reflect a community of bacteria without eukaryotic 
species.

– Datasets ONT2 and PB2 reflect metagenomics datasets with one or more eukary-
otic species and many bacterial species, respectively.

– Dataset PB3 reflects a community with predominantly human reads (99%) and 
two low-abundance bacterial species, reflecting what one might see in an infection 
setting.

– Datasets PB1 + NEG and PB2 represent a situation where a significant portion of 
the reads comes from an organism that is not present in the database and has no 
similar present organisms. For the PB1 + NEG dataset, we created randomized 
reads from the human genome. For the PB2 dataset, we added reads from D. mel-
anogaster and human isolate datasets.
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We also used three well-defined mock community datasets PB_Zymo (PacBio HiFi 
sequenced Zymo Gut Microbiome Standard dataset), ONT_Zymo (ONT sequenced 
Zymo Gut Microbiome Standard dataset) and PB_ATCC (PacBio HiFi sequenced ATCC 
sample). It is important to notice that while we used reads sequenced with older PacBio 
technologies for synthesised communities, mock communities were sequenced using 
Sequel 2 HiFi technology. In all tests with mock community datasets, we included PB_
Zymo, although the differences between reported and expected values were much larger 
than for the other two datasets. Due to this disproportion, we will focus more on other 
datasets in our analysis and conclusion.

Finally, we compared the tools using six real gut datasets. Three datasets are sequenced 
by ONT technologies (SRR15489009, SRR15489011 and SRR15489017) and three by 
PacBio HiFi (Sample10, Sample20 and Sample21).

The tools were tested in four areas:

1. Read level classification—how accurately can they classify each read.
2. Abundance estimation—how well can they be used to estimate the abundance of 

organisms in the sample.
3. Organism detection—how accurately can they detect organisms in a sample.
4. Computational resource usage—running time and consumption of RAM.

We focus our analysis on microbial species in all areas mentioned above apart from 
read-level classification, where we assessed tools on species and genus ranks. Accuracy 
and abundance errors were calculated only for the microbial organisms, ignoring reads 
assigned to the human.

Read‑level classification

We assessed the tools’ read-level classification accuracy on seven synthesised datasets. 
In addition to species taxonomy rank, we analysed read accuracy on genus level to eval-
uate the performances of mappers when some of the species in the sample were not pre-
sent in the database. Figure 1 shows that general purpose mappers and mapping-based 
tools outperformed others on almost all datasets and both levels. Differences between 
them and kmer-based tools varied up to 10% at species levels. The only exception was 
MEGAN-N which performed similarly to kmer-based tools. Pipelines which use a pro-
tein database underperformed significantly. As shown in Additional file  1: Table  S12, 
protein tools had much fewer true positive classification and, on average, a high num-
ber of false positive classification resulting in lower accuracy on both species and genus 
level.

Minimap2 with alignment outperformed other tools, followed by mapping-based 
tools (deSAMBA, Metamaps) and Ram. Interesting cases were ONT1 and ONT2 
datasets which contain reads of two species of the Vibrio genus that were not in data-
bases. Since there were other similar species of the Vibrio genus in the database, some 
tools, such as MEGAN-N and Minimap2 in both modes, tended to assign those reads 
to them. In contrast, other tools, such as CLARK-S and Ram, tended to leave those 
reads unassigned. Therefore, the results on the ONT1 and ONT2 datasets for these 
four tools were almost reversed when analysing genus and species levels. CLARK-S 
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and Ram had the highest accuracy when inspecting the ONT1 and ONT2 datasets at 
the species level and among the lowest when examining the dataset at the genus level. 
In contrast, Minimap2 and MEGAN-N had the highest accuracy at the genus level 
but performed worse at the species level.

Since there is an imbalance in the number of reads per species, we additionally cal-
culated the F1 score for each class (organism in the sample) separately and averaged 
them (F1 macro average). Using F1 macro average instead of accuracy shows a simi-
lar pattern for most datasets with Minimap2 (both modes) surpassing others and a 
narrower distance between mapping-based and kmer-based tools (Additional file  1: 
Fig. S1).

We further investigate the influence of read length on classification. We only present 
analysis for Minimap2 with alignment and Kraken2, the most accurate tool at the read 
level and the fastest tool respectively. As evident from Fig. 2, increasing the read length 
led to a higher classification level. However, we could not select only the longest reads 
due to different read length distributions per organism. Additional analysis on how using 
30% of longest reads impacted the results is provided in Additional file 1: Table S1.

Fig. 1 Read level classification accuracy, comparison between species and genus level classification. 
Kmer-based are represented in red, mapping-based tools are represented in blue and protein tools are 
represented in green. Plot (a) shows species-level classification for which reads are considered correctly 
classified if classified to a correct species. Plot (b) shows genus-level classification for which reads are 
considered correctly classified if classified to a correct genus. Plot (c) shows mean values for both levels. 
Results for MEGAN-N are unavailable for the PB3 dataset
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Abundance estimation

Abundance estimation is arguably the most important assessment. Tools report dif-
ferent types of abundance. Most assessed tools report relative read counts as abun-
dance. However, abundance might be calculated in different ways. Other measures 
count genomes or cells. The difference between these two is that the latter takes into 
account ploidy. The vendors of mock community samples usually report all of them. 
Here we also tested Bracken, a method that predicts genomic DNA length using read 
lengths. This is irrelevant for short-read sequencing because all reads are the same 

Fig. 2 Comparison between classification accuracy and read length. The figure shows Q1, median and Q3 
read length for true positive and false positive read classifications for each dataset. False positive read lengths 
are considered only for organisms in the database. The results shown in the figure were obtained using 
Minimap2 with alignment and Kraken
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size. However, long-read sequencing technologies produce reads whose length might 
vary greatly, especially for ONT technology.

In the analysis, we compared L1 distances between reported and declared abundances 
using relative read count, genome length and genome count. Additional file 1: Table S5 
shows the theoretical composition of Zymo and ATCC datasets.

Table  1 shows that the results are mostly consistent, considering different ways of 
abundance calculation (in detail analysis is presented in Additional file 1: Fig. S3). The 
ranking of tools by different measures slightly varies. However, it is important to note 
the difference between read counts and genome length measures. Although distances 
do not vary much for PacBio HiFi data and estimations of genomic DNA abundances are 
slightly more accurate when read counts are used, differences for ONT reads are notice-
able and adding the length of reads increases the accuracy of the prediction. The rea-
son for this behaviour might be in read distributions. While it is narrow for PacBio HiFi 
reads, it is wide and skewed for ONT reads.

Inspired by medical laboratory tests which use cell count to measure the abundance, 
we continue with relative genome count measure in the rest of the paper.

In the next test, we evaluated the tools on databases with and without the human 
genome (containing only bacterial and archaeal genomes) for datasets with a higher 

Table 1 Comparison of the total abundance estimation error between relative read count, relative 
genome length and relative genome count abundances

Data
set

Measure Kraken2 Bracken Centrifuge CLARK CLARK
-S

Metamaps MEGAN
-N

De
Samba

Minimap2 
align

Minimap2 
map

Ram Kaiju MEGAN 
-P

ONT 
Zymo

relative 
read 

count 42.2 40.9 59.1 47.5 49.3 38.9 57.2 41.6 39.7 40.3 41.6 87.1 60.0

sum of 
read 

lengths 22.2 – 35.0 25.1 27.1 20.1 36.0 23.1 19.1 19.9 22.8 70.6 49.6

relative 
genome 

count 18.9 27.1 26.6 19.5 19.2 17.5 27.2 20.3 16.5 16.9 18.6 59.1 41.6

PB 
ATCC

relative 
read 

count 26.37 23.4 26.7 19.1 18.4 18.9 – 21.8 19.0 19.2 19.1 57.9 34.9

sum of 
read 

lengths 29.04 – 30.0 22.9 22.4 22.7 – 25.4 22.9 23.0 22.9 59.1 38.2

relative 
genome 

count 25.8 20.8 26.1 21.4 21.1 21.1 – 23.4 21.4 21.6 21.5 44.8 29.2

PB 
Zymo

relative 
read 

count 91.81 92.0 92.6 91.5 82.7 90.4 – 92.3 91.0 91.4 92.2 104.8 74.4
sum of 

read 
lengths 95.75 – 96.5 95.5 87.1 94.4 – 96.2 95.0 95.5 95.6 108.6 78.9

relative 
genome 

count 110.1 106 111 109.7 93.1 108.6 – 110.7 109.1 109.9 109.6 115.7 83.5

The table shows the total abundance estimation error for mock community datasets for three definitions of relative 
abundance: (1) the percentage of reads classified to a species, (2) the percentage of genome lengths (sum of read lengths) 
classified to a species and (3) the percentage of genomes classified to a species. The total error was calculated as the L1 
distance between specific types of abundances reported by tools and the abundances declared by vendors and summed 
up across all organisms (all present and all reported). In a row, cells with values close to the best are highlighted with a 
blue background, and those close the worst are marked in red. The best and worst values are further set apart with bold 
text and a more intense hue of their corresponding background colors. Unfortunately, due to its long‑running time, results 
for MEGAN‑N are unavailable for datasets PB_Zymo and PB_ATCC. It is important to note that Bracken produces only read 
counts assigned to a taxonomic rank. Therefore, to compare it with other tools, abundances—the percentage of genomes of 
species in the sample, were calculated by normalising read counts with the average genome length of the species to which 
corresponding read counts were assigned
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percentage of the human genome. The comparison of the abundance estimation error is 
given in Table 2.

Table 2 shows that when the human reads’ percentage is lower, tools such as CLARK-
S, Ram, Metamaps, Kaiju, and MEGAN-P were unaffected by the presence of the human 
genome in the database. However, as the human genome reads’ percentage approaches 
100%, the accuracy of most tools significantly declines. Exceptions were tools which 
used protein databases, and their abundance estimation slightly changed. In the case of 
the highly represented human genome, Metamaps achieved notably better results than 
other tools. However, its error almost quadrupled. Therefore it is important for each 
experiment to prepare a database which would include all organisms (including the host) 
that might be contained in the sample.

There was no clear winner when we included the human genome in databases. Meta-
maps performed best on ONT2, Ram on PB2, and CLARK-S on PB4. Centrifuge and 
protein-based tools were significantly worse than others. It is important to note that 
Bracken significantly improved Kraken2 results for PacBio datasets.

To analyse abundance error in more detail, we separately calculated the error for spe-
cies present in the sample and for species not present in the sample but incorrectly 
reported by tools. We calculated the L1 distance between reported and expected abun-
dance in percentages. Figure 3 and Additional file 1: Fig. S2 show the results.

Minimap2 align outperformed other tools in absolute differences between abundances 
of present organisms. In most of the datasets, its mean difference was below 2%, yet, 
other tools were not far away. Tools did not achieve good results on the PB_Zymo data-
set. One of the reasons is the lack of two species in databases, Veillonella rogosae and 
Prevotella corporis, which represent more than 26% of the dataset. However, even if we 
did not consider these two species, distributions of errors for this dataset were much 
wider than in another PacBio mock community dataset, PB_ATCC (Additional file  1: 
Fig. S2).

Regarding species not present in the dataset, CLARK-S surpassed others, followed by 
MetaMaps, Ram and MEGAN-N. Minimap2 was more prone to reporting organisms 

Table 2 Comparing abundance estimation error for the database with the human genome and the 
database without the human genome

Dataset
(% 

human)
Database Kraken

2 Bracken Centrifuge CLARK CLARK-S deSAMBA Metamaps MEGAN
-N

Minimap2 
align

Minimap2 
map Ram Kaiju MEGAN

-P

ONT2
(5.78%)

human 79.8 88.3 84.0 74.5 74.7 70.8 64.6 81.8 68.2 72.5 68.7 113.3 101.5

no 
human

83.6 88.1 90.6 75.9 74.7 74.9 64.6 84.2 72.3 76.0 69.6 113.5 101.4

PB2
(20%)

human 43.7 22.5 61.5 16.3 23.2 14.1 25.8 17.6 7.8 81.4 6.4 51.5 73.9

no 
human

89.2 54.2 98.3 63.8 23.3 68.8 25.9 38.9 48.9 106.8 8.8 57.3 78.1

PB3
(99%)

human 50.1 21.3 104.8 35.5 20.8 32.0 23.7 63.7 27.8 117.7 61.6 139.5 144.6

no 
human

145.7 145.1 145.7 145.7 140.1 145.7 96.0 145.7 145.5 145.5 140.3 141.4 145.1

The table shows the total abundance estimation error for datasets PB2, PB3 and ONT2 (datasets that contain human reads) 
for all tools and two databases: a database with the human genome and a database without the human genome. The error 
was calculated as the L1 distance between abundances calculated for each tool and true abundances. In a row, cells with 
values close to the best are highlighted with a blue background, and those close the worst are marked in red. The best and 
worst values are further set apart with bold text and a more intense hue of their corresponding background colors. Each 
dataset name is followed by the percentage of human reads in that dataset in parentheses
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not present in the sample. Therefore we deem there is space for improvement in the 
postprocessing analysis (e.g. using sequence similarity threshold or EM approach similar 
to MetaMaps) or by changing parameters such as kmer length or the percentage of fil-
tered kmers.

Organism detection

In the analysis of microbial communities, it is often important to accurately detect 
present microbes. Table  3 shows how the number of true and false positive organism 
detections is related to a threshold—a minimal number of assigned reads required to 
consider an organism as detected. The table shows that kmer-based tools, Kraken2 and 
Centrifuge, often reported a huge number of species, usually an order of magnitude 
more than mapping-based tools and mappers, except the Minimap2 map. CLARK-S sur-
passed other tools for all datasets, followed by Ram and Bracken. Since we did not have 
the same mock community sequenced with the same coverage with ONT and PacBio 
HiFi reads, comparing sequencing technologies was difficult. What is evident is that 
kmer and protein-based tools reported a significantly lower number of organisms for 
mock communities sequenced by PacBio HiFi than with ONT. In comparison, mappers 
and mapping-based tools reported a similar or slightly lower number of organisms. As 
expected, increasing the threshold for most datasets decreases the number of false posi-
tive detections while retaining the same number of true positive detections. In the case 

Fig. 3 Abundance estimation error on species level—heatmap. gure 3. Abundance estimation error on 
species level—heatmap. Abundance estimation error was calculated by comparing the abundances 
calculated for each tool to the ground truth. Errors were calculated separately for species present in the 
sample (a) In-sample error L1) and for species erroneously reported by tools as present when they are absent 
from the sample (b) Out-of-sample error L1). The heatmap’s cell color intensity directly reflects the magnitude 
of the estimation error, with red indicating higher errors and blue indicating lower errors. Notably, in the 
PB_Zymo dataset, species Veillonella rogosae (taxId: 423,477) and Prevotella corporis (taxId: 28,128) account 
for 19.94% and 6.26% of the composition, respectively, but are absent from the database.”
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of very low abundance species, such as in datasets PB4 (lowest proportion of reads—
0.005%) and ONT1 (lowest proportion of reads—0.01%), PB_Zymo (lowest proportion 
of reads—0.0001%) and PB_ATCC (lowest proportion of reads—0.02%) increasing the 
threshold lowered the number of true positive detections.

Additionally, we analysed abundances and the number of correctly identified organ-
isms for those species with abundances lower than 1%. The results are presented in 
Additional file 1: Table S9 for two synthetic (ONT1 and PB4) and two mock commu-
nity datasets (PB_ATCC and PB_ZYMO). They show that there is no clear winner in the 
abundance estimation accuracy. Yet, Minimap2 align outperformed others in two out of 
four datasets. Furthermore, Kraken2 and Minimap2 recognised the most present organ-
isms in all samples except PB_Zymo, where Kraken2 correctly predicted one more.

Table 3 True positive and false positive organism detection

Data
set

(TP)

Thres 
hold Kraken2 Bracken Centrifuge CLARK CLARK-

S Metamaps MEGAN-
N deSAMBA Minimap2 

align
Minimap2 

map Ram Kaiju MEGAN
-P

ONT1
(18)

1 2162(15) 135 (14) 2365 (15) 905 (15) 51 (15) 596 (15) 547 (15) 467 (15) 428 (15) 592 (15) 127 (15) 1391 (16) 459 (16)

5 375 (14) 135 (14) 502 (14) 223 (15) 20 (15) 78 (15) 160 (15) 145 (15) 132 (14) 154 (15) 54 (15) 203 (16) 72 (16)

50 33 (14) 42 (14) 42 (14) 26 (15) 3 (14) 10 (15) 18 (14) 23 (15) 21 (14) 21 (15) 13 (15) 25 (16) 8 (15)

ONT2
(8)

1 2033 (6) 87 (6) 2318 (6) 596 (6) 62 (6) 323 (6) 216 (6) 211 (6) 170 (6) 247 (6) 102 (6) 1972 (6) 497 (6)

5 172 (6) 87 (6) 215 (6) 125 (6) 17 (6) 45 (6) 69 (6) 79 (6) 69 (6) 79 (6) 43 (6) 195 (6) 80 (5)

50 19 (6) 26 (6) 30 (6) 15 (6) 6 (6) 8 (6) 12 (6) 15 (6) 12 (6) 13 (6) 9 (6) 18 (5) 11 (5)

PB1
(8)

1 942 (8) 73 (8) 999 (8) 590 (8) 63 (8) 111 (8) 101 (8) 111 (8) 91 (8) 427 (8) 83 (8) 1491 (8) 501 (8)

5 157 (8) 73 (8) 116 (8) 124 (8) 13 (8) 22 (8) 34 (8) 40 (8) 38 (8) 50 (8) 39 (8) 219 (8) 60 (8)

50 28 (8) 31 (8) 22 (8) 23 (8) 2 (8) 4 (8) 8 (8) 7 (8) 10 (8) 11 (8) 13 (8) 17 (8) 6 (8)

PB1+
NEG
(8)

1 3035 (8) 127 (8) 2877 (8) 594 (8) 62 (8) 177 (7) 116 (8) 111 (8) 91 (8) 2467 (8) 83 (8) 1491 (8) 501 (8)

5 494 (8) 127 (8) 476 (8) 124 (8) 13 (8) 23 (7) 40 (8) 40 (8) 38 (8) 287 (8) 39 (8) 219 (8) 60 (8)

50 28 (8) 34 (8) 26 (8) 23 (8) 2 (8) 4 (7) 10 (8) 7 (8) 10 (8) 13 (8) 13 (8) 17 (8) 6 (8)

PB2
(13)

1 3005(12) 83 (12) 3337 (12) 448 (12) 42 (12) 119 (12) 218 (12) 210 (12) 108 (12) 3556 (12) 77 (12) 1212 (12) 767 (12)

5 299 (12) 83 (12) 390 (12) 68 (12) 9 (12) 16 (12) 42 (12) 38 (12) 32 (12) 617 (12) 30 (12) 83 (12) 81 (12)

50 15 (12) 18 (12) 19 (12) 9 (12) 1 (12) 4 (11) 5 (12) 8 (12) 8 (12) 25 (12) 5 (12) 6 (12) 7 (12)

PB3
(3)

1 72 (3) 4 (3) 107 (3) 29 (3) 2 (3) 10 (3) – 19 (3) 15 (3) 165 (3) 19 (3) 570 (3) 344 (3)

5 10 (3) 4 (3) 10 (3) 5 (3) 0 (3) 2 (3) – 5 (3) 5 (3) 25 (3) 5 (3) 31 (3) 39 (3)

50 0 (3) 0 (3) 0 (3) 0 (3) 0 (3) 1 (3) – 0 (3) 0 (3) 6 (3) 1 (3) 7 (3) 7 (3)

PB4
(46)

1 1603 (42) 67 (40) 1544 (41) 516 (42) 50 (40) 227 (40) 171 (41) 201 (41) 163 (41) 831 (42) 146 (41) 2338 (41) 744 (41)

5 128 (41) 67 (40) 105 (41) 101 (40) 15 (39) 39 (39) 54 (40) 67 (40) 57 (41) 73 (40) 57 (40) 216 (40) 87 (40)

50 23 (35) 27 (35) 23 (34) 14 (35) 5 (33) 13 (33) 13 (34) 23 (34) 23 (34) 21 (34) 19 (34) 11 (31) 10 (33)

ONT 
Zymo
(10)

1 3216 (8) 106 (8) 3441 (8) 687 (8) 36 (8) 488 (8) 303 (8) 130 (8) 90 (8) 121 (8) 59 (8) 2729 (8) 855 (8)

5 309 (8) 106 (8) 336 (8) 102 (8) 12 (8) 21 (8) 38 (8) 28 (8) 26 (8) 29 (8) 23 (8) 224 (8) 107 (8)

50 20 (8) 25 (8) 19 (8) 13 (8) 3 (8) 3 (8) 8 (8) 5 (8) 4 (8) 4 (8) 7 (8) 25 (8) 10 (8)

PB 
ATCC
(20)

1 99 (18) 28 (17) 48 (18) 52 (18) 9 (18) 10 (18) – 103 (18) 28 (18) 32 (18) 25 (18) 75 (19) 74 (18)

5 38 (17) 28 (17) 20 (17) 11 (17) 4 (17) 6 (17) – 46 (17) 13 (17) 15 (17) 12 (17) 25 (17) 13 (17)

50 10 (14) 20 (15) 5 (14) 1 (14) 1 (14) 2 (14) – 13 (14) 2 (14) 2 (14) 2 (14) 5 (13) 2 (13)

PB 
Zymo
(17)

1 517 (13) 91 (11) 782 (12) 213 (12) 38 (12) 60 (12) – 183 (12) 93 (12) 120 (12) 85 (12) 367 (12) 173 (12)

5 140 (11) 91 (11) 178 (12) 111 (11) 26 (11) 44 (11) – 106 (11) 60 (11) 70 (11) 53 (11) 113 (11) 48 (11)

50 31 (10) 33 (10) 37 (10) 31 (10) 11 (10) 18 (10) – 34 (10) 26 (10) 28 (10) 23 (10) 39 (10) 15 (10)

The table shows true and false positive organism detections for three different thresholds: 1, 10 and 50. A threshold 
represents the number of reads that need to be assigned to that organism to consider it present in the sample. The data is 
presented as the number of false‑positive detections (organisms incorrectly reported as present), followed by the number 
of true positive detections in parentheses (organisms correctly reported as present). Each dataset name is followed by the 
number of species in that dataset in parentheses. Results for MEGAN‑N are unavailable for datasets PB3, PB_Zyme and 
PB_ATCC 
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Real data without ground truth

We also compared pipelines on six real gut microbiome datasets, for which the ground 
truth was unknown. We compared tools in two ways, with the results viewed as vec-
tors. Firstly, a distance matrix between the tool results was calculated, and a hierarchi-
cal clustering algorithm was applied. Secondly, a PCA algorithm was performed on 
the tools’ outputs, obtaining the two most significant components. The results of both 
analyses for datasets Sample10, Sample20, Sample21, SRR15489009, SRR15489011 and 
SRR15489017 are shown in Fig. 4.

From Fig. 4, it can be seen that kmer-based tools such as Kraken2, Bracken and Cen-
trifuge performed similarly. Clark was very close for most samples. While for PacBio 
HiFi datasets, mappers Minimap2 and Ram, and Metamaps performed similarly, for 

Fig. 4. 2D PCA and dendrograms for real datasets. Abundance estimation data for each tool is viewed as a 
vector, with components being abundance estimations for each organism. The data was transformed using 
PCA, and the two most significant components were plotted. Hierarchical clustering was also performed on 
initial vectors. The Figure displays 2D PCA plots and hierarchical clustering dendrograms for all real datasets. 
Data for MEGAN-N is unavailable on all datasets due to dataset sizes. Data for MEGAN-P is unavailable on 
datasets SRR15489009 and SRR15489017
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ONT datasets Ram and Metamaps performed differently than Minimap2 tools. deSA-
MBA was usually somewhere in between these kmer-based and mapping-based tools 
but usually closer to kmer-based tools. CLARK-S, Kaiju and MEGAN-P were far from 
other tools.

We analysed the ten most abundant species for each pipeline for the SRR15489009 
(PacBio) dataset to better understand the differences between pipelines. Results are pre-
sented in Additional file 1: Table S11. Here, we saw a significant difference in content 
between protein and nucleotide databases. Although belonging to the core [32] of the 
human gut, Lachnospiraceae bacterium species are not found in the protein database. 
It is important to note that CLARK and CLARK-S did not recognise it, although they 
use the nucleotide database, which contains them. Protein database does not contain 
another prevalent [33] human gut bacteria—Eubacterium rectale. Furthermore, while 
mappers and all mapping-based tools recognised it (average abundance of 5%), none 
of the kmer-based tools did the same. Other important human gut species, such as 
Prevottela copri [34] and Ruminococcus torques [35], were not present in the NCBI-NT 
database.

During the analysis of the SRR15489009 (PacBio) dataset’s results, we noticed signifi-
cant discordance in abundances for Faecalibacterium prausnitzii [36] between tools. 
While kmer-based tools’ abundances were 12–14% (CLARK-S with 25% is an outlier), 
most mappers and mapping base tools’ abundances were 17%-18%. Kaiju and MEGAN-
P report 11% and 19%, respectively.

A further interesting question for real gut datasets is the actual number of species 
present in the sample. This depends on the coverage. However, the total read length for 
PacBio HiFi and ONT datasets is similar, so we compared the reported results. Addi-
tional file 1: Table S3 shows the percentage of reads classified for all datasets and tools. 
The least number of classified reads were for three ONT gut samples, where best-per-
forming tools rarely classified above 50% of reads. The numbers for PacBio samples 
were even above 80% for some tools. This might be because of the higher error rate and 
shorter read length of ONT data. Although there is a difference between the PacBio 
HiFi datasets (PB_Zymo and PB_ATCC), it is much smaller. The remaining 20% of 
unclassified reads might be explained by missing species in databases (Additional file 1: 
Table S10).

While Additional file  1: Table  S4 shows the number of detected species for each 
real dataset and each tool, Table 4 shows a more detailed analysis of real gut samples. 
CLARK-S, Metamaps and Ram reported a significantly lower number of sequences 
for real gut datasets sequenced by PacBio HiFi technologies than all other tools. Since 
they performed better for real mock community datasets PB_Zymo and PB_ATCC, we 
hypothesise the number of species possible to detect for selected sequencing depth was 
closer to the numbers they reported and probably even smaller.

Computational resource usage

Results for running time and memory usage are presented in Table 5 (summary) and in 
Additional file 1: Table S2 (in detail). As expected, kmer-based tools, apart from CLARK-
S and Bracken, surpassed others in the running time. For our synthetic test datasets, 
Centrifuge has the lowest running time for most datasets. Compared to mappers 
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Minimap2 and especially Ram, the difference between the best kmer-based tools and 
mappers was below one order of magnitude. Among mapping-based tools, deSAMBA 
was only a few times slower than the fastest kmer best tools, while MetaMaps and 
MEGAN-N were among the slowest. Kaiju was among the fastest, and MEGAN-P was 
among the slowest tools. Ram used the least amount of memory. Kraken2, Centrifuge, 
Minimap2, MEGAN-P and MEGAN-N, for most datasets, used 2–3 times more mem-
ory. deSAMBA, CLARK, CLARK-S and MetaMaps used 10–15 times more memory.

Table 4 The number of detected species for real gut microbiome datasets

Data
set Kraken2 Bracken Centrifuge CLARK CLARK

-S Metamaps deSAMBA Minimap2 
align

Minimap2 
map Ram Kaiju MEGAN

-P

Sample 10
(ONT)

% unclassified 55.5 47.3 51.8 65.3 80.2 66.0 51.4 50.8 50.6 72.1 74.2 83.8

Detected 
with
thres
hold

1 5487 4775 5538 2542 418 4973 1017 1051 1504 432 7102 3046

5 5160 4775 5286 824 171 3149 407 385 437 276 5247 762

50 1060 1253 1271 169 89 377 192 183 191 137 418 169

Sample 20
(ONT)

% unclassified 71.6 66.2 68.6 82.9 85.7 87.8 76.4 74.7 74.6 91.3 89.0 95.4

Detected 
with
thres
hold

1 5459 4560 5523 1736 452 4562 659 786 996 316 6868 2801

5 5064 4560 5225 337 165 2600 296 298 326 180 4296 587

50 1375 1569 1596 100 74 478 130 139 140 77 245 136

Sample 21
(ONT)

% unclassified 49.0 40.4 45.7 57.5 71.3 64.3 42.1 40.6 40.5 67.2 71.3 81.6

Detected 
with
thres
hold

1 5440 4944 5510 2220 375 4679 1010 999 1390 409 6837 3134

5 5213 4944 5315 959 210 3426 457 444 554 262 5546 1249

50 1774 2055 2064 195 102 589 214 207 217 160 743 242

SRR
15489009
(PacBio)

% unclassified 15.6 5.6 14.4 18.4 49.0 40.5 12.2 39.1 24.2 46.3 12.7 –

Detected 
with
thres
hold

1 4625 2011 5177 3785 294 415 2197 311 1930 306 3184 –

5 3048 2011 4151 2453 172 194 940 229 792 210 1349 –

50 461 654 740 469 97 116 236 138 210 130 388 –

SRR
15489011
(PacBio)

% unclassified 17.4 4.5 15.9 23.8 63.1 55.6 15.7 52.9 33.3 60.7 12.1 58.5

Detected 
with
thres
hold

1 4599 2452 5193 3768 338 460 2049 375 1873 351 3071 1145

5 2964 2452 4097 2372 192 227 895 263 771 249 1355 450

50 564 723 905 555 111 136 285 159 230 150 399 161

Sample 10
(ONT)

% unclassified 55.5 47.3 51.8 65.3 80.2 66.0 51.4 50.8 50.6 72.1 74.2 83.8

Detected 
with
thres
hold

1 5487 4775 5538 2542 418 4973 1017 1051 1504 432 7102 3046

5 5160 4775 5286 824 171 3149 407 385 437 276 5247 762

50 1060 1253 1271 169 89 377 192 183 191 137 418 169

SRR
15489017
(PacBio)

% unclassified 18.1 4.5 17.3 20.2 56.0 44.9 13.1 42.9 26.7 51.4 13.8 ‘

Detected 
with
thres
hold

1 4784 2078 5260 3992 347 453 2383 352 2149 345 3506 ‘

5 3461 2078 4488 2701 188 224 1057 252 966 246 1648 ‘

50 606 570 1002 627 107 128 327 146 263 135 509 ‘

The table shows the number of detected species on real datasets for three different thresholds: 1, 10, and 50. A threshold 
represents the minimum number of reads assigned to a species to consider it present in the sample. Reads assigned to 
higher taxa are considered unclassified. The table also shows the percentage of unclassified reads for each dataset. Due 
to dataset sizes, results for MEGAN‑N are unavailable. Results for MEGAN‑P are unavailable on datasets SRR15489009 and 
SRR15489017
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We additionally tested Ram and Minimap2 execution times by mapping only one 
sequence to the whole database file. The execution time for both was around 1000 s, sug-
gesting that the database parsing and indexing took that much time. Both tools could 
improve execution time by storing and loading preprocessed database indexes to the 
disk.

For Bracken, we analysed the running time and memory consumption for the database 
building procedure because it needed to be executed for every dataset independently 
since datasets had different average read lengths, a parameter required by Bracken. The 
abundance estimation script executed almost instantaneously.

We analysed the scalability of used tools on several different dataset sizes. The results 
are presented in Table 6. Even for the largest datasets, Ram was still, at most, around 
10 × slower than Kraken2, the fastest kmer-based tool. Although Centrifuge was the 
fastest tool when analysing execution times presented in Table 5, Kraken2 had the low-
est execution times when tested on larger datasets. This happened because, for smaller 
datasets, index loading took up a large part of the execution time, and Centrifuge had 
the smallest database index. On larger datasets, where the actual sequence classification 
took a greater part of the execution time, Kraken2 outperformed Centrifuge.

All resource usage measurements were performed on a machine with sufficient disk 
space, 775 GB RAM and 256 virtual CPUs (2 × AMD EPYC 7662 64-Core Processor). 
Measurements were performed using 12 threads for 7 synthetic and 3 mock datasets and 
using 32 threads for 6 gut datasets. We cleared RAM Cache, File system buffer, and Swap 
space between runs.

Discussion
In this manuscript, we analysed four categories of tools for microbial classifications: 
kmer-based tools, mapping-based tools, general-purpose long-read mappers and tools 
which use protein databases. In most of the tests, tools which use protein databases per-
formed worse than other categories. However, it would be interesting to additionally 
test them using RNAseq data, especially considering that long reads technologies can 
sequence the whole transcripts.

Mapping-based tools apart from deSAMBA were much slower. They all required a lot 
of memory while rarely performing better than other tools. General purpose mappers, 

Table 5 Resource usage

Kraken
2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN-

N deSAMBA Minimap2 
align

Minimap2 
map Ram Kaiju MEGAN 

-P

Execution time / s

Min 312 68971 267 953 3862 37839 58238 895 1904 1541 1272 329 16183

Max 327 224048 329 993 4114 145416 160225 1400 4220 2283 1697 610 33430

Memory / GB

Min 42.98 24.37 35.94 118.91 271.14 146.29 26.87 143.55 24.02 19.77 9.07 55.28 22.73

Max 43.12 45.31 37.08 120.61 271.46 208.46 108.22 213.95 47.40 38.23 14.27 55.41 93.29

The table shows running time (in seconds) and memory usage (in GB) for all tools and datasets. The table shows the 
minimum and maximum values for both measures for all synthetic and real datasets, which are about 1 Gbp in size. In a row, 
cells with values close to the best are highlighted with a blue background, and those close the worst are marked in red. The 
best and worst values are further set apart with bold text and a more intense hue of their corresponding background colors. 
It is important to note that since Bracken relies on Kraken’s output, the peak memory requirement is determined by the 
higher of the two tools’ maximum values and the total execution time should be the sum of executions times
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especially Minimap2 in the alignment mode, achieved the best results in most tasks. 
Ram achieved good results, and its low memory consumption makes it suitable for anal-
ysis on laptops. However, mappers were slower than kmer-based tools. Considering this, 
kmer-based tools (Kraken2 and Centrifuge) will still be the tools of choice in most sce-
narios, especially in differential studies.

An interesting aspect is the detection of present organisms. Most tools, especially 
those based on k-mers, overreported the number of present species. In their analysis, 
McIntyre et al. [37] found that different strategies, including abundance filtering, ensem-
ble approach and tool intersection, help for short reads. Some tools, such as Kraken2, 
had an internal option for setting up the threshold for each read based on the num-
ber of find kmers. However, even these strategies could not completely eliminate false 
positives. A detailed assessment of various filtering and ensembling strategies is out of 
the scope of this paper, and it is a promising avenue for future research. Here, we show 
that setting up read thresholds reduces the number of false positives but can lead to a 
reduction in true positives. Moreover, longer reads help to increase accuracy. In parallel 
with our work, Portik et al. [10] report the same. Finally, testing on mock communities 
showed that a lower error rate of PacBio reads might reduce false positives.

A special case in this analysis was PB_Zymo dataset. Differences between declared and 
calculated abundances for this tool are much larger than for other tools The same we 
noticed for all tools. Reasons for these might be in the upstream procedures, including 
sample preparation, DNA extraction and sequencing.

Table 6 Execution time for datasets of different sizes

Dataset Dataset 
size in 

GB
Kraken2 Centrifuge CLARK CLARK-S deSAMBA Minimap2 

align
Minimap2 

map Ram Kaiju

ONT_Zymo 2 315 291 954 3917 1400 2874 1808 1697 341

14 454 779 1392 7202 4092 17418 7642 4122 2588

27 581 1351 1923 10657 6722 39334 13822 6979 3780

PB_ATCC 2 312 284 972 3942 1666 3797 1890 1303 329

55 934 2679 2538 15396 – 51615 20998 7552 2315

111 1316 5080 6883 28756 – 104001 41232 14056 4381

PB_Zymo 2 314 275 974 3913 1379 3145 1710 1272 347

17 479 841 1458 7675 5548 12690 5235 2984 909

34 638 1487 1999 11767 9930 22411 9385 5675 1558

Sample 10 12 377 358 1089 4660 1379 33713 2087 3546 1287

Sample 20 6 342 312 992 4138 1400 1801 1772 1458 805

Sample 21 15 397 410 1160 4540 1666 3800 2370 5304 1515

SRR15489009 12 367 388 1187 5194 1959 3194 1883 3186 594

SRR15489011 11 364 380 1208 4655 1664 2860 1768 3055 449

SRR15489017 14 377 416 1280 4991 2061 3380 1893 3150 665

Tools were run on three mock community datasets (ONT_Zymo, PB_ATCC and PB_Zymo) subsampled to three different sizes 
to test their scalability. All datasets used in the main part of the paper were subsampled to 1Gbp (file size is about 2 GB) 
to make the testing viable even for slower tools. However, all three datasets were used in their original size, subsampled 
to half of the original dataset and subsampled to 1 Gbp. The table also shows the execution time for real gut microbiome 
datasets in their full size. Since Bracken, MEGAN‑N, MEGAN‑P and MetaMaps running times were prohibitively long on 
larger datasets, we omitted them from the analysis. Additionally, deSAMBA was unable to process some larger datasets 
completely. The table shows execution time in seconds
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Although we didn’t know the ground truth for the real gut datasets, they helped us 
to understand the limitations and importance of carefully curated databases. For exam-
ple, differences in calculated absolute abundances between tools were up to 50%, and 
all kmer-based tools didn’t report one species often found in the gut microbiome. This 
shows that using just one pipeline for sensitive experiments is probably insufficient. In 
addition, despite protein-based tools performing worse in this benchmark, it would be 
interesting to use them in the case when large amounts of reads are not associated with 
taxa in the nucleic database. We have found there are differences in taxa between nucleic 
and protein databases, so protein-based tools might indicate the presence of some taxa 
not contained in the nucleic database.

Analysis conducted on samples containing species not found in the database and 
real gut samples highlights the significant advantages of using meticulously curated 
databases. To ensure maximum fairness in this study, we created databases for each 
tested tool using the same input sequences. Created databases contain only complete 
sequences. For many taxa, only partial information was available. However, even among 
complete sequences, many unknown nucleotides or amino acids exist.

In this work, we used a measure we call the relative genome count abundance, which 
considers the length of reads and genome size. Using read counts and calculating ratios 
of genomic DNA for each species or counting genomes or cells is an open question. 
Recently, Sun et al. [38] also warned of the importance of distinguishing these measures. 
It is important to note that the accuracy improved when we added read lengths to calcu-
late the abundance for the ONT Zymo dataset. However, the results were slightly worse 
for mock communities sequenced by the PacBio HiFi technology. Investigating this in 
detail will be one of our next aims.

In the field of metagenomics, an ongoing challenge is how to effectively benchmark 
classification tools using metagenomic samples. In this study, we utilised real reads, 
mock communities, and varied ratios of present organisms in datasets to benchmark the 
performance of tools. Some researchers, such as McIntyre et al. [37], have used synthetic 
reads to create datasets that mimic the complexity of real samples. Although we also 
incorporated simulated datasets in our analysis, we acknowledge that these datasets may 
only partially replicate the complexity of real-world cases. However, most tools, includ-
ing Minimap2, Ram, Kraken2, DeSamba, MEGAN-N, MEGAN_P, CLARK, CLARK-S, 
and Kaiju, analyse each read independently, and complex samples can be simulated by 
combining simple datasets linearly without significantly influencing the final results. 
Furthermore, we explored samples with logarithmic differences in species abundance. 
Our analysis revealed that different tools report varying species compositions for real 
gut datasets, and the true complexity of real samples remains incompletely understood. 
Therefore, we posit that a comprehensive study is needed to elucidate the differences 
between these two approaches to dataset preparation and their impact on the bench-
mark results.

This benchmark study shows that there is a discordance between tools, and we argue 
that there is room for improvement in all tools. A useful upgrade would be to provide 
some information about the confidence of whether the read belongs to a similar species 
or it doesn’t belong to any species in the database.
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Since the existing deep learning models, such as DeepMicrobes [39] and BERTax [40], 
have been rarely used and primarily focus on short reads, we did not include them in 
this benchmark. However, due to rapid progress in the usage of AI in all other fields 
and ample sequenced data, we believe that using deep learning methods, including those 
based on language models, will be one of the new avenues in this field.

Conclusion
The assessment on real gut datasets shows that tools report a different number of spe-
cies and different abundances. Therefore we deem that classifying microbial organisms 
is still an open problem.

Preparing the proper datasets for evaluation presents notable challenges. We select 
reads from both isolated strains and sequenced mock communities. However, isolated 
strains cannot encompass the full spectrum of species variations, as not every species 
can be isolated. Mock communities, while useful, introduce their own biases, leading us 
to propose a future experiment: sequencing the same mock community multiple times 
using various sequencing technologies. This would provide insights into biases arising 
at different stages, including mock community preparation, genome extraction, library 
preparation, and the sequencing process itself. While read simulation offers an alterna-
tive, this method has its drawbacks, as it fails to account for the various biases related 
to sample preparation and they usually cannot perfectly reproduce the real sequencing 
results.

Despite the challenges we have in the evaluation we deem that due to their speed, 
kmer-based tools are still the first option for most analyses. However, if the time is not 
too critical or there is not enough RAM, general purpose mappers, including Mini-
map2 and Ram, are a good alternative which provides higher accuracy in most scenar-
ios. Modern mappers use fewer kmers to calculate mapping candidate positions, which 
makes them faster. We believe that with further improvement in long-read sequencing 
technology, most methods will move to detect smaller numbers of kmers in combina-
tion with chaining matches. They will probably need an additional postprocessing step 
using methods such as the EM algorithm or careful filtering to reduce the number of 
false positives.

In this manuscript, we use relative genome count as an abundance measure, and we 
focused on datasets constructed using real reads from previous experiments, mock com-
munities or real gut samples. However, we are aware of the used abundance measure 
and benchmark dataset preparation, and their alternatives have limitations. Hence, we 
recognise the need for further research in defining appropriate abundance measures and 
improving metagenomics benchmark dataset construction techniques in the field.

Although there are just a few deep-learning methods for microbial classification, we 
expect a sharp increase in their number in the following months and years.

The results obtained from the analysis of real gut samples clearly indicate that using 
different strategies and database types may be necessary to accurately determine micro-
bial content. Furthermore, our findings strongly support the notion that there is ample 
room for improvement in systematically incorporating key microbial species into exist-
ing databases containing reference genomes and protein sequences. We believe that 



Page 18 of 26Marić et al. BMC Bioinformatics           (2024) 25:15 

advancements in long-read sequencing technologies will greatly facilitate and enhance 
this process.

Methods
This chapter describes the tools and assessment measures used and how we constructed 
the test datasets and databases.

Databases

Each classification tool comes with a prebuilt default database and instructions on build-
ing and using a custom database. We created a database for each tool based on the same 
set of organisms to remove bias related to default databases. We used NCBI-NT and 
NCBI-NR databases for creating protein and nucleotide databases used in this work We 
downloaded bacteria, archaea, and human sequences whose assembly_level property in 
the assembly_summary.txt file (downloaded from the RefSeq directory) is “Complete 
Genome” or “Chromosome”. In the following text, we refer to the two databases that 
have been created as the protein and nucleotide databases.

The list of all the downloaded files and all the sequence ids of the databases can be 
found in the GitHub link: (https:// github. com/ lbcb- sci/ Metag enomi csBen chmark).

Genome sequences were downloaded on April 5th 2020, along with the taxonomy files 
nodes.dmp and names.dmp. This approach allowed the tools to be tested independently 
of the content of their default database. The details of how each database index was cre-
ated for every tool are presented in Additional file 1: Materials S3.

The main part of the tests was performed on a database constructed for each tool from 
the same set of sequences: protein databases created from NCBI-NR database for tools 
using a protein database and nucleotide database created from NCBI-NT database for 
tools using a nucleotide database. We used all bacterial and archaeal genomes, plus the 
human genome. The nucleotide database contains 9044 tax ids, while the protein con-
tains 11,435 tax ids. There are 552 tax ids in the protein database that are outside the 
nucleotide database, and there are 2943 tax ids that are in the protein database but not 
in the nucleotide database. It is important to highlight that only one species (Helcococ-
cus kunzii—40,091) is present in mock datasets and the protein database but not in the 
nucleotide database. Additional file 1: Table S10 shows a list of dataset species not pre-
sent in databases. The taxonomy data was downloaded from this website: https:// ftp. 
ncbi. nlm. nih. gov/ pub/ taxon omy/ acces sion2 taxid/ and genome sequences were down-
loaded from this website: https:// ftp. ncbi. nlm. nih. gov/ genom es/ refseq/.

Test datasets

To have realistic sequencing datasets while retaining control of our mock commu-
nities’ exact content and building the ground truth, we constructed in silico data-
sets by mixing real reads from isolated, sequenced species. Data was downloaded 
from multiple sources (details in Additional file 1: Table S7), including the European 
Nucleotide Archive (ENA [41]) and the National Center for Biotechnology Informa-
tion (NCBI [42]). This in-silico approach provides ground truth and great flexibility to 
create diverse datasets while offering real reads with their natural errors and length 
variance. Most datasets contained around 100,000 reads, allowing all tools to classify 

https://github.com/lbcb-sci/MetagenomicsBenchmark
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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them within a week. We varied the proportion of species, some with even distribu-
tions, some with decreasing ratios with as little as five reads for one species (PB4 
dataset). Seven test datasets were synthesised with the following composition: two 
ONT, four PacBio and one negative dataset containing PacBio and randomised reads.

– ONT1: 18 bacterial species with a percentage of reads varying from 18 down to 
0.01%.

– ONT2: Human (about 4000 reads) + 7 bacteria, 10,000 reads each.
– PB1: 10 bacteria, 10% each (including two strains of Escherichia coli).
– PB2: 20% human reads, 20% fruit fly (Drosophila melanogaster), 10% archaea 

(Methanocorpusculum labreanum Z), and ten bacteria, varying from 10 to ~ 1%.
– PB3: 99% human reads, plus two bacteria: 0.9% E. coli and 0.1% Staphylococcus 

aureus.
– PB4: 46 bacterial species with the percentage of reads varying from 10 to 0.005%.
– PB1 + NEG: It contains all the reads from PB1 datasets with additional 20,000 “ran-

domised” reads that should not be assigned to any organism. Randomised reads were 
obtained by shuffling the human genome (GRCH38.p7) using esl-shuffle script from 
the hmmer3 [43] package (version 3.3.2) as described by Lindgreen et al. [44].

All datasets that do not contain human reads were mapped to the human reference 
with minimap2 to check if there are human reads’ contaminations. No sequences that 
belong to non-human species mapped to the human genome with a significant quality.

In addition to synthetic datasets, the tools were tested on three real datasets 
obtained by sequencing mock metagenomic communities. The results reported by the 
tested tools were used to calculate abundances and compared to standard specifica-
tions obtained from manufacturer pages.

– ONT_Zymo: obtained by GridION sequencing of a Zymo Community Standard, 
consists of eight bacteria and two yeasts with the expected abundance varying 
from 0.37 to 21.6% (downloaded from Loman Labs https:// loman lab. github. io/ 
mockc ommun ity/).

– PB_ATCC : obtained by PacBio HiFi sequencing of an ATCC MSA-1003 standard 
(20 Strain Staggered Mix Genomic Material), consists of 20 different bacterial spe-
cies with the expected abundance varying from 0.02 to 18% (download from NCBI 
archive, SRA run identifier: SRR11606871).

– PB_Zymo: obtained by PacBio HiFi sequencing of a Zymo D6331 Gut Microbiome 
Standard, consisting of 16 bacteria and one yeast, with the expected abundance 
varying from 0.0001 to about 20% (download from NCBI archive, SRA run identi-
fier: SRR13128014). However, for this dataset, the results obtained by all tools dif-
fered significantly from the specification.

Finally, the tools were tested on six real human gut microbiome datasets. Three 
datasets were produced as a part of the CaPES study at the Genome Institute of Sin-
gapore and published on ENA under the project ID PRJEB29152 (Bertrand et  al. 
2019). Datasets used for our test:

https://lomanlab.github.io/mockcommunity/
https://lomanlab.github.io/mockcommunity/
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– Sample10—11.9 GB
– Sample20—6.4 GB
– Sample21—14.8 GB

All three samples were sequenced using an R9.5 spot-on flowcell. Sample 10 was base-
called using Albacore, while samples 20 and 21 were basecalled using Guppy v0.3.0 for 
live 1D basecalling.

The other three datasets were generated as a part of a clinical trial by Siolta Thera-
peutics [6]. All generated data is available in the NCBI database under the BioProject 
accession number PRJNA754443. All long-read datasets were sequenced using a PacBio 
Sequel II. Datasets used in our testing:

– SRR15489009—12 GB
– SRR15489011—11 GB
– SRR15489017—14 GB

Tools

Tested tools can be classified into:

– k-mer based: Kraken2 (v2.0.8), Centrifuge (v1.0.4), CLARK (v1.2.6.1) and CLARK-S
– mapping-based: MetaMaps (v0.1), MEGAN-LR (v6.18.5) (using a nucleotide data-

base, named MEGAN-N), deSAMBA (v1.1.12),
– General purpose long-read mappers: Minimap2 (v2.18) and Ram (v2.1.1)
– tools which use protein databases: Kaiju (v1.8.2) and MEGAN-LR (v6.18.5) (named 

MEGAN-P)

Since Kraken2 usually uses Bracken for the calculation of abundances, we included it 
in the analysis.

Tools start with the initial assignment of reads to genomes using in-advance-prepared 
databases of known organisms. Once when all reads are assigned, various methods are 
used to fine-tune the classification using information from assigned reads and taxon-
omy trees. The most popular postprocessing approaches are Expectation–Maximiza-
tion (EM) estimation (MetaMaps, Centrifuge), Bayesian estimation (Bracken) and read 
assignment using the least common ancestor approach (MEGAN-LR, Kraken2).

The initial assignment of reads is based on aligning reads to a database of determined 
genomes. Aligning (Fig.  5) might be divided into three steps: (1) Searching for exact 
or approximate matches of short substrings of length k (kmers) or longer in a previ-
ously prepared index which contains a list of kmers from genomes, (2) Chaining kmer 
matches into a sequence, scoring the sequence, finding approximate positions of a read 
in a genome (mapping), and choosing the best genome candidates (3) Alignment of a 
read and candidate genomes using exact dynamic programming algorithm. While kmer-
based tools use only the first step, mapping-based tools use the first and second or all 
three. Each additional step adds to accuracy but significantly increases the running time.

Usually, kmers are of a fixed size. The original approach used all sliding windows 
of size k in a sequence. This might lead to high accuracy, but it is too slow. Therefore, 
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modern tools usually use just a few discriminative kmers per genome or choose a lexico-
graphically smallest kmer in a window of w consecutive kmers, i.e. minimiser [45].

The outputs of various tools were processed to obtain read-level classifications and an 
abundance of various species in a sample. Short descriptions and versions of each tool 
are available in Additional file 1: Materials S1. Specific parameters and scripts used to 
run each tool are given in Additional file 1: Materials S2.

Furthermore, we could not successfully run our version of the MEGAN–N pipeline on 
the PB3 synthetic dataset and on PB_Zymo and PB_ATCC real datasets. In the case of 
the PB3 dataset, the mapping phase using the LAST aligner would go on for a week, and 
after that, the CPU and memory usage would drop down to almost zero, but the process 
would not be complete. Output produced in that way was corrupted and could not be 
used for testing. After three trials, we decided to drop the results. For PB_Zymo and PB_
ATCC datasets, the LAST aligner produced a huge MAF file with correct alignments, 

Fig. 5 Read alignment. Read alignment consists of three steps (1) Indexing and kmer search, (2) Chaining 
and scoring (3) Alignment. Kmer-based tools use only the first step, and usually, they do not care about the 
position in the genome. Mapping-based tools use the first and second steps, which increase accuracy but 
last much longer. The alignment step provides the exact alignment and the score but increases the running 
time
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which we could not convert to an alignment out file (.DAA). This resulted in no classi-
fied reads. Huge MAF files and long running times were also a reason why we did not 
run MEGAN-N on larger datasets. MEGAN-P uses a protein database, produces sig-
nificantly smaller MAF files, runs faster, uses less RAM and is able to complete most 
tests. MEGAN-P did not finish on the real gut microbiome datasets SRR15489009 and 
SRR15489017. Although MAF files produced by the LAST aligner seemed correct, the 
script used to convert MAF files into DAA files needed for further analysis produced a 
file with the data for only the first read.

Minimap2 and Ram are not intended for metagenomics classifications and often print 
several mapping results for a single sequence. Therefore we classify each sequence from 
the PAF output files using a harmonic mean:

where the ML (mapping length) and NM (number of matches) are found in each row of 
the PAF file. For the SAM output files with alignment, the best classification for each 
sequence was determined by the highest alignment score. In the case of ties, the first 
alignment was taken as correct. This work aims not to maximise mappers’ performance 
but to demonstrate their suitability for metagenomic classification. Detailed analysis 
of ties presented in Additional file 1: Table S8 shows that more careful handling of ties 
might lead to further improvement in read classifications.

Genome lengths

We acquired average genome lengths for species used in abundance calculation 
from the NCBI website: https://www.ncbi.nlm.nih.gov/genome/?term=<species_
name> (e.g.  https:// www. ncbi. nlm. nih. gov/ genom e/? term=e. coli for e.coli). We scraped 
the NCBI website for the “median total length (Mb)” string to get the genome length 
of the species. For species that were unsuccessfully scraped, we acquired the genome 
length from the same website manually.

Testing procedures

The tools’ output was processed to obtain percentages of DNA reads and species’ abun-
dances in the sample. We evaluated the correctness of DNA read classification at species 
and genus level, i.e., only classifications that were assigned to a tax id which belongs to 
the species or lower level were used in the species-level analysis; and only classifications 
assigned to the genus or a lower level were used in the genus-level analysis. Outputs 
of the tools, which contained classification of reads to taxons, were processed. Taxo-
nomic ids and ranks were extracted from the nodes.dmp file downloaded from the NCBI 
website.

Read‑level classification

To evaluate the quality of read-level classification, we first calculated four basic values:

– True positives (TP): the number of reads that were classified to a correct species.
– False positives (FP): the number of reads that were classified as an incorrect species.

2×
ML× NM

ML+ NM

https://www.ncbi.nlm.nih.gov/genome/?term=e.coli
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– True negatives (TN): the number of reads that remained unclassified and belonged to 
an organism not present in the database.

– False negatives (FN): the number of reads that remained unclassified but belonged to 
an organism present in the database.

These four values were then used to calculate more complex and valuable evaluation 
metrics. The first metric used is classification accuracy—the percentage of reads that 
were correctly classified.

Global accuracy score was calculated for each read regardless of which organism it 
belonged to, only based on whether it was classified as TP, TN, FP or FN. As such, it 
did not reflect the proportion of each species in the sample. Incorrectly classified reads 
belonging to very abundant organisms will have the same effect as those belonging to 
very low abundance organisms. Because it is less biased towards larger classes, we used 
the F1 macro average score: we calculated the F1 score for each class (organism in the 
sample) separately and averaged them. We prefer this measure to the global F1 score, 
calculated across all classes. F1 macro average gives an equal impact on the score for 
each organism in the sample independently of its abundance.

Because the F1 score is zero for classes not in the database (as the number of true posi-
tives is zero), those classes were omitted from the calculation.

Abundance

Abundance represents the percentage of genomes of a specific taxon in the sample. 
Abundances calculated by benchmarked tools significantly differ due to differences in 
definitions and calculations. Here we calculated abundances for all tools using so-called 
relative genome count abundance measure. In addition to genome sizes in the calcu-
lation, we added read lengths due to the skewed and wide distribution of ONT reads. 
We calculated the abundance of a species as the sum of the lengths of assigned reads 
divided by its average genome length in the database. Obtained values were normalised 
in a manner that the total sum of abundances is 1. We calculated  Ci, a sequenced cover-
age of genome i, and  Ai, a relative abundance of genome i as

ACC =
TP + TN

TP + FP + TN + FN

Precision(PR) =
TP

TP + FP

Recall (RC) =
TP

TP + FN

F1 = 2×
PR× RC

PR+ RC

Ci =

j

Li,j

Gi
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 where Li,j is the length of a read j assigned to genome i, Gi length of genome i, and Ck is 
the sequenced coverage that belongs to any of the reported genomes.

We use L1 norm for measuring the accuracy of predicted abundances of taxa in a sam-
ple at rank r. The L1 norm is given by

where xr and x∗r  are true and predicted abundances, respectively. We choose L1 instead 
of L2 because the former is less sensitive to outliers.

Genome lengths were obtained from the NCBI web page. Abundance estimations 
were assessed on species or lower-level classifications, considering all higher-level taxa 
classifications incorrect.

Organisms detection

Although some benchmarks, including [37], used precision and recall as measures for 
assessing organism detection, we decided to show only the number of true positives and 
the total number of reported organisms. This helped us to make a similar assessment for 
all datasets, including those for real gut datasets where we reported only the number of 
detected organisms.

Resource usage

Processor time and RAM usage were measured using a server with 775 GB RAM and 
256 virtual CPUs (2 × AMD EPYC 7662 64-Core Processor). Tools were run using 12 
threads for 7 synthetic and 3 mock datasets and 32 threads for 6 gut datasets. The meas-
urements were taken using a fork of cgmemtime (https:// github. com/ isovic/ cgmem 
time) modified to write its output to a file.
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