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Abstract 

Background: Natural proteins occupy a small portion of the protein sequence 
space, whereas artificial proteins can explore a wider range of possibilities 
within the sequence space. However, specific requirements may not be met 
when generating sequences blindly. Research indicates that small proteins have 
notable advantages, including high stability, accurate resolution prediction, and facile 
specificity modification.

Results: This study involves the construction of a neural network model named 
TopoProGenerator(TPGen) using a transformer decoder. The model is trained 
with sequences consisting of a maximum of 65 amino acids. The training process 
of TopoProGenerator incorporates reinforcement learning and adversarial learn-
ing, for fine-tuning. Additionally, it encompasses a stability predictive model trained 
with a dataset comprising over 200,000 sequences. The results demonstrate that Topo-
ProGenerator is capable of designing stable small protein sequences with specified 
topology structures.

Conclusion: TPGen has the ability to generate protein sequences that fold 
into the specified topology, and the pretraining and fine-tuning methods proposed 
in this study can serve as a framework for designing various types of proteins.

Keywords: De novo protein design, Protein topologies, Transformer, LSTM, Neural 
network

Introduction
The function of a protein is closely related to its structure. Designing a protein sequence 
that is capable of folding into a specific structure is a crucial step in creating a protein 
with a defined function. Two main types of protein sequence design methods exist: the 
first type of method is fixed backbone protein design, where users typically provide a 
PDB file or other structural information, and the method generates a sequence capa-
ble of folding into the provided structure [1–3]. Examples of this approach are the GVP 
designed by Bowen Jing [4] and the ESM-IF1 method designed by Chloe Hsu named 
GVPTransformer [5]. These methods model and extract features from protein atomic 
coordinates, enabling the generation of sequences that can fold into structures using 
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these features. The ProteinMPNN model, developed by D. Baker, has broad applicabil-
ity in both single-chain and multichain protein designs [6].The objective of this type of 
design method is to explore a sequence space that can lead to a specific backbone dur-
ing the folding process. The second type of design method is sequence design based on 
sequence features or labels [7], where users either provide limited restrictive information 
or no input at all, and the model autonomously generates valid sequences. An example 
of this approach is trDesign, which incorporates trRosetta, a tool for predicting protein 
sequences, into the generation model. It obtains valid sequences through multiple itera-
tions by progressively escaping the noise distribution using the generated sequence [8]. 
The advantage of de novo protein design lies in the model’s ability to explore a larger 
sequence space with fewer restrictions.

Deep learning generative models have gained widespread and effective usage in pro-
tein design in recent years [9–14]. Indeed, there exists a significant similarity between 
protein sequence generation tasks and natural language generation tasks [15]. Similar 
to natural language processing models that learn patterns between text sequences from 
extensive data and generate new text sequences based on the learned patterns, the recent 
release of ChatGPT by OpenAI has demonstrated the high potential of language mod-
els for the advancement of diverse domains. Likewise, deep learning generative models 
for protein design must learn patterns within vast amounts of data comprising amino 
acid sequences and generate novel protein sequences guided by the learned distribution 
patterns. Consequently, it is reasonable to anticipate that exceptional models in natural 
language processing, particularly generative models, will also excel in protein sequence 
design tasks. Notably, autoregressive models that exhibit proficiency in ChatGPT have 
also been employed for sequence generation [16, 17]. Autoregressive models have the 
ability to predict the subsequent token based on a given token until the entire sequence 
is generated. Autoregressive generative models based on a transformer decoder have 
achieved noteworthy outcomes. ProGen [18], RITA [19], and ProtGPT2 [20] are expan-
sive generative models trained with extensive datasets using the transformer decoder. 
Progen employs control labels within a sequence to guide the model in generating 
sequences with specific label attributes, such as protein family, biological process, and 
molecule function. RITA and ProtGPT2 learn the sequence distribution from a large 
dataset, enabling the generation of a broader range of valid sequences.

These models often acquire generalized distributions, while exceling in exploring 
sequence diversity, they face challenges in targeting specific proteins even after fine-tun-
ing on small datasets for downstream tasks, their performance in terms of protein design 
may not surpass models specifically trained for such tasks, particularly in cases where 
there is a scarcity of relevant sequences for the target sequence in the natural protein 
datasets used for training. We will prove this point in our research. Additionally, protein 
sequence datasets such as UniProtKB and NCBI lack substantial structural information 
within the keywords or tags accompanying protein sequences. Consequently, models 
trained with these datasets face challenges in terms of generating protein sequences with 
desired structures.

Small proteins consist of relatively short amino acid sequences, typically fewer than 
100 amino acids, and exhibit remarkable stability. Owing to their concise amino acid 
sequences, small proteins frequently adopt stable folding states and exhibit robust 
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resistance to diverse environmental conditions [21]. It is easy to obtain high-resolution 
prediction results for small proteins through computational methods and experimental 
techniques owing to their short sequences and relatively uncomplicated structural fea-
tures [22, 23]. Furthermore, small protein designs have the the advantage of being verifi-
able through high-throughput experiments [24]. The synthesis and expression of small 
proteins are relatively straightforward, facilitating the feasibility of high-throughput 
experimental verification. Through the synthesis and screening of numerous designed 
small proteins, we can swiftly assess the efficacy of our design strategies and iteratively 
optimize them based on data obtained from bulk experiments. The introduction of 
multiple chemical functional groups into small proteins is a relatively straightforward 
process, enabling their potential utilization in therapeutic and diagnostic applications 
[25]. LongXing Cao successfully designed a small protein capable of binding to specific 
targets using his self-developed RifDock method. His research demonstrated the ability 
to encode different binding specificities within simple helices [26].These findings sug-
gest that small proteins possess significant research value and feasibility. RifDock offers a 
structural dataset comprising over 60,000 small proteins, enabling us to pursue sequence 
design for small protein structures.

We developed TopoProGenerator(TPGen), a protein sequence generation framework 
that utilizes a transformer decoder architecture and integrates reinforcement learn-
ing and adversarial learning techniques. TopoProGenerator can generate small protein 
sequences up to 80 amino acids in length that possess the ability to fold into a specified 
topological structure.TopoProGenerator is an autoregressive model capable of gener-
ating the subsequent token by considering the current token (comprising a topological 
structure label and amino acids) until either the termination symbol is generated or the 
specified length is reached.

Initially, TopoProGenerator undergoes unsupervised pretraining with a larger 
sequence dataset encompassing diverse topological structures. Through iterative optimi-
zation, TopoProGenerator learns to predict the probability of the next amino acid based 
on the original sequence, thereby generating a distribution pattern. Upon pretrain-
ing completion, the model is capable of generating a complete sequence by inputting 
the corresponding topological structure label. To enhance the stability of the generated 
sequence, we conducted fine-tuning [27, 28] of the model using a relevant smaller data-
set (e.g., specifically selecting the HHH portion from the dataset). During the fine-tuning 
process, we employed reinforcement and adversarial learning techniques. Through rein-
forcement learning [29, 30], we iteratively trained the generated sequence to enhance 
its score when using the discriminative model, thereby positively impacting the physi-
cal or biological characteristics of the sequence, and we incorporate a pretrained sta-
bility prediction model, trained on a large protein dataset with abundant stability data, 
into the Reinforcement learning framework to enhance the stability of the generated 
sequences. Similarly, using an adversarial learning approach [31–33], we conducted 
iterative training of both the generative model and the discriminative model to enhance 
their performance and maintain adherence of the generated sequences to the amino acid 
distribution within the dataset.

The primary objectives of this study were to develop and validate TopoProGenerator 
(TPGen), a novel neural network model, for the de novo design of small, stable proteins 
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with specified topologies. Furthermore, the study aimed to explore the efficacy of inte-
grating a stability predictive model and to assess the impact of various training and fine-
tuning strategies on the modelâ€™s generative capabilities.

Results
The aim of this study was to generate stable small proteins with specified topologi-
cal structures, necessitating the evaluation of two key aspects. For the first aspect, an 
assessment of whether the generated small proteins can fold into specified topologi-
cal structures must be made. For the second aspect, the stability of these proteins must 
be evaluated. To evaluate and demonstrate the recognized advantages of our design 
method, we employed methods that were not utilized during the model training. For the 
first aspect, we utilized a self-written script and employed DSSP for assessment. How-
ever, for the second aspect, since there was no general calculation and validation method 
available, we were unable to rely on the sequence stability prediction model used during 
the model training. The Rosetta energy scoring function was employed to conduct bulk 
stability score calculations, yielding statistically significant evaluation metrics. Addition-
ally, molecular dynamics simulations were conducted for the small-scale verification of 
the optimal outcomes of the model design, as determined by the Rosetta energy score. 
TopoProGenerator has demonstrated outstanding performance in generating small pro-
teins with diverse topological structures, as the generated proteins adhere more closely 
to our specified topological structure and exhibit enhanced stability. The model metrics 
are better than those achieved by the LSTM trained and fine-tuned with the same data-
set, and they are significantly superior to the metrics obtained by fine-tuned RITA and 
random baselines.

Sequence generation

To evaluate the models’ capability to generate a specific topology sequence, we selected 
the HHH sequence, which exhibits the highest frequency in our dataset, as the pri-
mary target. We assessed both the TopoProGenerator and LSTM models, which were 
trained using an identical method, and employed RITA and a random baseline as con-
trol models. We fine-tuned both the transformer-based TopoProGenerator and LSTM 
models using our method with the selected HHH dataset. The fine-tuned models exhib-
ited enhanced performance in terms of generating the specified topology sequence and 
stability-related indicators compared to those of the original models (Table 1). Addition-
ally, we fine-tuned RITA using Nathansen’s fine-tuning pipeline [34] with the same HHH 
dataset, stopping the training upon convergence. Subsequently, each of these models 
generated 5,000 small protein sequences, each with a length of 60 amino acids (Addi-
tional file 1: Figure S3). Both the TopoProGenerator and LSTM models utilized HHH 
as the control tag. The topology structures of the generated results were evaluated using 
DSSP, revealing that the TopoProGenerator and LSTM models outperformed the ran-
dom baseline and RITA in terms of HHH sequence generation (Fig. 2A).

Verification of topology structure

We used AlphaFold2 to evaluate the sequences we generated. On the one hand, 
AlphaFold2 has accuracy comparable to that of experimental methods such as 
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cryo-EM(CASP15:92.4%, especially for small protein sequences). On the other 
hand, AlphaFold2 is relatively fast and can provide meaningful evaluation results. 
We selected 100 sequences each with HHH, EHEE, and HHHH topology from the 
design results, predicted the structure with AlphaFold2, and selected the results 
with the highest plddt. We then computed the topology structure through DSSP. 
The results showed that the structures predicted from the sequences generated by 
TPGen largely conform to our specified topology structure labels (Fig. 3).

Stability evaluation

For the stability evaluation, we select 3000 results with HHH topology structure 
from the generated sequences. Each of these topologies consisted of 60 amino acids. 
Initially, we employed Rosetta to relax the selected structures, thereby eliminat-
ing unstable conformations, followed by scoring using the Rosetta energy function. 
Existing protein stability evaluation tools typically compute free energy for mutated 
sequences, rendering them unsuitable for the artificially composed sequences with 
highly diverse amino acid compositions in this article. While the Rosetta energy 
function score may not be a stringent stability evaluation method, it can serve as a 
stability index for proteins with the same sequence length, allowing us to acquire a 
substantial number of sequence stability scores to establish statistically significant 
differences [20]. The Rosetta energy scoring results reveal that the protein sequences 
generated by TopoProGenerator exhibit superior stability and surpass the results 
generated by both RITA and the random baseline by a considerable margin(Fig. 2B).

In our work, molecular dynamics simulation was employed to assess the struc-
tural stability of the designed proteins [35, 36]. Based on the Rosetta energy scores, 
we chose the 10 sequences with the lowest scores from the TopoProGenerator and 
RITA-designed results, along with the RifDock dataset utilized for training. Simulta-
neously, we selected the 10 most stable sequences from the small proteins designed 
by D. Baker [37]. In addition, we selected natural HHH protein 2kzi as the natural 
baseline. We used AlphaFold2 to predict the structures of the selected sequences and 
performed molecular dynamics simulations. We evaluated the root-mean-square 
deviation (RMSD) of the protein conformation at the current moment in compari-
son to the initial conformation during the molecular dynamics simulation. A stable 
and consistently low RMSD curve indicates minimal changes in a protein structure 
throughout the simulation, signifying its relative stability [36]. Each model preserves 
its best result for comparative analysis with other model (Fig.  4).Regarding stabil-
ity, the sequences generated by TopoProGenerator exhibited superior performance 
compared to that of the protein sequences designed by RITA and D. Baker, and it is 
better than natural protein 2kzi. However, TopoProGenerator exhibited slightly infe-
rior performance when considering the most stable results in the RifDock dataset.

These findings indicate that TopoProGenerator has learned the connections 
between residues and topological structures at the sequence level, as well as the low-
energy relationships inherent in valid protein sequences.
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Diversity evaluation

We assessed the diversity of generated sequences using Blast+ [38] and MMseqs2 [39].
The HHH sequences generated by TopoProGenerator exhibited significant dissimilar-
ity from the sequences in the dataset(Fig. 2C). Additionally, we evaluated the structural 
diversity of the generated sequences within the same topology by employing the TM-
score to compare the maximum identity of the generated structures with those in the 
database. The structure generated by TopoProGenerator significantly differs from the 
structures in the database despite sharing the same topology. Based on the TM-score 
definition, a TM-score exceeding 0.5 indicates that the structures have an identical 
topology. Our design results exhibited TM-scores predominantly ranging from 0.5 to 
0.9, signifying that the proteins generated by TopoProGenerator share the same topolo-
gies as those in the database while possessing noteworthy distinctions (Fig. 2D). Addi-
tionally, MMseqs2 was employed to cluster the HHH training dataset and the generated 
HHH sequences individually. The generated sequences demonstrated greater diversity 
compared to that of sequences in the training dataset (Additional file 1: Table S1). Fur-
thermore, it was discovered that certain sequences generated by TopoProGenerator 
showed low similarity with sequences in the training set at the sequence level but high 
similarity at the structural level (Fig.  5). This finding suggests that TopoProGenerator 
explores the potential of diverse sequences within the same structural framework. In 
other words, our model traverses a broader sequence and structure space while main-
taining the same topological structure.

Other topological structures

To assess the model generalizability across the entire dataset, we employed TopoPro-
Generator to generate additional topological structures for evaluation purposes. For 
verification, we chose HHHH, the second-most abundant topological structure in the 
dataset, and EHEE, a less frequently occurring topological structure. We utilized both 
TopoProGenerator and LSTM models for generation and evaluated them using the same 
methodology as that employed for HHH. By utilizing the corresponding topological 
structure tags as control labels, TopoProGenerator generated sequences that exhibited 
a proportion of corresponding topological structures exceeding 85%. Notably, during 
the generation of EEHE, TopoProGenerator produced a significantly higher proportion 
of EHEE sequences compared to LSTM. This observation implies that the Transformer 
Decoder exhibits superior capability in capturing the mapping relationship between top-
ological structure tags and amino acids, particularly when operating with limited data 
sets. Based on the Rosetta energy function score, the TopoProGeneratorâ€™s design 
results surpass the random baseline, providing evidence of its adherence to the distribu-
tion pattern of proteins exhibiting low energy levels. TopoProGenerator has an excellent 
generation ability on the topological structure outside of HHH (Additional file 1: Figure 
S1). We conducted the same molecular dynamics evaluation process as HHH for EHEE 
and HHHH (Additional file 1: Figure S5),The results show that the stability of HHHH 
generated by TPGen is superior to that of the bacbackbone library. We believe this is due 
to the fact that the data set of HHHH is richer in data volume compared to EHEE, and 
the model has been trained more thoroughly.
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Ablation experiment: Fine‑tuning of different parameters

We conducted experiments to assess the performance of the fine-tuned models with 
and without the sequence stability predictive model. Various methods were employed to 
process the stability predictive model scores. The stability predictive model scores were 
processed using Equation (2), and the values of �1 and �2 were adjusted for different 
experiments (Table 1).

The results indicated that the optimal performance was achieved when �1=1.2 and �2
=0.6 (Fig. 6). This can be partly attributed to the fact that the sequences in the HHH 
dataset represent the most stable portion. Therefore, fine-tuning on this dataset should 
prioritize the preservation and enhancement of stability in the generated sequences, 
rather than eliminating unstable outcomes.
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Fig. 1 The comprehensive framework for training TopoProGenerator.A Framework for model fine-tuning: 
The first step involves an generative model producing fake sequences with specified topology to train 
a discriminative model that distinguishes between real and fake sequences. The second step entails the 
generative model generating sequences, and the discriminative and predictive models providing scores, 
which are aggregated into a reward for the sequence. Finally, in the third step, the model backpropagates 
using the reward to optimize the parameters of the generative model.B Pretraining process for the generative 
model: For each sequence, the model constructs features by considering pairwise residue relationships. It 
utilizes the features of previously generated residues to determine the subsequent residue, maximizing the 
probability of generating a complete sequence. The first token of the sequence indicates its topology. C The 
predictive model comprises ProtBert and a multilayer perceptron. The sequence input is passed through 
ProtBert to extract features, which are subsequently fed into the multilayer perceptron to generate stability 
scores
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Fig. 2 Evaluation results for HHH generation. A The proportion of HHH structures in the generated 
sequences of each model (5000 sequences per model) was assessed using DSSP. TopoProGenerator 
generated the highest proportion of generated HHH structures,, significantly higher than that for the 
random baseline and RITA.. B The HHH structures (predicted by Omegafold) generated by each model were 
evaluated using the Rosetta energy scoring function. TopoProGenerator achieved the lowest score, indicating 
the highest level of stability. The X-axis represents the total energy score. C and D By utilizing Blast+, we 
compared each generated sequence with all three-helix datasets for identity matching, retaining the 
maximum identity value for each sequence (max_id_sequence). By employing the TM-score, we compared 
each predicted structure of the generated sequences with all three-helix datasets for identity matching, 
retaining the maximum identity value for each generated structure (max_id_structure)

Fig. 3 In the designed protein sequence, the proportion of topological structures that conform to the 
specified topological structure
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Fig. 4 Evaluation of the results for the stability of the sequences using molecular dynamics simulations. 
A Comparing the last frame of molecular dynamics simulation with the original structure, the generated 
results of TopoProGenerator showed a high degree of identity. B From Baker’s designed small proteins, 
our designed small proteins, RITA’s designed small proteins, and the RifDock HHH dataset, we selected 10 
sequences with the lowest Rosetta energy scores. And we selected natural HHH protein 2kzi as the natural 
baseline. Subsequently, we performed molecular dynamics simulations to compare the selected sequences 
based on the analysis of the RMSD curve and determined the most favourable sequence. The unit of 
time is nanoseconds(ns), and the graph is plotted by averaging the values of all data points within each 
nanosecond(ns)

Fig. 5 A Despite significant sequence differences, the generated proteins exhibit remarkable structural 
consistency compared to that of the proteins in the dataset, which is a noteworthy result. It is important 
to highlight that the training process relies solely on topological structure labels, as no other structural 
information is provided. Structure ID and seq ID correspond to the maximum structural consistency and 
sequence consistency in the dataset, respectively. B Sequence alignment of sequences in (A). The above 
is the sequence from the RifDock backbone library, and the following is the sequence we designed. The 
identical residues are denoted in grey, while the distinct residues are highlighted in red. Concurrently, we have 
annotated the secondary structure type corresponding to each residue, as deduced from DSSP, where G signifies a 
310 -helix, H represents an α -helix, and T indicates a hydrogen-bonded turn 
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Conclusions
In summary, our study demonstrates that transformer-based conditional language mod-
els trained solely on sequence data annotated with topological structure information are 
capable of generating small protein sequences that can adopt the desired topological 
structure. These generated sequences exhibit both high stability and diversity, effectively 
exploring the sequence space within the specified topological structure. Moreover, the 
comparison with RITA trained with a large protein sequence dataset highlights the effi-
cacy of our study in achieving our objective. It substantiates that training with specific 
and relatively small datasets can be successful when protein structure data are inade-
quate or when the goal is to generate proteins with limited representation in the dataset.

We further explored the transformer’s capacity to learn the mapping between a top-
ological structure and sequence. In contrast to prior studies, we employed topological 
structure identifiers, e.g., we used HHH rather than a single lowercase letter such as “i” 
to represent the topological structure of a sequence. Our objective was to investigate 
whether the model could capture the relationship between a single helix or fold and a 

Table 1 Evaluation of various treatment approaches and their respective scores for fine-tuning 
sequence stability prediction models

a  Model without fine-tuning
b  Fine-tuning with �1=1.2 and �2=0.6
c  Fine-tuning with �1=1.0 and �2=0.0
e  Fine-tuning achieved by directly multiplying the stability scores with the discriminative model scores
d Fine-tuning with only the discriminative model
f  Proportion of stable proteins in HHH

Pretrain a 1.2− 0.6
b

1.0− 0.0
c OriScale d NoPredictore

Proportion of HHH 91.35% 93.82% 90.82% 91.42% 91.54%

Proportion of stable proteins f 63.63% 69.90% 64.35% 62.41% 62.51%

Average stability score of HHH 1.05 1.12 1.06 1.04 1.04

Fig. 6 Evaluation results of ablation experiments for various treatments of sequence stability predictor scores 
are presented. We conducted a unified evaluation process for different treatments based on the predicted 
stability scores of the sequences, using the Rosetta score function to obtain the results. The X-axis represents 
the Rosetta score function scores, where lower scores indicate greater protein stability. The Y-axis represents 
various treatments
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sequence capable of folding into a topological structure. The sequences in the dataset 
were transformed into the format of <xxx>ATG...GTA, where “xxx” denotes the topo-
logical structure identifier. Lowercase letters were employed to represent topological 
structures, allowing for the distinction between identifiers and amino acids. The separa-
tion of the topological structure identifier from the amino acid sequence was indicated 
using <>.

The model was pretrained using the same methodology as that for TopoProGen-
erator. Initially, we tasked the model with generating HHH sequences, and subse-
quent validation confirmed its ability to generate the existing topological structure 
present in the dataset. Next, we instructed the model to generate HEHE and HEEEH 
sequences, which are topological structures that are not present in the dataset. 
Despite the proteins generated by the model were identified by DSSP as possessing 
these topological structures, their occurrence rate was relatively low, approximately 
3-5% . Concurrently, we investigated the presence of these two topological structures 
in the sequences previously generated by TopoProGenerator. Our findings revealed 
an almost negligible occurrence of these topological structures in the sequences 
generated by TopoProGenerator. This observation suggests that the model has 
indeed acquired certain associations between a topological structure and sequence; 
however, the extent of this learning is limited.The structure of HEHE was predicted 
using Alphafold2, revealing a higher abundance of loops compared to that in typical 
proteins. We employed molecular dynamics simulations to assess the stability of the 
designed HEHE results, and only a limited number exhibited a certain level of stabil-
ity. The overall stability level was notably lower compared to HHH (Additional file 1: 
Figure S2).

Methods
TopoProGenerator comprises transformer decoders and undergoes training in two 
stages: pretraining and fine-tuning. In the pretraining phase, the model is trained with 
a sequence dataset to regenerate each training datum (Fig. 1B). The fine-tuning process 
involves utilizing a pretrained predictive model to derive stability scores based on the 
sequence and a discriminative model to assess the distribution of generated sequences 
and fine-tuning datasets. The model undergoes fine-tuning by employing reinforcement 
learning and adversarial learning methods (Fig. 1A).

Data processing

To train TopoProGenerator, we processed the protein backbone library obtained from 
RifDock. Since the backbone library of RifDock was generated through Rosetta predic-
tions, which may not be highly accurate, we incorporated Omegafold for verification 
purposes. Omegafold is a single-sequence structure prediction tool capable of accurately 
predicting high-resolution protein structures based solely on a single sequence. Notably, 
it can effectively predict orphan proteins, which do not belong to any protein family, 
aligning with the specific requirements for predicting artificial proteins. All sequences 
were extracted from the backbone library, and their structures were subsequently pre-
dicted using Omegafold. Next, we compared the predicted structures with the original 
structures using the TM-score metric and retained sequences with TM-scores exceeding 
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0.9 as our original dataset. To differentiate the sequences from amino acids, we labelled 
the sequences based on their topological structure, assigning a single lowercase letter to 
represent each distinct topological structure. For instance, “i” denotes HHH, “j” repre-
sents HHHH, and so forth. The dataset encompassing all topological structures served 
as the pretraining dataset, while the dataset with a single topological structure was uti-
lized for fine-tuning.

Stability predictive model

We utilized the dataset provided by Jedediah M. Singer [40], which comprises sequence 
stability scores obtained through high-throughput assays described by Rocklin [41], 
to evaluate protein stability. The authors combined multiple protein datasets into a 
standardized benchmark dataset for protein sequence stability, encompassing a total of 
280,000 sequences, suitable for joint training purposes. The model architecture for pre-
dicting sequence stability comprises ProtBert and a multilayer perceptron(Fig.  1C). A 
self-supervised training process was applied to ProtBert, introduced by Ahmed Elnag-
gar, using a large-scale sequence dataset [42]. We evaluated all sequences in the dataset 
using the stability predictive model and plotted distribution maps according to differ-
ent topological structures (Additional file 1: Figure S4).We found that within the Rifdock 
backbone library, HHHH and HHH exhibit the highest stability, followed by EHEE and 
HEEHE, and then proteins with other topological structures.

A random sample of 10,000 sequences from the dataset was chosen as the test set. 
Subsequently, we assessed the model’s performance with the test set after training it to 
convergence. The model demonstrated remarkable accuracy and stability.

Then, we employed the stability predictive model to improve the fine-tuning process 
during the reinforcement learning phase, with the aim of optimizing the stability of the 
generated sequences.

Conditional language modelling

Consider a as ( a1 , a2 , a3,..., ana ), which represents an amino acid sequence of length na−1 , 
with a “sequence end” mark (”\ ”) appended to create a sequence of length na. t denotes 
the control label for the topological structure, which is added at the beginning of the 
sequence to guide the model in generating sequences with predefined topological struc-
tures. Thus, x = [t; a] represents a sequence obtained by prepending the control label to 
the amino acid sequence, and this composite sequence is utilized for training purposes. 
The probability of this composite sequence having a length of n = na + 1 is denoted as 
P(x). The problem of generating x is decomposed in language modelling, wherein each 
subsequent token is predicted individually [43]. In this model, only amino acids are pre-
dicted. A network with parameters θ is trained to minimize the negative log-likelihood 
on the dataset D = x1, x2, x3, ..., x|D|.

The generation model employs an autoregressive architecture, wherein the subsequent 
token is generated based on the preceding input. By using the control label t, the protein 

(1)L(D) = −
1

|D|

|D|

K=1

1

nk

nk

i=1

logpθ (x
k
i |x

k
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a is generated by sampling amino acids iteratively: pθ(a1|t) , pθ(a2|a1, t),..., pθ(ai|a<i, t) , 
until the model determines the position of the “sequence end” marker.

We employed neural network architectures based on transformers to build TopoPro-
Generator. Transformers utilize multiple stacked layers to capture contextual relation-
ships within sequences, with each layer incorporating a self-attention mechanism. The 
self-attention mechanism enables the establishment of contextual relationships within 
a sequence, specifically the connections between amino acids. Previous studies have 
indicated that as the number of self-attention layers increases, the model progressively 
learns more intricate internal relationships among a protein [44]. Furthermore, pre-
vious models such as MRFs [45] and Potts models [46] have demonstrated a relation-
ship between transformer-based methods and co-evolution methods used in sequence 
design. TopoProGenerator serves as a transformer decoder employed for autoregressive 
generation, producing sequences token by token, with each subsequent token condi-
tioned on all previously generated tokens.

Additionally, we employed a neural network architecture based on LSTM for the 
same training and validation as those of a control model. LSTM is a specialized type of 
recurrent neural network (RNN) [47] that utilizes a cell state Ct to store and transfer the 
current LSTM state information to the subsequent LSTM unit at each time step. This 
architecture resolves the issue of long-term dependencies in RNNs and is effective in 
terms of generating contextually connected sequences.

Training

The training process consists of pretraining and fine-tuning stages. The model trains 
with the complete sequence dataset to generate sequences aligned with specific topo-
logical structure labels. To fine-tune with a particular topological structure dataset and 
enhance our model’s generation performance on that structure, we employed a combi-
nation of reinforcement learning and adversarial learning techniques. The training his-
tory of all models can be obtained in (Additional file 1: Figure S6-S9) and Check point  of 
TPGen.

Pretraining

The transformer architecture of TopoProGenerator comprises 5 layers, with each layer 
consisting of 8 self-attention heads. The dimensions of q, k, and v in the self-attention 
mechanism are set to 32, and the feedforward layer has a dimension of 512. TopoPro-
Generator is trained to minimize the negative log-likelihood as defined in Equation 1. 
All sequences are padded to a length of 80, and the padded tokens are excluded from 
generating new amino acids. The trained model has the capability to generate protein 
sequences by providing specific topological structure labels, such as “i” to generate 
“HHH”. The LSTM architecture consists of 10 layers, which were selected after multiple 
training sessions, with each layer containing 1024 nodes. The training process follows a 
similar approach as that of the transformer.

Fine‑tuning

Prior studies have demonstrated that incorporating a discriminative model or scorer 
to guide the sequence generation model can introduce a bias towards generating 

https://pan.baidu.com/s/1S_Z__3zVRFoVjviwIQt2VQ?pwd=5053
https://pan.baidu.com/s/1S_Z__3zVRFoVjviwIQt2VQ?pwd=5053
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higher-scoring outcomes [48]. Our fine-tuning framework utilizes the concept of adver-
sarial learning and comprises a generative model G and a discriminative model D. Ini-
tially, negative samples are generated by G, while positive samples are obtained from 
the selected dataset to train D to distinguish between the two types of samples. Subse-
quently, G is trained to generate sequences that serve as input into D. The resulting score 
D from D is combined with the score of the sequence stabilizer P as feedback, guiding 
G in producing sequences that align with the distribution of the selected dataset and 
exhibit high stability. The reward function is defined as follows:

where D(x) represents the score assigned by the discriminative model D to the generated 
sequence x, and P(x) represents the score assigned by the stability predictive model P to 
the generated sequence x.The final reward score is R(x) Sequences x with P(x) greater 
than or equal to 1.0 are regarded as stable sequences. The reward function is applied dif-
ferently to stable and unstable sequences, and the objective of fine-tuning training is to 
maximize the reward function.

To address this issue, when generating sequences with autoregressive models (LSTM 
and transformer), discrete distribution sampling (argmax) is used to obtain tokens one 
by one from the model’s output. However, backpropagation cannot compute gradi-
ents for sampling. Researchers have employed reinforcement learning [49] or Gumbel-
softmax reparameterization [50] to address this issue. Given the similarity between the 
process of generating sequences with autoregressive models and policy gradient [51] 
methods in reinforcement learning, the amino acid space can be regarded as the action 
space, the generated partial sequences can be considered as the environmental state s, 
and the combined score of p and d can be interpreted as the reward r. Throughout mul-
tiple iterations of reinforcement learning, the generator progressively enhances the score 
combination R. TopoProGenerator employs the policy gradient method of reinforce-
ment learning to compute gradients for adversarial learning and backpropagation. Its 
reward function combines the discriminative model and the stability predictive model 
scores, providing guidance to the generator in terms of generating valid and stable 
sequences. During the fine-tuning process, we choose sequences with predefined topo-
logical structures from the training set to create the fine-tuning dataset, which serves 
as positive samples for the discriminative model. Cosine annealing and warm-up tech-
niques were employed to adjust the learning rate during the fine-tuning process.

The pretrained model was fine-tuned with a sequence dataset that exclusively contains 
the desired topological structures. The generated sequences were further fine-tuned 
utilizing a sequence discriminative model and a stability predictive model. The Adam 
optimizer [52] was employed, and the model was trained for a total of 50 epochs with a 
learning rate of 0.000001. During each epoch, 150 sequences were trained, and we chose 
the checkpoint with the lowest average loss (negative reward value) for sequence genera-
tion. For further evaluation, the model was instructed to generate 5000 sequences.

(2)

ifP(x) >= 1 :

R(x) = �1× D(x)

else :

R(x) = �2× D(x)
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Random baseline

Protein sequences consisted of 60 amino acids are randomly generated by selecting 
one amino acid from a pool of 20 amino acids for each residue position. The resulting 
sequence can be considered completely random.

Evaluation

Evaluation process

We utilized Omegafold to predict the structures of the generated sequences and used 
DSSP to determine their topological structures and select the specified topological 
structures. We performed relaxation using Rosetta to eliminate any unreasonable con-
formations in the structure. Finally, the generation results were evaluated utilizing the 
Rosetta energy function, sequence stabilizer, Blast+, MMseqs2, and molecular dynamics 
tools.

Selecting topological structures using DSSP

DSSP can deduce the secondary structure at the residue level (e.g., H or E) based on 
the protein’s structural information. We have developed a proficient script for analyzing 
the outcomes obtained from DSSP. Through evaluating the patterns of consecutive H or 
consecutive E, we ascertain the overall topological structure of the protein, which deter-
mines its specific topological structure type (e.g., HHH, HHEH, etc.).

Scoring with the Rosetta energy function

The Rosetta energy function is derived by assigning weights to a range of measurable 
geometric statistics and classical physical interactions. It assesses the magnitude of the 
interaction energy between atoms based on the provided atomic coordinates. The energy 
function incorporates the up-to-date full-atom model(ref2015) [53, 54] and includes the 
cart_bonded term weighted at 0.625. Refer to S2 for a detailed explanation of the scoring 
components used in the energy function.

Evaluating sequence diversity using Blast+ and MMseqs2

To assess the diversity of the generated sequences, we employed the multiple sequence 
alignment tools, Blast+ and MMseqs2. By using Blast+, we were able to conduct pair-
wise identity comparisons between the generated sequences and the training set, retain-
ing the highest identity value (max_id) for each comparison. By employing MMseqs2, 
we were able to cluster the generated sequences and utilize the resulting number of clus-
ters as an analysis index.

Evaluation of structural diversity using TM‑score

We utilized the TM-score to compare the predicted structures of each generated HHH 
sequence with all the HHH skeletons, and selected the highest TM-score as the indicator 
of structural similarity.

Evaluation using molecular dynamics

MD simulations were performed using the NAMD version 2.13 MD package [55]. The 
integration timestep of the simulation was set to 2 femtoseconds (fs), and the position 
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coordinates (DCD file) were saved every 4 ps for further analysis. Long-range periodic 
electrostatic interactions were evaluated using the smooth Particle-Mesh Ewald (PME) 
[56] method, with a real cut-off radius of 10 Ã…. The lengths of all chemical bonds 
involving hydrogen bonds were constrained by the SHAKE algorithm [57]. CMD simula-
tions were performed at 310 K and the constant temperature was controlled by Langevin 
dynamics [58] under a pressure of 1 atm [59] maintained using the Nose-Hoover ther-
mostat. Before each production, the system was energy-minimized by 2000 conjugate 
gradient steps to reduce steric conflicts between water molecules and the protein. The 
dynamic results were analysed using the VMD program.
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