
Cellograph: a semi‑supervised approach 
to analyzing multi‑condition single‑cell 
RNA‑sequencing data using graph neural 
networks
Jamshaid A. Shahir1,2,3, Natalie Stanley2,3,4 and Jeremy E. Purvis1,2,3,5* 

Background
The rapid progression of single-cell technologies [1] has enabled scientists to accumu-
late complex datasets to study differentiation and developmental trajectories in response 
to differing experimental perturbations, assess the efficacy of a drug in treating of dis-
ease, and evaluate the efficiency of different reprogramming protocols. Regardless of the 
preceding experimental design, many single-cell RNA sequencing (scRNA-seq) analyses 
follow the same pipeline [2]: pre-processing and quality control followed by clustering 
and differential gene expression. In the context of studying more continuous phenomena 
such as differentiation or cell reprogramming, trajectory analysis may also be employed 
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[3]. However, in the case of multiple experimental conditions such as different time 
points sampled for sequencing in cell reprogramming, or varying concentrations of a 
cancer drug, these methods may fall short in faithfully summarizing the underlying biol-
ogy. In particular, clustering and differential gene expression give a bulk summary of the 
transcriptomic variation between computationally-inferred discrete populations, but do 
not explicitly consider the single-cell variability within treatment groups, such as how 
prototypical an individual cell is of its assigned treatment group.

Related methods

Differential abundance methods can rectify these challenges by quantifying differences 
between and within conditions at a finer resolution. Milo tests for differential abundance 
on k-nearest neighbor (kNN) graphs by aggregating cells into overlapping neighbor-
hoods and performing a quasi-likelihood F test [4]. This returns a metric of the log-fold 
change of the differential abundance in each neighborhood. However, because Milo 
aggregates cells into neighborhoods, it does not provide single-cell resolution providing 
insight into the impact each perturbation has on an individual cell.

Covarying Neighbor Analysis (CNA) [5] performs association analysis agnostic of 
parameter tuning, making it an efficient method. Like Milo, it aggregates cells into neigh-
borhoods, and calculates a neighborhood abundance matrix (NAM), where each entry 
Cn,m is the relative abundance of cells from sample n in neighborhood m. From there, it 
derives principal components where positive loadings correspond to higher abundance 
while negative loadings correspond to lower abundance. This enables the characteriza-
tion of transcriptional changes corresponding to maximal variation in neighborhood 
abundance across samples. Association testing is performed between transcriptional 
changes and attributes of interest using the first k NAM-PCs. It returns the Spearman 
correlation between the attribute and abundance of the neighborhood anchored at each 
cell, providing a single-cell metric. However, its performance falls short when consider-
ing more than two conditions.

MELD [6] sought out to quantify the effect of an experimental perturbation on indi-
vidual cells in scRNA-seq data using graph signal-processing to infer a sample-asso-
ciated density that is then normalized to give a probability of each cell belonging to a 
condition of interest defined as a relative likelihood. It uses all the class labels to derive 
these probabilities. The authors also introduced a novel clustering approach, called Ver-
tex Frequency Clustering (VFC), which clusters data according to not just transcrip-
tomic similarity but also how the MELD-derived relative likelihood scores, thereby 
identifying populations of cells similarly enriched or depleted in conditions according to 
the perturbation response. However, the original study restricted evaluation to datasets 
with two conditions to discriminate between: a control condition and a single perturbed 
condition, and therefore did not consider multiple treatment conditions, which are more 
prevalent and can provide more insight, for instance, the response of a drug at various 
time intervals, combining drugs, or administration of a differentiation stimulus at dif-
ferent time-points. Furthermore, robust calculation of the sample-associated likelihood 
relies on computationally-expensive parameter estimation that can take upwards of 12 h 
with 36 cores on a high-performance computing cluster for a dataset of 26,827 cells. In 
addition, VFC is memory-intensive, which limits its scalability to larger datasets.
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Graph neural networks

In recent years, the rapidly-emerging field of deep learning has seen utility in scRNA-seq 
analysis [7–9]. More recently, graph neural networks (GNN) have demonstrated prom-
ise in capturing the structural information of scRNA-seq data via the graphical repre-
sentation the high-dimensional assay naturally lends itself towards, with cells as vertices 
or nodes, and edges between them representing similarity in gene expression. This con-
nectivity enables the model to naturally leverage the relationship between similar cells 
in a variety of tasks, most notably clustering and imputation. GNNs pass in graphical 
representations of data as input to perform a myriad of classification tasks, namely node 
classification, edge classification, and graph classification. Unlike convolutional neu-
ral networks (CNNS) which involve multiple layers and can take a long time to train 
depending on the size of the data, GNNs require only a few layers to achieve high per-
formance in a fraction of the time. Furthermore, whereas CNNs require large amounts 
of training data, GNNs can learn patterns in data in a semi-supervised fashion: they take 
the entire data structure as input, but only a paucity of nodes are labeled; a larger por-
tion is held out for validation and testing purposes. The applications of GNNs has been 
demonstrated in the case of graph classification, edge classification, and node classifica-
tion. For example, scGNN [9] used GNNs and a Gaussian mixture model to perform 
imputation and cell clustering. Another study used Graph Attention Networks (GATs) 
[10, 11]—a subset of GNNs based on the self-attention mechanism commonly used in 
natural language processing—to predict disease state in scRNA-seq data from multiple 
sclerosis patients, followed by another study from the same group applied to COVID-
19 patients [12]. GATs have also been used as part of variational graph autoencoders to 
facilitate clustering [13].

Moreover, GNNs have been used in conjunction with relational networks to predict 
breast cancer subtypes in bulk RNA-seq data [14]. However, their potential to ascertain 
the responsiveness of individual cells to perturbations in order to gauge the efficacy of 
the experimental stimulus, particularly in complex experimental designs that span mul-
tiple conditions or time points, has not been formally assessed.

Finally, a notable study introduced a GNN framework called single-cell Graph Con-
volutional Network (scGCN) which uses Graph Convolution Networks (GCNs) [15]—
which are analogous to CNNs in that they both use convolution operators, but operate 
on different types of data structures—to transfer labels across diverse datasets and sub-
sequently integrate the datasets, outperforming popular methods like Seurat v3 and 
Conos on these tasks [16]. However, the framework could not perform perturbation 
analysis, as its task was to predict cell type annotations of query data from the given 
reference data, illustrating room for the expansion of the novel applications of GNNs in 
single cell genomics, to which our work below seeks to contribute.

In this work, we introduce Cellograph: a novel computational framework using GCNs 
to perform node classification on scRNA-seq data collected from multiple conditions, 
treating the individual cells as nodes. Cellograph uses a two-layer GCN to learn a latent 
representation of the single-cell data according to how representative each cell is of its 
ground truth sample label. This latent space can be easily clustered to derive groups of 
cells associated with similar treatment response and transcriptomics, as well as pro-
jected into two dimensions for visualization purposes. Cellograph outperforms existing 
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approaches in quantifying the effects of perturbations and offers a novel GNN frame-
work to cluster and visualize single-cell data. In addition, Cellograph is more scalable, 
performing at least an order of magnitude faster than MELD. In the following sections, 
we discuss the workflow of Cellograph, demonstrate its performance on three published 
scRNA-seq datasets, and benchmark it against previously published methods using 
cross-categorical entropy and normalized mutual information [17].

Methods
Overview of the Cellograph algorithm

Cellograph uses GCNs to perform node classification on cells from multiple samples to 
quantify how representative cells are of each sample. We found GCNs to be most apro-
pos for our implementation as they explicitly draw upon neighborhood information 
to capture transcriptomic relationships between cells by considering the connections 
between neighboring cells (e.g., molecularly similar cells) in the graph. Furthermore, as 
scRNA-seq is prone to technical artifacts, such as dropouts or noise in gene expression 
measurements, GCNs can mitigate the impact of this noise by leveraging the collective 
information from neighboring cells in the graph as it maps the initial dataset to a latent 
embedding in the first layer. By propagating information through the graph structure, 
GCNs can capture more reliable and robust representations of cells, improving common 
downstream analysis tasks like clustering, dimensionality reduction, and classification, 
as we shall demonstrate in the results section. Finally, the GCNs offer interpretability by 
learning feature importance within the context of the graph structure. By examining the 
learned weights in the GCN layers, we can identify features (or genes, in this context) 
that contribute significantly to the model’s predictions. This facilitates identification of 
biologically meaningful genes that drive cellular tendencies towards one experimental 
group versus another. This information can complement and corroborate findings from 
differential gene expression, but with an emphasis on group truth labels versus indepen-
dently-inferred clusters.

In summary, Cellograph takes in a single-cell dataset X ∈ R
n×m (where n denotes the 

number of cells or nodes, while m represents the number of genes or features) aggre-
gated from multiple treatment conditions. We assume X has already been pre-processed 
and filtered according to typical pre-processing steps when working with scRNA-seq 
data. (see Fig. 1). X is then reduced to a PCA space, where a k-nearest neighbor graph 
is constructed using a select number of principal components (PCs), with a resulting 
adjacency matrix A ∈ R

n×n . The graph is then passed in as input into a two-layer graph 
neural network that uses a parameterized matrix weighed by the genes to encode each 
cell’s transcriptome to lower dimensions that take into account the connectivity between 
cells. Specifically, we train a two-layer GCN on this derived graph.

In the first layer (Fig. 1D), we perform the following mathematical operation:

Here, Ã is calculated as D̂− 1
2 ÂD̂− 1

2 , and Â is obtained by adding the identity matrix I to 
the adjacency matrix A. This adds self-loops to the adjacency matrix such that each cell 
is incorporating its own features in addition to its neighbors. W (0) ∈ R

m×h is a param-
eterized weight matrix that’s updated throughout the training of the model. Each row 

H (0) = σ(D̂− 1
2 ÂD̂− 1

2XW (0)).
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of the matrix corresponds to a gene, with a set of h weights per gene. Upon successful 
training, these weights can be summed up per row and ordered from highest to lowest, 
where genes with the highest weights denote biologically meaningful genes that distin-
guish the ground truth conditions. In other words, genes that more effectively distin-
guish conditions are given higher weights during the training. H (0) ∈ R

n×h is the output 
of the first layer in h latent dimensions. This matrix can be further reduced to 2 dimen-
sions for visualization using a dimensionality reduction method like PHATE or UMAP 
[18]. This additional pre-processing step prior to visualization creates an embedding 
where cells are arranged not just according to transcriptomic similarity, but also how 
representative they are of each experimental condition. In the second and final layer, we 
have a very similar operation

where now W (1) ∈ R
h×c with c as the number of conditions. Here, we take our latent 

embedding H (0) from the initial layer and apply the same operation, only this time we 
map it to a matrix of treatment probabilities for each cell, giving a single-cell metric of 
how responsive the cell is to each treatment. The output H1 ∈ R

n×c is a matrix of treat-
ment probabilities. The softmax function is a nonlinear function that converts its inputs 
to a probability distribution proportional to the exponentials of the inputs as follows:

Regarding the training process, as noted, GNNs learn in a semi-supervised manner. This 
means that during training, the entire graph is observed, but only a fraction of the nodes 
have labeled information. Specifically, we randomly select 1–3% of nodes from each con-
dition as training nodes, while a larger fraction are held out for testing and validation. 
This random selection of nodes facilitates objective training. The quality of the training 
is assessed via a categorical cross-entropy loss function. By default, we train the GNN for 
200 epochs and terminate training if there is no improvement after 30 epochs (patience). 
This is in contrast to MELD, which uses all the labels and is not holding out anything, 
leveraging the full cell-type information via these ground-truth labels to perform the 
calculations, instead.

Pre‑processing the scRNA‑seq data

We pre-process data as commonly done using Scanpy, unless specified otherwise [19, 
20]. For the organoid dataset, we downloaded the publicly available, normalized dataset 
from https://​singl​ecell.​broad​insti​tute.​org (study SCP1318) and filtered the most highly 
variable genes (using the default parameters in Scanpy: a minimum mean expression 
of 0.0125, maximum mean expression of 3, and minimum normalized dispersion of 
0.5). Metadata was also included with cell type annotation and ground truth treatment 
groups. For the drug holiday dataset, we followed the pre-processing steps described in 
the original study, only implementing them in Scanpy over Seurat. For the myogene-
sis dataset, we followed the quality control steps described in the original paper, except 
implemented in Scanpy rather than Seurat (all cells with less than 300 genes expressed 

H (1) = softmax(D̂− 1
2 ÂD̂− 1

2H (0)W (1)),

softmax(ẑ) =
ezi

K
j=1 e

zj
.

https://singlecell.broadinstitute.org
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were removed, as well as all genes expressed in less than 10 cells; furthermore, only cells 
with less than 20% percentage mitochondria expression were retained). The data was 
then normalized using Scanpy to 10,000 reads per cell, logarithmized, and filtered down 
to the top 2000 highly variable genes.

Results
We demonstrated the biological application of Cellograph on three published scRNA-
seq datasets: a human organoid model of intestinal stem cells differentiating to Paneth 
cells with or without a stimulus to enhance the efficiency of the differentiation [21]; a 
non-small-cell lung carcinoma (NSCLC) cell line that was treated with a drug called 
Erlotinib at various time points and later temporarily withdrawn from the drug for 
several days [22]; and a myogenesis model of transdifferentiation and traditional cell 
reprogramming [23]. We benchmarked the performance of Cellograph against the afore-
mentioned differential abundance methods, MELD, Milo, and CNA. Our results show 
robust performance of Cellograph on these distinct datasets, and provide valuable bio-
logical insights.

Cellograph captures shifts in cell type abundance during human intestinal organoid 

differentiation

We first applied Cellograph to an organoid model of intestinal stem cells differentiating 
to Paneth cells with or without KPT-330, an inhibitor of the nuclear exporter, Exportin 1, 
which was demonstrated in the original study [21] to enhance the abundance of Paneth 
cells following differentiation. Samples were collected from 6 donors for sequencing fol-
lowing 6 days of treatment with or without KPT-330. Cell type annotation revealed 9 
prominent cell types: Stem cells transitioning from G1 to S phase of the cell cycle (G1/S), 
stem cells in G2 and M phase of the cell cycle, proliferative progenitor cells (Progenitor), 
enterocytes (Enterocyte), wound-associated epithelium cells (WAE), WAEs enriched 
in the well-characterized stress-associated gene DUOX2 (DUOX2+ WAE-like), qui-
escent progenitors (Quiescent progenitor), goblet cells (Goblet), and enteroendocrine 
cells (Enteroendocrine). We will refer to these two conditions as KPT and control cells, 
respectively. We trained Cellograph using a two-layer GCN with 80 out of the 2484 
cells labeled, such that 40 were labeled for each condition. We projected the learned 
latent space to 2 dimensions with PHATE and colored cells according to the probabil-
ity of belonging to the KPT-treated condition (Fig. 2A). We obtain a smooth gradient 
of cells along the PHATE plot, with cells arranged according to how impacted they are 
by KPT treatment. UMAP also captured the separation between conditions and gradi-
ent of probability scores [18] compared to traditional UMAPs on the high-dimensional 
PCA space (Additional file 1). To determine if this gradient reflected meaningful biology, 
we extracted the 25 top-weighted genes from the aforementioned learned weight matrix 
(discussed in “Overview of the Cellograph algorithm” section) and visualized them with 
a heatmap categorized by the two treatment groups (Fig. 2B), which corroborates exist-
ing findings for the source paper. This matrix is derived from the first layer of the GCN 
and parameterizes each gene, where the model upweights genes it finds most relevant 
in distinguishing between conditions. Among the top 25 genes is GDF15, a marker of 
DUOX2+ WAE-like and WAE-like cells, which is highly expressed in KPT-treated cells, 
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where these cell types are more abundant due to the greater efficiency of Paneth cell dif-
ferentiation [24, 25]. Conversely, KLK6 is highly expressed in the control-treated popula-
tion, which has been shown to mediate the multipotency of intestinal stem cells [26, 27].

We also performed k-means clustering on the latent space learned by Cellograph with 
k = 3 (Fig. 2A,C). Unlike clustering the original PCA-reduced data, which just focuses 
on differences in the transcriptome, Cellograph implicitly clusters according to how 
responsive cells are to the KPT-330 stimulus. This successfully groups together cells 
predicted to belong to the KPT-treated group (called the responsive cluster), a mixed 
population of cells predicted to be either control or KPT-treated cells (intermediate clus-
ter), and a cluster of cells predicted to be prototypical of the control population (naive 
cluster). These predictions were determined using a threshold of 0.5 for ground truth 
assignment.

Based on the softmax probabilities learned by Cellograph ( zi,j ≥ 0.5 ), we assigned cells 
to the control or KPT-treated populations independent of their ground truth labels, and 
created composition plots according to cluster assignment (Fig. 2D). We see that Cello-
graph’s predictions corroborate the compositional changes in cell types abundance dis-
cussed in the original study, namely with decreases in dividing stem cell and progenitor 
populations, increases in quiescent progenitors, enterocytes, and DUOX2+ WAE-like 
cells.

Finally, we mapped the cell type annotations onto the clusters obtained by Cellograph 
(Fig. 2D) and observe a high abundance of cycling cells, progenitor cells, and WAE-like 
cells in the Naive cluster, followed by a decrease of WAE-like cells and progenitor cells 
in the intermediate population, and a high proportion of DUOX2+ WAE-like cells in the 
responsive cluster. Altogether, these results demonstrate Cellograph’s ability to identify 
and visualize cells affected by KPT-330 stimulation. It corroborates existing findings and 
presents an interpretable framework for downstream tasks like visualizing and cluster-
ing the data.

Cellograph models heterogeneity in cancer drug response during a drug holiday

Encouraged by Cellograph’s performance on the human intestinal organoid dataset, we 
next investigated how well it could capture heterogeneity in response to cancer drugs 
under complex treatment regimes. We trained Cellograph on the single-cell transcrip-
tomes of 3042 PC9 cells treated with Erlotinib [22]—a tyrosine kinase inhibitor used to 
treat non-small cell lung cancer (NSCLC)—for 11 days, followed by withdrawal of the 
drug for 6 days, referred to as a drug holiday, where select cells were either retreated 
with Erlotinib or treated with DMSO as a control. This study examined the drug-toler-
ant states in a non-small-cell lung carcinoma (NSCLC) cell line, where the goal was to 
understand what cell populations would emerge from treatment and retreatment. Spe-
cifically, the authors treated the cell line with a drug called Erlotinib for 11 days, followed 
by a 6-day withdrawal period called a drug holiday as the cells developed resistance. A 
subset of cells was then reintroduced to Erlotinib for 2 days and cells were sequenced 
at each time point. The key takeaway from this paper was that they identified subpop-
ulations of cells associated with genes that induced drug resistance, and those inhibit-
ing drug resistance. However, this just considered transcriptomic variation and simple 
graph-based Leiden clustering, so we were interested if Cellograph could quantify the 
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effect of these temporal perturbations at single-cell resolution, corroborate these find-
ings, and perhaps offer novel insights into these mechanisms of drug resistance. The cells 
were sequenced at 5 timepoints: 0 days with no Erlotinib treatment, 2 days of Erlotinib 
treatment, 11 days of Erlotinib treatment, at day 19 with or without re-exposure to Erlo-
tinib on day 17, following 6 days of removal from the drug. We trained Cellograph on 
these PC9 cells with 30 cells labeled for each condition using a 2-layer GCN. We project 
the learned latent space into 2 dimensions with PHATE, which gives a clear temporal 
separation of the 6 treatment groups (Fig. 3A), comparable to UMAP (Additional file 1). 
Coloring cells according to the probability of belonging to each of the conditions pro-
vides a narrow distribution of scores in cells in the condition of interest, with the nota-
ble exception of Day 11 (Erlotinib before holiday) and Day 19 (Erlotinib after holiday), 
suggesting a non-uniform response to the drug in these cells both before and after the 
drug holiday (Fig. 3D). The heatmap of the top 25 weighted genes from training (Fig. 3B) 
implicates such genes as TUBA1B and CCDC80 in distinguishing the conditions, which 
are both markers of drug resistance, with CCDC80 highly expressed in D11 cells, cor-
roborating the original study’s observations of CCDC80, whereas TUBA1B expression is 
particularly elevated in D19 Erl cells. Almost all of these genes were previously identified 
through differential gene expression in the original paper, showcasing Cellograph’s inter-
pretability of the weigh matrix in identifying pertinent genes defining molecular differ-
ences. However, MT-ND6, which was not among the differentially expressed genes to 
the best of our knowledge, is also strongly weighted and appears to uniformly define the 
population of cells that were treated with DMSO following the drug holiday. This is a 
mitochondrial gene which has been previously implicated in colorectal adenocarcinoma 
and associated with changing energy requirements due to cells aggressively proliferat-
ing [28]. Clustering the learned latent space identifies three clusters among these two 
conditions (Fig. 3A,D), one consisting of cells predicted to have a prototypical response 
after 11 days of Erlotinib treatment (cluster 3), and similarly for day 19 after re-expo-
sure to the drug (cluster 5), followed by a mixed population of both cell types (cluster 2). 
Differential expression between the three clusters (Fig.  3C) identified high expression 
of TUBA1B in cluster 5, which is associated with poor prognosis in NSCLC, suggest-
ing persisting drug tolerance after the holiday period. Similarly, we observe differential 
expression of INHBA in cluster 3, a senescence mediator that’s associated with prognosis 
in many cancer types [29]. This suggests that there is drug resistance in both treatment 
regimes, yet seemingly stimulating different pathways of resistance as opposed to anti-
resistance, highlighting the limitations of the treatment scheme. Interestingly, TUBA1B 
and INHBA expression are significantly reduced in the day 19 population that was not 
retreated with Erlotinib. Altogether, Cellograph captures clinically relevant genes driv-
ing heterogeneity in response to treatment, corroborates existing findings of pertinent 
genes driving treatment response, identifies an additional gene that was previously not 
described to the best of our knowledge, and suggests different modes of drug resistance.

Cellograph distinguishes between transdifferentiation and dedifferentiation in myogenesis

Finally, we assessed Cellograph’s ability to distinguish cells undergoing distinct cell state 
transitions temporally on a scRNA-seq dataset of 33,380 mouse embryonic fibroblasts 
(MEF) undergoing either dedifferentiation to adult stem cells called induced myogeneic 



Page 9 of 19Shahir et al. BMC Bioinformatics           (2024) 25:25 	

progenitor cells (iMPCs) or myogenic transdifferentiation to myotubes [23]. The original 
study was motivated to understand the transcriptional and epigenetic mechanisms of 
how over-expression of the MyoD transcription factor induced MEFs to undergo repro-
gramming to either myotubes or iMPSCs with a MyoD-inducible transgenic model. The 
myotubes were induced by overexpression of MyoD, while the addition of small mol-
ecules produced Pax7+ iMPSCs that were very similar to primary muscle stem cells. 
The authors used trajectory analysis via diffusion maps and UMAP embeddings of com-
bined single-cell data of MEFs expressing MyoD or MyoD + a cocktail of small molecule 
inhibitors (forskolin, RepSox, and CHIR99021, collectively abbreviated as “FRC” in the 
original paper) to reveal that dedifferentiation and transdifferentiation follow two differ-
ent trajectories.

We trained Cellograph on these differentiating cells with 200 cells per treatment 
group labeled for training for 400 epochs and obtained a single trajectory that starts 
with transdifferentiation and culminates in dedeifferentiation to Pax7+ iMPCS (Fig. 4A; 
Additional file 1). Looking at the top-weighted genes from training the model (Fig. 4B), 
high expression of CRABP1 and LUM distinguished the transdifferentiating population, 
whereas dedifferentiation was weighted by high expression of cyclin D1, suggesting cell 
cycle entry is a necessary step to producing iMPCs. CRABP1 is known to promote stem 
cell proliferation by its downregulation [30]. However, it does not appear to inversely 
vary with cyclin D1. The original study revealed an overlap between the major frac-
tion of day 4 MyoD-treated cells and day4/8 MyoD+FRC-treated cells in their UMAP 
and DPT embeddings. Interestingly, however, Cellograph detects no significant overlap 
(Fig. 4A), which is further supported by the derived probabilities of belonging to each of 
the experimental groups (Fig. 4C).

STMN2, an early neuronal marker, was also identified as a pertinent gene in distin-
guishing between these processes (Fig. 4B), with high expression in the transdifferentia-
tion condition, perhaps owing to the instability and inefficiency of generating myotubes 
with MyoD alone. Clustering the latent space and mapping the clusters onto the PHATE 
embedding distinguished the different treatment conditions and heterogeneity in the 
MyoD+FRC day 8 condition. Notably, we observed differential expression of MYOG 
(Fig. 4D), which specifies the myotube fate, in the majority of cells, which corroborates 
observations from trajectory analysis in the original study where this gene is observed 
in both trajectories. Cell cycle differences underscored variability in the Pax7+ iMPCs 
(Fig.  4D,E). Altogether, Cellograph is able to successfully distinguish these biological 
processes, and identify additional gene programs explaining these differences.

Cellograph outperforms published differential abundance methods and popular single‑cell 

clustering methods

Finally, we benchmarked Cellograph’s performance in identifying cells most impacted by 
perturbations against three MELD, Milo, and CNA. We used the Brier score for compar-
ison between Cellograph and MELD as we believed a method quantifying experimen-
tal perturbations should capture a broad range of signals for each experimental label it 
is trying to predict. In particular, this metric quantifies the squared difference between 
predicted and true probabilities distributions by calculating the following sum,
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where y represents the true labels of the samples, with yi ∈ {1, 2, . . . ,C} denoting the 
true class label of sample i, p represents the predicted probabilities of the samples, with 
pij denoting the predicted probability of sample i belonging to class j, N represents 
the total number of samples, and δij is the Kronecker delta function defined as δij = 1 
if yi = j and δij = 0 otherwise. Lower values reflect better quality performance. When 
applied to all the cells in our datasets, we obtain consistently lower scores than MELD 
(Table 1), despite MELD using all class labels during its learning process whereas Cel-
lograph uses only a fraction.

When evaluating Cellograph relative to Milo and CNA, however, we could not per-
form direct quantitative comparison. As discussed in “Related methods” section, Milo 
gauges the presence of differential abundance on kNN graphs by aggregating cells into 
overlapping neighborhoods and performing a quasi-likelihood F test. This returns a met-
ric of the log-fold change of the differential abundance in each neighbor, not a single-cell 
measurement giving the probability of that cell belonging to one treatment class versus 
another. Thus, we cannot perform a direct quantitative comparison and instead present 
a qualitative assessment of performance. Running Milo on the human organoid dataset, 
we observe a positive correlation between the Milo-derived log-fold changes in differen-
tial abundance and the probability of cells belonging to the KPT-treated group (Fig. 5A). 
However, when applied to the the drug holiday and myogenesis datasets (Fig.  5B,C), 
which have more complex experimental designs with multiple conditions, Milo fails to 
yield clear, interpretable results, with low DA in the untreated population, high DA in 
the cells after one day of Erlotinib treatment, and minimal DA in all other conditions. 
Similarly, in the myogenesis dataset, we observe high DA in Pax7-treated cells, low DA 
in MEFs, and minimal DA everywhere else.

Applying CNA to the human organoid dataset with the KPT treatment status as the 
attribute of interest, we obtain similar results as our method, MELD, and Milo. Specifi-
cally, we observe high correlation in the KPT-treated cells, and low correlation in the 
untreated cells. This elevated correlation is on par with the high probability of observing 
cells in the KPT-treated group. However, on the Erlotinib and myogenesis datasets, like 
Milo, we obtain results incongruous with Cellograph or MELD’s performance. It is even 
at odds with Milo. High abundance is predicted for cells treated right before holiday and 
following the holiday, regardless of whether cells were retreated with Erlotinib, whereas 
low abundance is observed in both the untreated cells and cells treated with Erlotinib for 
one day, while cells with 11 days of treatment have zero correlation. Since this dataset 

BrierScore(y, p) =
1

N

N∑

i=1

C∑

j=1

(pij − δij)
2

Table 1  Brier score of Cellograph versus MELD on all cells

Dataset Cellograph MELD 
(optimal 
settings)

Organoid 0.153 0.362

Drug holiday 0.133 0.222

Myogenesis 0.094 0.324
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Table 2  Average NMI score from different clustering methods on the datasets (standard deviation 
of scores in parentheses) along with optimal resolution parameter or choice of k used in each 
method

Dataset K-means on PCA space Leiden Louvain K-means on 
Cellograph-derived 
latent space

Organoid k = 8

0.124 (0.019)
Resolution = 0.2
0.183 (0.071)

Resolution = 0.4
0.183 (0.021)

k = 2

0.513 (6.695 ×10
−16)

Drug holiday k = 4

0.706 (9.255×10
−4)

Resolution = 0.2
0.817 (0.018)

Resolution = 0.2
0.824 (3.956×10

−3)
k = 5

0.805 (1.292×10
−4)

Myogenesis k = 10

0.538 (0.013)
Resolution = 0.1
0.715 (0.016)

Resolution = 0.5
0.655 (0.018)

k = 7

0.87 (5.174×10
−5)

Fig. 1  Illustrative overview of Cellograph algorithm. Single-cell data collected from multiple sample drug 
treatments (A, B) is converted to a kNN graph (C), where cells are nodes, and edges denote connections 
between transcriptionally similar cells. The colored rectangles (B) correspond to the different samples 
represented by the drugs in A. This kNN is fed in as input to a two-layer GCN (D) that quantitatively and 
visually learns how prototypical each cell is of its experimental label through the learned latent embedding. 
E A mathematical schematic of the first layer, where each cell’s gene expression and its neighbors’s gene 
expression is aggregated to produce a lower-dimensional representation of the cell in a latent space. F A 
mathematical schematic of the second layer respectively, where the output embedding of the first layer is 
mapped to softmax probabilities of cells belonging to each of the drug treatments
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spans multiple conditions and CNA just calculates one set of metrics, it was difficult to 
interpret these results in the context of the experiment. We obtained similarly incongru-
ous results for the myogenesis dataset (Fig. 5). Altogether, Cellograph provides robust 
and interpretable results for more complex experimental designs with multiple treat-
ment groups compared to CNA and Milo, and performs consistently better than MELD 
with a significantly lower runtime for optimal performance (Fig. 6).

When evaluating clustering performance with NMI, k-means clustering on the 
learned latent space yielded consistently high metrics compared to the Leiden and 
Louvain clustering algorithms, and k-means clustering on data in PCA space. 100 
NMI values were calculated for each dataset by performing independent runs of the 
clustering algorithms. (Fig. 7). The treatment annotations given in the source papers 

Fig. 2  Cellograph identifies treatment groups and distinguishes genes defining these groups on a human 
organoid dataset. A PHATE projection of learned latent space, with cells colored by treatment labels, 
probabilities of belonging to control or KPT-treated cells, clusters obtained by k-means clustering of the 
learned latent embedding with k = 3 , and gene expression of GDF15 and KLK7. B Heatmap of top 25 
weighted genes from parameterized gene weight matrix. C Heatmap of differentially expressed genes 
between clusters derived from Cellograph. D Compositional plot of predicted treatment groups from the 
softmax probabilities ( zij > 0.5 ) (left) and cell types annotated by the original study (right) partitioned by 
clusters
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were used as ground truth to derive the NMI values. Resolution parameters for the 
most optimal number of clusters in the Leiden and Louvain were chosen such based 
on the scib software [31] for more rigorous comparison (Table 2).

Fig. 3  Cellograph defines genetic signatures of distinct drug responses in the drug holiday dataset. A PHATE 
embeddings of the learned latent space colored according to the treatment labels, clusters, and treatment 
probabilities (day 0 not shown). B Heatmap of top 25 weighted genes from learned parameterized gene 
weight matrix. C The distribution of treatment probabilities for Day 11 cells partitioned by treatment groups. 
D The distribution of gene expression between clusters 0, 5, 3, and 2 of select differentially expressed genes 
(INHBA, TUBA1B)

Fig. 4  Cellograph distinguishes the molecular mechanisms of transdifferentiation and dedifferentiation in 
myogenesis. A PHATE embeddings of learned latent space annotated according to treatment conditions, 
clusters, and softmax probabilities of all conditions except for MEFs, defining the in-group variation. B 
Heatmap of top weighted genes from parameterized gene weight matrix, identifying pertinent genes 
such as cyclin D1 and CRABP1. C Violin plot of softmax probabilities of cells belonging to the MyoD/day 4 
treatment group, showing similarities to the MyoD/day 2 population. D Violin plots of top 20 differentially 
expressed genes between clusters 1 and 8 and clusters 3 and 9, which define the Pax7+ cells and 
MyoD+FRC/day 8 treated cells, respectively. E Compositional plot of predicted cell types partitioned by 
cluster
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Resolution parameters were chosen such that the Leiden and Louvain algorithms 
generated the same number of clusters as k for k-means clustering for a more rigor-
ous comparison (for the organoid dataset, resolution parameters of 0.3 and 0.2 were 
chosen for Louvain and Leiden clustering, respectively; for the drug holiday dataset, 
resolution parameters of 0.6 and 0.45 were chosen for Louvain and Leiden clustering, 
respectively; and for the myogenesis dataset, resolution parameters of 0.45 and 0.34 
were chosen for Louvain and Leiden clustering, respectively).

However, we stress that this improvement in clustering is not a novel contribution 
of Cellograph. Ultimately, we are still performing k-means clustering, however, the 
input to the simple clustering algorithm is what impacts the performance. Tradi-
tional clustering methods like k-means perform clustering on a lower-dimensional 

Fig. 5  Results of running Milo and CNA on the datasets evaluated. A Output of running Milo and CNA on 
the human organoid dataset. B Output of running Milo and CNA on the drug holiday dataset. C Output of 
running Milo and CNA on the myogenesis dataset
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PCA representation of the single-cell data. However, instead of a linear transforma-
tion of the data, we perform a non-linear transformation prior to clustering via the 
initial layer of the GCN. The clustering method itself is not novel, but the way the 
data is processed prior to clustering is. Instead, we emphasize that the novel con-
tribution of Cellograph is a scalable means of ascertaining the effects of different 
experimental regimes at single-cell resolution.

Examining the sensitivity of the hyperparameters (the number of neighbors k, the 
latent dimension h, and principal components PCs) during our training by looking 
at the learning curves of accuracy and loss, we found Cellograph had fairly consist-
ent performances with a minimum of h = 16 latent dimensions across all 3 datasets 
(Additional files 2, 3, and 4, for organoid, drug holiday, and myogenesis, respectively 
for tables of validation accuracy metrics for each combination of parameters).

Altogether, Cellograph outperforms MELD is estimating how prototypical cells are 
of their ground truth labels, and consistently ranks higher than standard algorithms 
for clustering.

Fig. 6  Runtime of Cellograph’s performance versus MELD’s on optimal parameter settings. Cellograph 
consistently outperforms MELD on each dataset, while using fewer computing resources (y-axis is log-scaled)

Fig. 7  Boxplots of NMI values per clustering algorithm. Distributions of 100 independent NMI calculations 
for each clustering algorithm for all three datasets evaluated, quantifying concordance between the cluster 
assignments and ground truth labels
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Discussion
When designing single-cell experiments exploring the impacts of different treatments, 
it is vital to leverage the heterogeneity present at such resolution. The increasing com-
plexity of the experimental design (e.g., multiple treatments, various timepoints, etc) can 
result in diminishing returns from standard differential gene expression and clustering 
approaches due to the biological and technical variability present at the single-cell level. 
Existing approaches like MELD and VFC are apt for studying the effects of one experi-
mental treatment, but cannot be easily generalized to more complicated experimental 
programs. We designed Cellograph to address this challenge. Beyond just quantifying 
single-cell responses to perturbations analogously to MELD, Cellograph’s primary inno-
vation lies in its novel way of visualizing and clustering single-cell data by means of 
graph neural networks, which, through the parameterized gene weight matrix, provides 
an interpretable means of understanding which genes drive the difference between con-
ditions. We have shown that our approach improves clustering on three diverse data-
sets compared to standard clustering approaches, as well as captures a stronger signal of 
the ground truth experimental label compared to MELD. Clustering agnostic of experi-
mental conditions can fail to take into consideration the diversity of cellular responses 
to these perturbations and how those correspond to the transcriptomic variation. By 
applying simple k-means clustering to the latent space, we can obtain more informative 
clusters that enable deeper biological insight, especially in populations under the same 
experimental treatment. In addition to improved differential gene expression, we also 
obtain complementary information from the parameterized weight matrix after training, 
which reveals the most important genes in distinguishing between different treatments.

In a published dataset of donor-provided organoid samples, we were able to suc-
cessfully corroborate original findings, while providing a visually informative view of 
the data, and revealed novel insights into drivers of KPT-mediated organoid differ-
entation. Similarly, in our drug holiday application, we identified additional markers 
of drug resistance using the parameterized gene weight matrix, and described het-
erogeneity of cells in response to Erlotinib after 11 days and post-holiday, while char-
acterizing the popular that was retreated after the holiday that could inform future 
experiments into druggable targts for NSCLC. Finally, in our myogenesis evaluation, 
we identified shared features between transdifferentiation and dedifferentiation, while 
capturing relevant markers that distinguished the two processes. We anticipate Cel-
lograph will find a wide range of application to other biological contexts and different 
single-cell modalities as an all-in-one framework for facilitating visualization, clus-
tering, and single-cell responses to perturbations, on top of its efficiency. For exam-
ple, this work could find utility in clinical applications to studying heterogeneity in 
patient-treated samples in response to an experimental cancer drug. This could be 
also employed to study impacts of cancer drugs on cell cycle in protein immuno-
fluorescence imaging data [32]. Potential extensions of our method could certainly 
explore the incorporation of batch effect corrections. While this could be a valuable 
avenue to address potential confounding factors and improve the robustness of the 
analysis, we want to emphasize that the primary objective of our method, as well as 
other methods in similar tasks, is not specifically focused on batch effect correction, 
and we would advise users to independently correct for any technical artifacts prior 



Page 17 of 19Shahir et al. BMC Bioinformatics           (2024) 25:25 	

to using Cellograph. If there are several replicates for a specific condition, the user 
may perform batch effect correction using approaches such as Harmony [33] or Seu-
rat 3 [34], which have been independently shown to perform well in batch-effect cor-
rection [35].

The graph neural network architecture of node classification could even be extended 
to graph classification for looking at multiple patient samples, as is common in mass 
cytometry, or regression to predict continuous variables such as cellular pseudotime 
in the context of differentiation, cell cycle age [36], or gestational age in data from 
pregnant women [37], and may be further explored in future work. The choice of dif-
ferent graph constructions mechanisms could also warrant exploration in future stud-
ies. For example, CellVGAE uses variational graph autoencoders to reconstruct input 
graphs, adding additional, relevant edges, which can facilitate clustering and other 
downstream tasks in single-cell analysis [13]. scGNN is another GNN framework for 
single-cell analysis that selectively prunes edges in the initial kNN graph when pre-
processing the data prior to training [9].

Concerning limitations of Cellograph, as a semi-supervised method, it requires 
labels to train on and make informed predictions. Consequently, in sparsely-labeled 
data or data with no labels at all, Cellograph’s performance may fall short. In the case 
of sparse data, Cellograph could be used to impute the labels of other non-annotated 
cells. As for unlabeled data, one could pre-train Cellograph on a cellular atlas such 
as the Human Lung Cell Atlas [38] and apply the trained model to the unlabeled 
dataset to predict different cell types or distinguish diseased cells from healthy cells. 
Such endeavors could be the subject of future extensions of Cellograph. Because of 
the aforementioned dependency on labeled data, accurate labeling is imperative in 
achieving meaningful interpretation of Cellograph’s results. In addition, data with 
multiple conditions that have similar phenotypes may present a challenge during Cel-
lograph’s learning due to the difficulties in separating conditions in the latent space.

Altogether, Cellograph provides a novel framework for perturbation analysis, data 
visualization, and feature importance in single-cell genomics. We anticipate it will 
find utility for testing drug efficacy in clinical samples, and the incorporation of other 
single-cell modalities, which may be explored in future studies.
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