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Introduction
Drug–drug interactions (DDIs) occur when one drug affects another drug’s efficacy or 
therapeutic effects. Early detection of DDIs is critical to patient safety and quality of 
care. Identifying potential drug–drug interactions traditionally requires labor-intensive 
pair-by-pair experiments in vitro and in vivo.
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Drug–drug interactions (DDI) are a critical concern in healthcare due to their potential 
to cause adverse effects and compromise patient safety. Supervised machine learning 
models for DDI prediction need to be optimized to learn abstract, transferable fea-
tures, and generalize to larger chemical spaces, primarily due to the scarcity of high-
quality labeled DDI data. Inspired by recent advances in computer vision, we present 
SMR–DDI, a self-supervised framework that leverages contrastive learning to embed 
drugs into a scaffold-based feature space. Molecular scaffolds represent the core 
structural motifs that drive pharmacological activities, making them valuable for learn-
ing informative representations. Specifically, we pre-trained SMR–DDI on a large-scale 
unlabeled molecular dataset. We generated augmented views for each molecule 
via SMILES enumeration and optimized the embedding process through contras-
tive loss minimization between views. This enables the model to capture relevant 
and robust molecular features while reducing noise. We then transfer the learned 
representations for the downstream prediction of DDI. Experiments show that the new 
feature space has comparable expressivity to state-of-the-art molecular representa-
tions and achieved competitive DDI prediction results while training on less data. 
Additional investigations also revealed that pre-training on more extensive and diverse 
unlabeled molecular datasets improved the model’s capability to embed molecules 
more effectively. Our results highlight contrastive learning as a promising approach 
for DDI prediction that can identify potentially hazardous drug combinations using 
only structural information.
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In silico methods have recently become very popular for the prediction of DDIs. 
They provide a cost-effective and efficient screening tool for DDIs. However, rep-
resenting molecules is a challenging task. Different molecular representations have 
been proposed, such as chemical descriptors and fingerprints [1]. Chemical descrip-
tors are quantitative measurements of a molecule’s structural, physical, or chemical 
properties. They are derived from molecular structures, including size, shape, and 
connectivity. They are usually calculated based on predefined rules or mathematical 
algorithms. Some descriptors are computationally intensive or time-consuming to 
calculate and are less suitable for large-scale applications. The most commonly used 
descriptors are the molecular weight and the logarithmic partition coefficient (logP). 
Fingerprints condense the structure of a molecule into a binary bit string. Each bit 
represents a specific atom, ring, or functional group. In this way, fixed-length finger-
prints are generated, resulting in representations of equal length for all compounds. 
Although these representations are efficient, this compression can lead to a loss of 
information and result in similarity between longer, complex molecules and smaller, 
simpler molecules. Some fingerprints, such as MACCs keys or PubChem fingerprints 
(PFPs), are limited to fragments in the libraries on which they are built. Other fin-
gerprints, such as ECFPS, focus only on local structural features, not global or long-
range structural features that may be critical for some applications.

Many methods have investigated the predictive power of molecular descriptors and 
fingerprints for predicting DDI [2–4]. These methods mainly fall under the category of 
similarity-based approaches. They rely on the assessment of similarity between drugs to 
infer potential interactions. In similarity-based approaches, drugs are compared based 
on their structural and chemical characteristics. Pairwise similarity measures such as 
the Tanimoto coefficient or the Jaccard distance are calculated. Higher similarity values 
indicate a higher probability of interaction between drugs. Additional fingerprints were 
also used to characterize different aspects of drugs. These include side effect profiles [5], 
interaction profiles [6, 7], and target profiles [8–12]. Side effect profiles provide infor-
mation about the observed adverse effects associated with drugs. Interaction profiles 
describe the partners involved in drug interactions and record the drugs with which a 
particular drug tends to interact. Finally, target profiles describe the biological targets 
with which drugs interact.

Deep learning-based methods have shown great potential to improve the accuracy of 
DDI prediction by learning more informative and discriminative features directly from 
the raw molecular structures. In contrast to similarity-based approaches, these methods 
aim to let the neural network discover the most valuable patterns for predicting DDI. 
The two most commonly used representations of these approaches are the Simplified 
Molecular Input Line Entry System (SMILES) and molecular graphs constructed from 
SMILES. SMILES serves as a textual encoding of molecular structures, providing a com-
pact representation for analysis and interpretation. Most known SMILES-based models 
for the prediction of DDI are inspired by natural language processing (NLP) techniques 
and use layers of recurrent neural networks (RNNs), long short-term memory (LSTM), 
and convolutional neural networks (CNNs) [4, 11–13]. Graph-based models rely on 
graph convolutional networks (GCN) layers to process molecular graphs and capture 
key structural features and relationships [14, 15].
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Despite the success of these methods, some limitations still need to be addressed. 
These methods rely on large amounts of labeled data, which can be expensive and time-
consuming. In addition, they mainly focus on predicting interactions between known 
drugs. They have been shown to perform poorly on predicting interactions between new 
drugs that have not been previously observed [16–19].

In machine learning approaches, transfer learning (TL) is often used when only a 
limited amount of labeled data is available [20, 21]. Transfer learning has been success-
fully applied in many fields, e.g., text classification [13, 22], image classification [23], and 
more recently, drug discovery [24]. Transfer learning uses pre-trained models on large 
datasets. Instead of training a model from scratch on a small dataset, the pre-trained 
model serves as a starting point. This reduces the data and time required for training and 
improves downstream tasks. TL can be supervised, self-supervised, or unsupervised. In 
recent years, self-supervised TL has gained more popularity [25]. Self-supervised mod-
els are more robust than models trained in a supervised manner. They are trained to 
learn representations independent of the specific downstream task. The learned features 
are more general and abstract because they do not rely on task-specific labels during 
training. This can improve generalization when the trained model is transferred to other 
tasks or domains. Contrastive learning is a widely used self-supervised learning tech-
nique that focuses on maximizing the similarity between different augmented views 
of the same object and minimizing the similarity between views of different objects. 
Contrastive learning has been used primarily in computer vision tasks [25]. It has been 
successfully applied to various tasks, including image classification, object detection, 
semantic segmentation, and image generation. One of the main advantages of contras-
tive learning is that it does not require manual annotation of the data and thus can easily 
scale to large amounts of unlabeled data. Recent advances in contrastive learning meth-
ods, such as SimCLR [26] and SwAV [27], have achieved state-of-the-art performance 
on benchmark datasets and tasks. These results have sparked great interest in the use of 
contrastive learning in other domains, including natural language processing and rein-
forcement learning.

Here, we present a novel self-supervised molecular representation for DDI predic-
tion, SMR-DDI. SMR-DDI uses contrastive learning to compare augmented views of 
canonical SMILES using SMILES enumeration. We pre-trained a 1D-CNN encoder-
decoder-like architecture on a large unlabeled molecular dataset using contrastive loss 
to minimize the differences between canonical and randomized SMILES. We then fine-
tuned the encoder on a smaller labeled DDI dataset. To evaluate the richness of our fea-
ture space, we compared it to various state-of-the-art molecular representations while 
simulating different real-life use cases to validate its robustness and generalization. 
We also performed several ablation experiments to evaluate the impact of pre-training 
on our DDI prediction. In addition, we investigated the impact of pre-training with a 
more diverse molecular dataset and comprehensively analyzed the DDI dataset to gain 
insights into its properties. These analyses help to understand the model’s performance 
and improve the predictions.

Notably, our method showed performance comparable to or sometimes better than 
the state-of-the-art, confirming the effectiveness of pre-training with contrastive 
learning for DDI prediction. Using a contrastive approach, we learned rich molecular 
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representations for drugs with comparable predictive power to state-of-the-art molecu-
lar representations. Pre-training with a larger dataset also helped the prediction model 
to generalize better. The experiments showed that our molecular representation is not 
fixed but benefits positively from the chemical diversity in the training dataset. This flex-
ibility makes the proposed molecular representation particularly valuable in real-world 
scenarios where the molecular landscape is large and diverse.

Materials and methods
To overcome the challenge of suboptimal feature learning by deep neural networks on 
limited data, we explored an unsupervised learning approach. We aimed to develop a 
feature extractor capable of mapping the initial molecular feature space to a nuanced 
and informative subspace, thus improving the overall DDI side effect prediction 
performance.

Here are the three main biological intuitions (hypotheses) underlying the choice of a 
contrastive learning based approach. The first hypothesis (Hypothesis 1) states that by 
pre-training a molecular feature extractor using a contrastive learning approach on enu-
merated SMILES, the learned feature space will cluster drugs with similar molecular 
structures, indicating potential similarities in side-effect profiles. Since the scaffold is a 
structural framework representing the core molecular structure of a compound, while 
peripheral functional groups and substituents are ignored, molecules are more likely to 
be grouped based on their scaffold. Scaffolds have been shown to encode key aspects 
of biological activity [28]. This is because the core structure of a molecule often plays a 
crucial role in determining its activity. At the same time, peripheral functional groups 
and substituents can modulate the activity or influence pharmacokinetic properties. 
By focusing on the scaffold, researchers can compare the biological activity of different 
compounds with the same core structure, even if they have different functional groups 
or substituents. Scaffold-based drug design is an important approach in drug discovery, 
especially in cases where the exact mechanism of action of the new molecule is unknown 
or complex. Researchers develop new compounds with similar or improved properties 
by identifying and modifying key structural features of known scaffolds [28].

The second hypothesis is that pre-training using SMILES enumeration to gener-
ate multiple SMILES strings for each molecule will increase the diversity of the data 
(Hypothesis 2a) and further improve the robustness and performance of our drug–
drug interaction side effect prediction model (Hypothesis 2b). SMILES enumeration 
generates different canonical SMILES strings for the same molecule by systematically 
enumerating all possible arrangements of atoms and bonds in the molecule. This data 
augmentation technique, commonly used in cheminformatics, has improved the robust-
ness and performance of machine learning models [29].

The third hypothesis (Hypothesis 3) states that the pre-trained stable ’core’ molecu-
lar representation acquired during the contrastive learning phase for predicting side 
effects of drug–drug interaction would improve the generalization of the model to new 
chemical compounds compared to traditional and non-pre-trained molecular features. 
By pre-training on a large unlabeled molecular dataset, the learning goes beyond the 
supervised drug–drug interaction dataset. It covers compounds outside the dataset 
without the need for additional labeled drug pairs. The larger coverage of chemical space 
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compared to the supervised setting also improves the model’s ability to generalize to 
new molecules.

In this paper, we present a two-step framework for predicting the side effects of mol-
ecules. In the first step, we train a 1-D convolutional neural network (CNN) using a 
contrastive learning approach that allows us to extract informative molecular represen-
tations. We use the pre-trained model as a feature extractor and then add new, fully con-
nected layers for classifying the side effects. We trained only the newly added layers with 
the drug–drug interaction dataset. The main components of the approach are explained 
in more detail later.

Datasets
ChEMBL22

We have obtained a dataset of drug-like molecules in SMILES format from the ChEMBL 
database (version 22.0). ChEMBL is a comprehensive bioactivity database with a large 
collection of unique chemical entities and a wide range of bioactivity measurements, 
such as binding, inhibition, and physiological effects. The database also contains infor-
mation on drug targets and their interactions with small molecules, drug metabolism, 
and pharmacokinetic data. ChEMBL is widely used in drug discovery and development, 
bioinformatics, and computational biology research. Our dataset (version 22.0) con-
sisted of 244,245 unique molecules (Fig. 1) and was downloaded from the DeepChem 
[30] MoleculeNet suite of datasets.

The SMILES were dynamically enumerated at each epoch using a Python script based 
on the cheminformatics library RDKit [31]. The atomic order of the molecule is rand-
omized by converting it to molfile format and changing the atomic order. The molecule 
is then converted back to RDKit mol format, and a SMILES is generated using RDKit. 
The canonical SMILES option is set to false, so different orders of atoms can result in dif-
ferent SMILES. Some molecules can sometimes have numerous SMILES strings, which 
exceeds our requirements. To address this problem, we limited the number of SMILES 
strings to 50 based on our test experiments. Next, we tokenized the SMILES strings into 

Fig. 1 SMILES length distribution. SMILES length in ChemBL22 ranges from 7 to 2100 characters, with the 
largest SMILES sequence comprising 2100 characters and the smallest being seven characters long
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a sequence of characters. We padded them to a fixed length using the SmilesToSeq vec-
torizer provided by DeepChem to ensure compatibility with the model architecture.

Drugbank

Drugbank is a comprehensive online database containing drug targets, interactions, and 
metabolism information. It is sourced from FDA/Health Canada drug labels and primary 
literature and downloaded from Therapeutics Data Commons (TDC).1 It is a highly 
imbalanced dataset that provides detailed information on more than 191,808 drug–drug 
interactions involving 1706 drugs and 86 side effects. Figure 2 shows the distribution of 
side effects in Drugbank.

Model architecture
Contrastive learning of drug representation

Problem formulation

Consider a dataset of molecular structures represented by SMILES strings, denoted as 
D = {x1, x2, .., xN } , where N is the number of molecules. The goal is to learn a feature 
extractor function f that maps each molecular structure xi to a feature space zi = f(xi). Let 
S(xi) be the set of SMILES strings similar to xi, generated using SMILES enumeration. 
The contrastive learning objective is to maximize the similarity between the feature rep-
resentations of positive pairs (xi, xj ∈S(xi) ) and simultaneously minimize the similarity 
between the feature representations of negative pairs ( xi, xk /∈ S(xi) ). Given a minibatch 
B ∈ D, �B� = m , we used the Noise-Contrastive Estimation with Information Maximiz-
ing Objective (InfoNCE) loss function [32]:

(1)L
(i,j)
InfoNCE = − log

exp(sim(f (xi), f (xj))/τ )
2m
k=1 �[k �=i] exp(sim(f (xi), f (xk))/τ )

Fig. 2 Distribution of Drugbank DDI side effects

1 https:// tdcom mons. ai/ multi_ pred_ tasks/ ddi/

https://tdcommons.ai/multi_pred_tasks/ddi/
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where �[k �=i]  is an indicator function: 1 if  k  = i , 0 otherwise, sim(., .) is a cosine similar-
ity function, and τ , a temperature parameter that controls the sharpness of the similarity 
function. The cosine similarity function for vectors a and b is calculated as follows:

where ‖.‖ represents the Euclidean norm. The maximum cosine similarity possible is 1, 
while the minimum is − 1. This formulation encourages the model to learn a represen-
tation such that similar molecules are brought close together in the feature space while 
pushing dissimilar molecules apart. This is beneficial for tasks such as molecular proper-
ties prediction or drug discovery.

We have adapted the SimCLR2 architecture, which was originally developed for 
images, so that it can effectively encode SMILES strings. The base encoder network 
e(.) is an embedding layer followed by a series of conv1D layers and is responsible for 
extracting a representation vector h from the augmented SMILES. The embedding layer 
maps each atom in the SMILES to a continuous vector of size 116, using a vocabulary of 
148 elements that includes all atoms of the periodic table and some special characters, 
such as @ and \, which are used to construct the SMILES. We use the Rectified linear 
unit activation function (ReLU), and dropout and batch normalization layers are placed 
between the convolutional layers of the neural network layers.

(2)sim(a,b) =
a · b

�a� · �b�

Fig. 3 Overview of SMR-DDI. Step 1: The molecules are sampled from ChEMBL22, and SMILES enumeration 
is applied to generate a randomized view of the molecule. A base encoder network e(.)  and a projection 
head g(.) are trained to maximize the similarity between the canonical and randomized SMILES using the 
InfoNCE contrastive loss. Step 2: After the training process is completed, the representation h is transferred 
for DDI prediction. The latent features of each drug pair are combined to create a vector that is fed into a 
feed-forward neural network to predict DDIs
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The projection head g(.) is a fully connected neural network with two layers that map the 
representation h  to a space where we apply the contrastive loss. The architecture is shown 
schematically in Fig. 3. For each training iteration, we created a second view for each canon-
ical SMILES in our batch using SMILES enumeration. The two SMILES are then tokenized 
into sequences, padded with smilestoseq, and fed into the encoder to obtain a 1D feature 
vector to which the projection head is applied. The output features of the two augmented 
SMILES are then trained to be close to each other and different from the feature vector of 
the remaining SMILES in the batch.

Model training and evaluation

We split the ChEMBL dataset into training and validation sets in a ratio of 80:20. Since we 
want the molecules in the validation set to be as diverse as those in the training set, we used 
DeepChem’s MaxMin splitting strategy. The MaxMin algorithm is a common technique for 
selecting different subsets of molecules from a larger pool. It selects a group of dissimilar 
molecules representing the full range of chemical space in the larger pool.

To train the model, we used the AdamW optimizer with a cosine annealing learning rate 
scheduler. The initial learning rate was set to 1e−3, and the weight decay was set to 1e−6. 
We set the maximum number of epochs to 50. The model was trained on a single NVIDIA 
GeForce GPU with a batch of size 512. We used PyTorch Lightning to train the model with 
DataParallel in a distributed manner. We monitored the training progress with Tensor-
Board and saved the best model based on the validation loss. We randomly searched multi-
ple architectures and selected the architecture with the lowest validation loss.

Prediction of drug–drug interaction

Problem formulation

Our goal is to build a machine learning model to predict the side effects of drug–
drug interactions. We formulated the problem as a multiclass classification task 
where each drug pair is associated with one side effect. Given a set of n drug 
pairs X := {(x11, x

2
1), . . . , (x

1
n, x

2
n)
∣

∣x1i ∈ X and x2i ∈ X } , a set of side effect labels, 
Y := {y1, . . . , yn

∣

∣y ∈ N } and the molecular feature space χ , the goal is to learn a function f  
parametrized by θ that maps a drug pair xi := (x1i , x

2
i ) to a discrete probability distribution 

over all possible side effects y ∈ Y  . Specifically, we minimized the negative log-likelihood 
loss between f (xi;�) and yi  for each pair xi . The Negative log-likelihood over X is defined 
as:

where P(Y = yi|xi; θ ) is the predicted probability distribution over Y  given xi and model 
parameters θ , and yi is the true label.

Model training

After training with contrastive learning, we removed the projection head g(.) and 
used e(.) it as a pre-trained feature extractor. We used a pre-trained 1D-CNN encoder 
to encode the SMILES strings of drugs from the Drugbank. We then trained a fully 

(3)L(θ |X ) = −
1

n

n
∑

i=1

logP(Y = yi|xi; θ ) = −
1

n

n
∑

i=1

yi log f (xi; θ)



Page 9 of 24Kpanou et al. BMC Bioinformatics           (2024) 25:47  

connected neural network to predict the side effects associated with each drug pair. For 
each drug pair in Drugbank, the pre-trained molecular representations were concate-
nated and fed to the classifier. The number of layers and the size of each layer are opti-
mized using Optuna, and only the best model is saved.

We trained the classifier with a batch size of 256 over 200 epochs and selected only the 
best epoch to perform inference. We used the same optimizer and learning rate sched-
uler as before. We split the Drugbank dataset into training, validation, and test sets in an 
80:10:10 ratio to evaluate the performance of the model. We repeated this process for 
five random seeds for a more robust estimate. We used a stratified sampling strategy to 
ensure that the distribution of classes remained consistent across partitions.

Evaluation schemes

This study evaluated DDI prediction tasks based on three experimental settings:

• Random split: prediction of unobserved interaction types between known drugs 
(Task 1). After deployment, the model will only be exposed to drugs seen during 
training, even if the pairs the model is asked about are unseen. This is the classical 
train-test split scenario.

• One-unseen split: prediction of interaction types between known drugs and new 
drugs. This scenario is relevant when using our DDIs models to predict safety liabili-
ties associated with taking recently approved drugs with existing ones. (Task 2)

• Both-unseen split: prediction of interaction types between new drugs (task 3). The 
new drugs in the corresponding task are missing in the training set but are present 
in the test set. This scenario helps quantify how well the models can utilize existing 
DDIs models to explore new drug combinations.

The three experimental settings help to get a complete overview of how well a model 
can predict the side effects of drug–drug interactions. Figure  4 summarizes all three 
evaluation schemes.

Fig. 4 Evaluation schemes for DDIs models. Left: random splitting strategy; center: one-unseen splitting 
strategy; right: both-unseen splitting strategy. Combining the strategy on the right and center is 
recommended to avoid unnecessary data waste. One unseen and both-unseen share the same training 
examples
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Metrics

We used the area under the receiver operating characteristic curve (AUC-ROC), the 
area under the precision-recall curve (AUPRC), accuracy (ACC), F1-score, Precision, 
and Recall as our performance metrics. The AUC-ROC measures the trade-off between 
the true positive rate (TPR) and the false positive rate (FPR) and is computed as the area 
under the ROC curve. The AUPRC computes the area under the precision-recall curve 
and provides a measure of the trade-off between precision and recall. Accuracy (ACC) 
is a standard performance metric that measures the percentage of correctly classified 
instances. The F1-score is the harmonic mean of precision and recall, which considers 
false positives and negatives. Precision is the ratio of true positives to the sum of true 
positives and false positives. Recall is the ratio of true positives to the sum of true posi-
tives and false negatives. Together, these performance metrics provide a comprehensive 
assessment of the performance of our model. As the dataset is highly imbalanced, we use 
the weighted version of these metrics to account for the distribution of each side effect. 
Only AUC-ROC and AUPRC are macro metrics.

Results and discussion
The experiments in the Results section can be divided into two groups. The first three 
experiments investigate how useful a feature space based on scaffolds can be for predict-
ing the side effects of drug–drug interactions. The remaining experiments evaluate the 
quality of the feature space and show the results of predicting the side effects of drug–
drug interactions.

Frequent pattern mining: exploring scaffold combinations and association rules

The first experiment uses frequent pattern mining techniques to explore scaffold com-
binations and association rules within the Drugbank dataset, which contains extensive 
information on drug interactions and side effects. We started by extracting drug pairs 
and their associated side effects from Drugbank and used DeepChem2 to determine 
the scaffolds of each molecule. We identified the most frequent combinations by apply-
ing the FP-Growth algorithm with a minimum support threshold of 1%. This dataset of 
191,808 molecule combinations yielded 964 scaffold families and 93,681 unique scaf-
fold pair combinations (Additional file  1: supplementary file 1a). Interestingly, 75% of 
the scaffold combinations occurred only once. As expected, the benzene ring (canoni-
cal SMILES c1ccccc1) was the most frequently observed scaffold, with the most recur-
rent combination of scaffolds being (c1ccccc1, c1ccccc1). We derived 59 combinations 
from the FP growth analysis, with the most frequent combination having a support value 
of 28% (Additional file 2: supplementary file 1b). Using this set of 59 combinations, we 
generated a comprehensive collection of association rules (Additional file 3: supplemen-
tary file 1c). These rules provided information about the likelihood of specific side effects 
occurring with certain combinations of drugs or interactions between scaffolds. We 
used support, confidence, and lift metrics to score the rules. For example, the association 
rule with the highest confidence level (62%) suggests that if ‘#Drug1 may decrease the 

2 https:// github. com/ deepc hem/ deepc hem# citing- deepc hem

https://github.com/deepchem/deepchem#citing-deepchem
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antihypertensive activities of #Drug2,’ one of the molecules contains at least one benzene 
ring. This is consistent with another rule in the database, which states that if ‘c1ccccc1’ 
is present, then ‘#Drug1 may increase the hypotensive activities of #Drug2.’ Although 
the benzene ring is commonly used in pharmaceuticals due to its desirable physico-
chemical properties, such as lipophilicity, planarity, and ability to interact with certain 
receptors or enzymes in the body, there is no direct evidence in the literature linking 
benzene to hypotensive activities. Therefore, this rule probably stems from the fact that 
the most frequent combination of scaffolds is the pair of benzene. Thus, it is important 
to note that the imbalance in the distribution of scaffold families within the dataset may 
introduce bias into the generated rules. Furthermore, limitations of the dataset, such as 
potential data incompleteness, need to be considered when interpreting the results.

Scaffold interaction profiles analysis

In a second experiment, we attempted to mitigate potential frequency biases and inves-
tigate similarities between the scaffolds by examining their interaction profiles. We 
assessed the presence or absence of interactions within the dataset for each pair of scaf-
folds. We created a binary interaction profile matrix in which each cell (i, j) indicates 
whether scaffold i interacts with scaffold j (0 for no interaction, 1 otherwise). Each row 
is a binary vector describing the interaction partners for each scaffold. By using a binary 
vector instead of counting the number of interactions between each scaffold, the bias in 
the rules due to imbalance in the dataset was removed. This matrix also answers whether 
we can infer potential interaction partners for a molecule based on its scaffold. It also 
allowed us to compare each scaffold based on its interaction partners and cluster scaf-
folds with similar interaction profiles.

The analysis resulted in a matrix with 937 rows and 926 columns, representing the 
number of unique scaffolds in the columns for drug 1 and 2, respectively (Fig. 5a). We 
found that the families of molecules had a relatively low number of interaction partners, 
with 50% of the scaffolds interacting with 79 or fewer scaffolds of the 926 candidates. 
The most represented scaffold, c1ccccc1, had the highest number of interaction partners 
(686 out of 926, representing 74% of possible interaction partners). In contrast, some 

Fig. 5 Scaffold Interaction Profiles and Cluster Analysis. a Binary interaction profiles matrix: Each cell 
represents the presence (black pixel) or absence (white pixel) of interaction between scaffolds. b 
Scaffold-Scaffold similarity matrix: Scaffolds are clustered based on the similarity of their interaction profiles. 
Darker cells indicate higher similarity between scaffold interaction profiles
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families had only one interaction partner (1 out of 926). Although some family combina-
tions were rarer than others, it is not clear whether these families inherently have fewer 
interaction partners or whether this is simply due to the limitations of the dataset.

We used the algorithm fclusterdata from the SciPy library with default parameters and 
the Jaccard similarity metric to cluster the scaffolds based on their interaction profiles 
(Fig.  5b). We identified 417 scaffold clusters, with the smallest cluster containing one 
scaffold and 75% of the clusters having one or two scaffolds (Additional file 4: supple-
mentary file 2). The largest cluster consisted of 30 scaffolds. To complete our analysis, 
the resulting clusters were examined to determine whether these groups exhibit similari-
ties from a structural perspective. In particular, we focused on clusters whose members 
shared more than 90% of their interaction profiles. Even though Tanimoto is the best 
known similarity metric, as recommended by [33], we decided to explore other metrics 
that could provide valuable insights for our analysis. We used the RDKit library to inves-
tigate four other Tanimoto variants: RogotGoldberg, Asymmetric, Kulczynski, and Dice. 
Like Tanimoto, these variants measure the proportion of shared bits between two fin-
gerprints out of the total number of bits set in both fingerprints, with the main differ-
ence being how they assign weights to the shared bits (Fig. 6).

The different similarity metrics indicated that scaffolds with similar interaction pro-
files shared specific structural characteristics but were not identical. Families within the 
same cluster were more similar to each other than to others. However, the interpretation 
of similarity scores depends on the specific application and context. For instance, in drug 
discovery, unlike virtual screening applications that require higher similarity scores to 
identify potential leads confidently, a Tanimoto similarity score ≥ 0.3, in some cases, is 
considered sufficient to indicate structural similarity between molecules [34–37].

Scaffold side effects profiles analysis

The same (previous) experiment was repeated by generating a binary vector of side 
effects for each scaffold to assess the relationship between scaffolds and side effects. 
We wanted to analyze the profiles of side effects associated with each scaffold and 
investigate whether it is possible to derive a potential list of side effects from a scaf-
fold or, conversely, whether we can derive a list of candidate scaffolds from a side 
effect. Similar to the previous experiment, we compared scaffold groups with similar 

Fig. 6 Structural Similarity Analysis of Scaffold Clusters formed based on scaffold interaction profiles. 
Intracluster similarity: Average pairwise similarity among scaffolds within the same cluster. Intercluster 
similarity: Average pairwise similarity between scaffolds of different clusters
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side effect profiles to determine their structural similarities. We also compared side 
effects with similar scaffold profiles (list) to determine if they are biologically related.

Specifically, we generated a binary side effect profile matrix for scaffolds, where 
each row is a scaffold, and each column is a side effect (filled with 1 when the side 
effect is reported for the scaffold, 0 otherwise). The resulting matrix has 939 rows 
and 86 columns (Fig.  7a). Approximately 75% of the scaffolds exhibited 1 to 9 side 
effects, representing around 9% of the total side effects, with 7% having only one out 
of 86 side effects. The scaffold “c1ccccc1” was associated with 61 out of 86 side effects, 
indicating its wide range of side effects. We observed that some side effects, such as 
L1–L4 (Additional file 5: supplementary file 3a), were more challenging to predict in a 
leave-one-drug-out setting as they appeared in most families of molecules.

We also calculated the pairwise similarity between scaffolds based on their side-
effect profiles and used the same clustering algorithm to cluster scaffolds with simi-
lar side-effect profiles. This matrix revealed the presence of 364 clusters among the 
scaffolds (Fig. 7b). The clusters varied in size, with the smallest containing only one 
scaffold and 75% having one or two scaffolds. The largest cluster consisted of 45 
scaffolds. Molecular similarity analysis of the clusters (Fig.  8) showed that families 
of molecules with similar side effect profiles, although not identical, shared certain 

Fig. 7 Scaffold side effects profiles and Cluster Analysis. a Binary interaction profiles matrix: Each cell 
represents the presence (black pixel) or absence (white pixel) of association side-effect: scaffolds. The four 
plain black lines are named L1 up to L4, respectively. b Scaffold-Scaffold similarity matrix: Scaffolds are 
clustered based on the similarity of their side effect profiles. Darker cells indicate higher similarity between 
scaffold interaction profiles. c Side effect—Side effects similarity matrix: Side effects are clustered based 
on how similar the list of scaffolds that cause them are. Darker cells indicate higher similarity between side 
effects scaffold profiles

Fig. 8 Structural Similarity Analysis of Scaffold Clusters formed based on their side effects profiles



Page 14 of 24Kpanou et al. BMC Bioinformatics           (2024) 25:47 

structural features. However, knowing the scaffold of a molecule in our dataset signif-
icantly reduced the range of possible side effects. On average, we went from an initial 
space of 86 side effects to approximately nine side effects per scaffold. This could be 
very useful for predicting the potential side effects of new or unseen compounds that 
belong to one of these clusters.

We further investigated side effects with similar scaffold profiles and obtained a sec-
ond distance matrix (similarity) of size 86 × 86, which yielded 38 clusters (Fig. 7c). The 
smallest cluster contained two side effects, 75% contained up to three side effects, while 
the most significant cluster contained seven side effects. We also identified six pairs of 
side effects that shared the same scaffold profiles (Additional file 6: supplementary file 
3b). When inspecting the side effect clusters, we discovered that the same list of scaf-
folds frequently caused biologically related side effects. For example, sedative drugs 
could also exhibit serotoninergic activities [38, 39]. Benzodiazepines are sedative drugs 
shown to modulate serotoninergic activity in the brain. Similarly, selective serotonin 
reuptake inhibitors (SSRIs), primarily used for their serotoninergic activity, can also have 
sedative effects due to their primary mechanism of action.

Overall, the previous experiments have highlighted the need for an expressive feature 
space capable of classifying molecules based on their scaffolds and capturing the subtle-
ties of individual molecules. The following steps involve assessing if the proposed deep 
learning architecture can learn such a space.

Visualization of molecular representations

We aimed to validate the learned latent space obtained by pretraining the SMR-DDI 
model on the ChEMBL22 dataset, which comprises a vast collection of unique chemi-
cal entities and a wide range of bioactivity measurements, such as binding, inhibition, 
and physiological effects. Using t-distributed stochastic neighbor embedding (t-SNE), 
we randomly selected 5000 molecules from ChEMBL22 and projected the 262-dim 
latent space learned by SMR-DDI into a 2D representation. t-SNE is a non-linear dimen-
sionality reduction technique that preserves pairwise similarities between data points 
while mapping them from a high to a lower-dimensional space. It is particularly effective 
in revealing non-linear structures in data that are challenging to discover using linear 
methods such as PCA. The hyperparameters used for t-SNE were n_components = 2, 
perplexity = 30, and n_iter = 5000. Each molecule in the 2D space was color-coded based 

Fig. 9 t-SNE Visualization of Molecular Representations Learned by SMR-DDI. The visualization includes 5000 
randomly selected molecules from the ChEMBL22 validation dataset. Each molecule is color-coded based on 
its scaffold
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on its molecular family (Fig. 9). The results showed that the learned latent space enabled 
the separation of molecules based on their scaffolds. However, we found that certain 
families of molecules are too closely grouped.

Figure 10 examines then whether the distance between the different clusters of scaf-
folds learned from SMR-DDI is representative of their structural similarity. In particular, 
the analysis compares the molecular structures of drugs with closely clustered scaffolds 
(green box) with those with distinctly clustered scaffolds (outside the green box). When 
the molecular structures were analyzed with RDKit, we found that the molecules out-
side the green box had distinct structural patterns. In contrast, the molecules inside the 
green box were very similar, with the core structure consisting of two benzene rings 
with different bonds. For example, molecules such as 1ccc(COc2ccccc2)cc1 and c1ccc(–
c2ccccc2)cc1 are very similar, except for the presence of a methoxy group in one mol-
ecule and a direct carbon–carbon (–) bond between the benzene rings in the other. This 
observation confirmed the correct positioning of the molecules based on their structural 
similarities. Furthermore, an LDA analysis of the green box molecules confirmed that 
there is a projection that maximizes the distance between different scaffolds even if they 
are structurally very similar (Additional file 7: Supplementary Fig. S1).

Finally, we randomly selected 100 SMILES (molecules), generated ten randomized 
views for each molecule, and visualized the feature space with t-SNE (Fig. 11). We 
found that the canonical and randomized SMILES were close in the generated vector 

Fig. 10 Molecular Validation of Scaffold Relationships Learned by SMR-DDI

Fig. 11 t-SNE visualization of the canonical and randomized SMILES feature space. One hundred canonical 
SMILES and their corresponding ten randomized SMILES per canonical SMILES
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space. This closeness suggests that SMR-DDI has adequate expressive power to cap-
ture the relationships between canonical and randomized views. The learned fea-
ture space can effectively represent the structural similarities and differences of the 
molecules. The network had learned close representations for molecules with simi-
lar molecular structures even without labeling information during training, indicat-
ing the model’s ability to capture intrinsic connections between molecules. These 
results confirmed our first hypothesis (Hypothesis 1), which stated that pre-training 
a molecular feature extractor using a contrastive learning approach on enumerated 
SMILES would result in a feature space that clusters drugs with similar molecular 
scaffolds.

DDI prediction: handling imbalanced data

To quantify the quality of the pre-trained space, we trained a deep neural network to pre-
dict Drugbank side effects using the pre-trained model (contrastive learning framework) 
as a feature extractor. We added additional layers for side effect classification and trained 
only the new ones on the new dataset. We used negative log-likelihood loss as a loss 
function and a batch size of 256. We optimized hyperparameters such as the number of 
layers, dropout, and learning rate optimization using Hyperopt. We evaluated not only 
the performance in conventional prediction schemes, such as the types of interactions 
not observed between known drugs (Task 1), but also the robustness of generalization 
in two other experimental settings. The first setting involved evaluating the prediction of 
known drug interactions (Task 1), the second one the prediction of interactions between 
known and new drugs (Task 2), and the third one the prediction of interactions between 
new drugs (Task 3). The new drugs in the corresponding tasks were absent from the 
training set but present in the test set. The dataset used was Drugbank and is heavily 
imbalanced. To address the class imbalance, we tested different approaches during train-
ing, such as balancing batches, using class weights, and a weighted random sampler 
from PyTorch (WRSP). Balancing the batches ensured an equal number of examples per 
class in each batch, with the batch size set to 256. Class weights involved sampling each 
class randomly with replacement, where the probability of sampling a class was inversely 
proportional to its frequency in the dataset. This strategy favored the minority classes, 
as they had a higher chance of being sampled. The weighted random sampler in PyTorch 
allowed random data sampling, with the sampling probability proportional to the weight 
of each sample. To provide a comprehensive evaluation of the prediction model’s perfor-
mance, we reported in Table 1 metrics that accounted for class imbalance, such as pre-
cision, recall, weighted F1 score, area under the receiver operating characteristic curve 
(AUC-ROC), and area under the precision-recall curve (AUPRC). In addition, confu-
sion matrices were presented (Additional file  8: Supplementary Fig.  S2). We obtained 
the best results using balanced batches or the weighted random sampler from PyTorch. 
Although the results of these two samplers were very similar, the balanced batch strategy 
performed slightly better. As we hypothesized earlier, L1 to L4 were more challenging 
to predict in tasks 2 and 3 (Additional file 8: Supplementary Fig. S2). We thus used bal-
anced batches for all of our experiments.
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Comparison with baselines

We conducted a performance comparison of our pre-trained feature space with several 
well-known feature spaces (molecular representations) from the literature, including:

• ECFP (radius 2, nbits = 2048): Extended-connectivity fingerprints (ECFPs) are a fam-
ily of circular fingerprints designed for molecular characterization, similarity search-
ing, and structure–activity modeling. They use a predefined set of structural groups 
called circular substructures. These substructures are circular fragments of a mol-
ecule of a certain radius and can be considered topological features that capture the 
connectivity of atoms within the molecule [40].

• Maccs: MACCS keys are 166-bit 2D structure fingerprints commonly used to meas-
ure molecular similarity. They described the presence of key features in molecular 
graphs [41].

• ChemGPT: is a transformers model for generative molecular modeling, pre-trained 
on the PubChem10M dataset. ChemGPT (1.2B params) has 1.2B params, while 
ChemGPT (4.7 M params) has 4.7 M params [42].

• ChemBERTa is a pre-trained language model for molecules based on (Ro)BERT(a) 
trained on PubChem 77  M compounds. The MTR version was pre-trained using 
a multitask regression objective, while the MLM version was pre-trained using a 
masked language modeling objective [43].

• gin_supervised_masking: GIN neural network model pre-trained with masked mod-
eling on molecules from ChEMBL [44].

• gin_supervised_infomax: GIN neural network model pre-trained with mutual infor-
mation maximization on molecules from ChEMBL [44].

• gin_supervised_edgepred: GIN neural network model pre-trained with supervised 
learning and edge prediction on molecules from ChEMBL [44].

• gin_supervised_contextpred: GIN neural network model pre-trained with super-
vised learning and context prediction on molecules from ChEMBL [44].

• Mol2vec: A variant of the word2vec model trained on 22 million molecules from the 
ZINC database [45].

Table 1 Performance of different sampling strategies

The best results are in bold

AUPRC AUROC ACC F1 Precision Recall

Task 1

BALANCED_BATCH 0.897 0.991 0.912 0.912 0.913 0.912
CLASS_WEIGHT 0.710 0.971 0.305 0.214 0.398 0.305

PyTorch WEIGTHED RANDOM SAMPLER 0.868 0.990 0.862 0.862 0.866 0.862
Task 2

BALANCED_BATCH 0.420 0.900 0.537 0.508 0.525 0.537
CLASS_WEIGHT 0.390 0.886 0.237 0.180 0.433 0.237

PyTorch WEIGHTED RANDOM SAMPLER 0.417 0.878 0.530 0.500 0.519 0.530
Task 3

BALANCED_BATCH 0.170 0.731 0.299 0.264 0.283 0.299
CLASS_WEIGHT 0.205 0.756 0.174 0.161 0.250 0.174

PyTorch WEIGHTED RANDOM SAMPLER 0.175 0.730 0.299 0.255 0.269 0.299
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Table  2 contains a detailed overview of all benchmarks. Based on our bench-
marking, we observed that tasks 2 (Table 4) and 3 (Table 5) were challenging for all 
methods. As can be seen in Table  3, SMR-DDI performs relatively well when com-
paring metrics such as F1-Score, Precision, Recall, AUPRC, and AUROC in Task 1. 
SMR-DDI performs similarly well to Mol2vec and MACCs Keys and outperforms 
ChemGPT-1 and ChemGPT-4, emphasizing the relevance of the captured features. 
In addition, SMR-DDI performs similarly to MACCkeys on tasks 2 and 3 and still 
outperforms ChemGPT-1 and ChemGPT-4. In particular, on task 3, SMR-DDI per-
forms similarly to ChemBerta-77  M-MLM and ChemBerta-77  M-MLR and outper-
forms ChemGPT-4 and ChemGPT-1. Although SMR-DDI was trained on a smaller 

Table 2 Description of all molecular featurizers benchmarks

Featurizer Type Dataset name Dataset size Feature 
vector. 
dim

Architecture

ECFP Hashed fingerprint – – 2048 –

ChemBERTa-77M Pretrained PubChem 77 M 384 Transformer

MOL2VEC Pretrained ZINC + ChemBL 19.9 M 300 Word2vec

SMR-DDI Pretrained Chembl 200 K 262 CNN

ChemGPT-1B Pretrained PubChem 10 M 256 Transformer

MACCKEYS Structural fingerprint – – 166 –

gin_supervised_edgepred Pretrained ChembL + ZINC15 465 K + 2 M 300 Graph

ChemGPT-4M Pretrained PubChem 10 M 128 Transformer

gin_supervised_context-
pred

Pretrained ChembL + ZINC15 465 K + 2 M 300 Graph

gin_supervised_masking Pretrained ChembL + ZINC15 465 K + 2 M 300 Graph

gin_supervised_masking Pretrained ChembL + ZINC15 465 K + 2 M 300 Graph

Table 3 Performance of SMR-DDI and other featurizers on Task 1

SMR‑DDI results are in bold

Featurizer AUPRC AUROC ACC F1 Precision Recall

ECFP 0.942 ± 0.02 0.996 ± 0.002 0.954 ± 0.002 0.954 ± 0.002 0.954 ± 0.002 0.954 ± 0.002

gin_supervised_
infomax

0.91 ± 0.013 0.994 ± 0.002 0.93 ± 0.003 0.93 ± 0.003 0.93 ± 0.003 0.93 ± 0.003

gin_supervised_
contextpred

0.902 ± 0.02 0.993 ± 0.003 0.928 ± 0.003 0.928 ± 0.003 0.928 ± 0.003 0.928 ± 0.003

Chem-
BERTa-77 M-MLM

0.918 ± 0.008 0.993 ± 0.004 0.924 ± 0.006 0.924 ± 0.006 0.925 ± 0.005 0.924 ± 0.006

gin_supervised_
masking

0.9 ± 0.023 0.993 ± 0.003 0.923 ± 0.006 0.923 ± 0.006 0.923 ± 0.005 0.923 ± 0.006

gin_supervised_
edgepred

0.918 ± 0.013 0.992 ± 0.003 0.923 ± 0.003 0.923 ± 0.003 0.924 ± 0.003 0.923 ± 0.003

Chem-
BERTa-77 M-MLR

0.917 ± 0.016 0.992 ± 0.004 0.907 ± 0.007 0.908 ± 0.007 0.908 ± 0.007 0.908 ± 0.007

MACCKEYS 0.919 ± 0.016 0.994 ± 0.003 0.892 ± 0.022 0.893 ± 0.022 0.895 ± 0.02 0.892 ± 0.022

SMR-DDI 0.9 ± 0.005 0.992 ± 0.003 0.877 ± 0.014 0.877 ± 0.014 0.88 ± 0.013 0.877 ± 0.014

MOL2VEC 0.91 ± 0.006 0.992 ± 0.002 0.869 ± 0.028 0.869 ± 0.027 0.873 ± 0.023 0.869 ± 0.028

ChemGPT-4 0.875 ± 0.017 0.993 ± 0.002 0.847 ± 0.026 0.848 ± 0.026 0.854 ± 0.022 0.847 ± 0.026

ChemGPT-1 0.877 ± 0.017 0.99 ± 0.004 0.839 ± 0.047 0.839 ± 0.047 0.846 ± 0.041 0.839 ± 0.047
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dataset (~ 200  K = 2% of the smallest pre-training benchmark dataset), it performs 
comparably to larger models. This shows that it can learn effectively from a limited 
amount of data with data augmentation. However, it performed slightly worse than 
Mol2vec on tasks 2 and 3, suggesting that the learned features may be too invariant 
or insufficiently rich. The performance of SMR-DDI is also slightly lower than some 
other methods, such as gin_supervised_infomax, gin_supervised_contextpred, and 
gin_supervised_edgepred, which are graph-based models trained on larger datasets 
(ChEMBL + ZINC15 with 465,000 + 2 million training molecules). This suggests that 

Table 4 Performance of SMR-DDI and other featurizers on Task 2

Featurizer AUPRC AUROC ACC F1 Precision Recall

gin_supervised_
contextpred

0.503 ± 0.039 0.908 ± 0.023 0.596 ± 0.005 0.583 ± 0.007 0.599 ± 0.01 0.596 ± 0.005

ECFP 0.502 ± 0.047 0.897 ± 0.036 0.601 ± 0.016 0.581 ± 0.022 0.616 ± 0.017 0.601 ± 0.016

gin_supervised_
masking

0.494 ± 0.051 0.901 ± 0.019 0.594 ± 0.008 0.579 ± 0.009 0.602 ± 0.006 0.594 ± 0.008

gin_supervised_
infomax

0.472 ± 0.065 0.884 ± 0.031 0.589 ± 0.004 0.576 ± 0.007 0.593 ± 0.01 0.589 ± 0.004

gin_supervised_
edgepred

0.48 ± 0.036 0.905 ± 0.024 0.585 ± 0.01 0.57 ± 0.012 0.593 ± 0.013 0.585 ± 0.013

MOL2VEC 0.554 ± 0.022 0.913 ± 0.006 0.575 ± 0.024 0.565 ± 0.022 0.573 ± 0.023 0.575 ± 0.024

ChemBERTa-
77M-MLM

0.491 ± 0.021 0.9 ± 0.02 0.58 ± 0.013 0.564 ± 0.017 0.585 ± 0.013 0.58 ± 0.013

ChemBERTa-
77M-MLR

0.533 ± 0.016 0.911 ± 0.009 0.571 ± 0.014 0.562 ± 0.01 0.575 ± 0.013 0.571 ± 0.014

MACCKEYS 0.482 ± 0.028 0.891 ± 0.014 0.543 ± 0.015 0.528 ± 0.014 0.545 ± 0.014 0.543 ± 0.015

SMR-DDI 0.434 ± 0.025 0.896 ± 0.008 0.528 ± 0.005 0.51 ± 0.006 0.529 ± 0.007 0.528 ± 0.005

ChemGPT-4 0.447 ± 0.035 0.899 ± 0.01 0.503 ± 0.014 0.486 ± 0.018 0.499 ± 0.021 0.503 ± 0.014

ChemGPT-1 0.452 ± 0.039 0.898 ± 0.015 0.493 ± 0.01 0.476 ± 0.011 0.488 ± 0.011 0.493 ± 0.01

Table 5 Performance of SMR-DDI and other featurizers on Task 3

Featurizer AUPRC AUROC ACC F1 Precision Recall

MOL2VEC 0.296 ± 0.035 0.786 ± 0.031 0.343 ± 0.019 0.338 ± 0.017 0.352 ± 0.019 0.343 ± 0.019

gin_supervised_
edgepred

0.233 ± 0.053 0.744 ± 0.029 0.345 ± 0.015 0.327 ± 0.015 0.343 ± 0.017 0.345 ± 0.015

ECFP 0.251 ± 0.023 0.767 ± 0.04 0.34 ± 0.014 0.323 ± 0.018 0.343 ± 0.01 0.34 ± 0.014

MACCKEYS 0.227 ± 0.07 0.71 ± 0.058 0.338 ± 0.023 0.317 ± 0.022 0.336 ± 0.019 0.338 ± 0.023

gin_supervised_
infomax

0.228 ± 0.035 0.704 ± 0.038 0.339 ± 0.017 0.315 ± 0.019 0.339 ± 0.015 0.339 ± 0.017

gin_supervised_
contextpred

0.244 ± 0.029 0.752 ± 0.028 0.344 ± 0.022 0.313 ± 0.016 0.336 ± 0.017 0.344 ± 0.022

gin_supervised_
masking

0.225 ± 0.034 0.723 ± 0.03 0.328 ± 0.007 0.311 ± 0.008 0.339 ± 0.018 0.328 ± 0.007

Chem-
BERTa-77 M-MLM

0.239 ± 0.042 0.734 ± 0.029 0.334 ± 0.028 0.311 ± 0.026 0.336 ± 0.029 0.334 ± 0.028

Chem-
BERTa-77 M-MLR

0.249 ± 0.025 0.755 ± 0.027 0.318 ± 0.018 0.302 ± 0.016 0.319 ± 0.022 0.318 ± 0.018

SMR-DDI 0.154 ± 0.019 0.739 ± 0.041 0.305 ± 0.014 0.295 ± 0.013 0.312 ± 0.014 0.305 ± 0.014

ChemGPT-1.2B 0.165 ± 0.016 0.739 ± 0.035 0.279 ± 0.014 0.263 ± 0.018 0.271 ± 0.022 0.279 ± 0.014

ChemGPT-4 M 0.163 ± 0.019 0.749 ± 0.026 0.262 ± 0.021 0.254 ± 0.016 0.274 ± 0.015 0.262 ± 0.021
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the larger and more diverse training datasets may contribute to their superior perfor-
mance. A larger training dataset can provide more diverse and representative sam-
ples, potentially improving the performance of the model (Tables 4 and 5).

Although graph methods seem appealing, they are not explicitly designed for SMILES 
enumeration, as the molecular graph remains unchanged for canonical and randomized 
SMILES. The advantage of SMILES enumeration lies in its ability to generate alterna-
tive readings by generating variable permutations of the molecular graph. One idea to 
explore is the development of a propagation algorithm that updates the nodes of the 
molecular graph based on a specific permutation order.

Another factor that could influence the quality of the vector representation, besides 
the choice of training dataset, is the size of the feature space. SMR-DDI has a feature 
vector dimension of 262, which is relatively low compared to some other models, such 
as ECFP, MOL2VEC, and ChemBERTa-77  M, which have higher dimensional feature 
vectors (e.g., 2048, 300, and 384, respectively). Higher dimensional feature vectors can 
capture more detailed and informative representations of drugs, improving the model’s 
ability to learn complex relationships and patterns. When working with small training 
datasets, as we do, the primary concern is overfitting. Overfitting occurs when a model 
becomes too specialized in learning from the limited data it has seen during training, 
resulting in poor generalization to unseen data. A higher embedding space or higher 
dimensional embeddings could potentially increase the risk of overfitting, especially 
with limited training data [46, 47]. It will be worth exploring a higher embedding space 
with more training data.

Overall, the performance of SMR-DDI is encouraging and suggests its effectiveness in 
predicting side effects between known drug pairs. However, for a comprehensive evalu-
ation and comparison, it is essential to consider factors such as the size and diversity of 
the training dataset and the dimension of the feature vector space.

Ablation study on pre‑training

We conducted an ablation study to evaluate the effects of the pretraining phase. We 
applied our fully connected classifier to the initial feature space and retrained the model 
using three evaluation schemes. As depicted in Table  6, using the pre-trained feature 
space leads to superior performance compared to using the initial feature space. The pre-
trained SMR-DDI model showed a significant increase in performance compared to the 

Table 6 Ablation study results

Model AUPRC AUROC ACC F1 Precision Recall

Task 1

SMR-DDIunpretrained 0.788 ± 0.04 0.986 ± 0.006 0.713 ± 0.063 0.712 ± 0.065 0.743 ± 0.046 0.713 ± 0.063

SMR-DDI 0.9 ± 0.005 0.992 ± 0.003 0.877 ± 0.014 0.877 ± 0.014 0.88 ± 0.013 0.877 ± 0.014

Task 2

SMR-DDIunpretrained 0.315 ± 0.011 0.878 ± 0.01 0.419 ± 0.027 0.414 ± 0.022 0.436 ± 0.022 0.419 ± 0.027

SMR-DDI 0.434 ± 0.025 0.896 ± 0.008 0.528 ± 0.005 0.51 ± 0.006 0.529 ± 0.007 0.528 ± 0.005

Task 3

SMR-DDIunpretrained 0.089 ± 0.018 0.687 ± 0.014 0.161 ± 0.047 0.168 ± 0.029 0.208 ± 0.003 0.161 ± 0.047

SCL-DDI 0.154 ± 0.019 0.739 ± 0.041 0.305 ± 0.014 0.295 ± 0.013 0.312 ± 0.014 0.305 ± 0.014
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non-pre-trained SMR-DDI model, with an average increase in F1 score of 6.5% on the 
tree tasks, for example. This result emphasizes the importance of the pre-training phase 
for improving the model’s ability to learn discriminative features. Using the knowledge 
acquired during pre-training on ChEMBL, the model can extract more informative 
representations, leading to better results in all three evaluation tasks. This experiment 
confirms our initial hypotheses (2b and 3) about how relevant pre-training improves the 
performance of the prediction model.

Influence of the dataset molecular diversity

In this section, we aim to investigate the influence of molecular diversity in the pre-
training dataset on the quality of the learned representation. We investigated how the 
model performs when we add more scaffolds during training. We randomly selected five 
batches with 10,000 different scaffold families each. The model was trained with each 
set of 10,000 families separately. We then created incremental batches, starting with a 
batch size of 20,000 families and gradually increasing to 30,000, 40,000, and 50,000. We 
repeated this iterative process several times and reported the results and standard devia-
tion (Fig. 12a). For illustrative purposes, only the standard deviation for groups of 10,000 
is shown in the figure, as the observed trend is consistent even for larger training sets.

To compare the different experiments, we utilized the “acc_top1” metric. This metric 
quantifies the frequency at which the randomized view (correct view) ranked within the 
top-1 most similar views in the batch when considering the learned representation for 
Drugbank drugs. We noticed that the model’s ability to discriminate improves when we 
include more families. The increase in performance is also proportional to the struc-
tural diversity introduced by each new set of families, as shown by the Similarity to the 

Fig. 12 Influence of Molecular Diversity on Training Performance. a Influence of Scaffolds Diversity on 
Training Performance. b Impact of Number of SMILES per Scaffold on Training Performance

Table 7 Similarity to the nearest neighbor (SNN) and Scaffold similarity (Scaff ) metrics

Datasets SNN ( ↑) Scaff ( ↑)

10,000–20000 0.7697 0.9220

20,000–30000 0.8696 0.9692

30,000–40000 0.9136 0.9845

40,000–50000 0.9370 0.9902
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nearest neighbor (SNN) and Scaffold similarity (Scaff) metrics reported in Table 7. SNN 
and Scaff [48] metrics are used to assess how similar scaffolds are in different molecular 
datasets. Higher values of SNN and Scaff indicate low structural variability in the evalu-
ated datasets, suggesting that the datasets contain molecules with similar structural 
scaffolds. These observations emphasize the ability of the SMR-DDI molecular represen-
tation to adapt and evolve with increasing diversity in the dataset.

In the subsequent phase, we selected a fixed number of families of molecules and 
gradually increased the number of representatives (drugs) per family by the 1 ×, 2 ×, 3 ×, 
10 ×, 20 ×, 30 ×, 50 ×, and 100 × for each batch. Throughout the process, we monitored 
the top-1 accuracy (top1-acc) as we incrementally increased the number of drugs per 
scaffold. Figure 12b shows the relationship between the number of SMILES (molecules) 
per scaffold and training performance. Increasing the number of SMILES per scaffold 
enables faster convergence (fewer epochs) of the learning curve. However, increasing the 
number of drugs per scaffold above a certain threshold does not improve the learning 
of meaningful representations and does not hinder effective training. We have indeed 
observed that the performance gains become less significant after reaching a 50-fold 
increase. This observation could be due to the ability of SMR-DDI to generate new 
examples from existing SMILES and confirm that relevant data augmentation through 
SMILES enumeration increases the diversity of the data (Hypothesis 1b).

These results indicate that the molecular diversity within the pre-training dataset 
plays a crucial role in the quality of the learned representation. Higher diversity facili-
tates more effective learning of the model and accelerates the achievement of peak 
performance.

Conclusion
To summarize, we have developed and evaluated SMR-DDI. This self-supervised frame-
work uses contrastive learning to embed drugs into a scaffold-based feature space to 
predict drug–drug interactions (DDI). The framework was pre-trained on a large unla-
beled molecule dataset and used SMILES enumeration to generate augmented views for 
each molecule. The pre-trained model demonstrated its ability to learn abstract, trans-
ferable features from a large unlabeled molecular dataset. The learned representations 
were shown to be expressive, yielding comparable or better results for DDI prediction 
compared to state-of-the-art molecular representations. Furthermore, our investigation 
of interaction and side-effect profiles improved our understanding of the characteristics 
and behavior of molecules within the dataset. We have identified patterns and associa-
tions between specific scaffold types, their corresponding interactions, and side effect 
profiles, allowing for a more nuanced assessment of drug interactions. Our results high-
lighted the potential of contrastive learning as a promising approach for DDI prediction 
and emphasized the importance of expressive feature space for accurately classifying 
molecules and capturing their subtleties.
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