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Introduction
Gene expression is a fundamental process and is essential for the coordinated function 
of all living organisms. Predicting the expression level of a gene based on its promoter 
or enhancer sequences is an important problem in molecular biology, with applica-
tions ranging from understanding the regulation of gene expression to engineering gene 
expression for biotechnological applications [1, 2]. Recent progress and mechanistic 
insights have been obtained using large-scale and high-throughput massively paral-
lel reporter assays (MPRAs), which enable the study of gene expression and regulatory 
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elements in a high-throughput manner and the simultaneous testing of thousands to 
millions of enhancers or promoters in parallel [3–25]. MPRA protocols linked random 
or mutated sequences to unique barcodes, with each sequence-barcode pair represented 
in a different reporter assay vector. After delivery of the pooled vector library, barcode 
abundance could be subsequently quantified using next-generation sequencing (NGS) 
techniques [26]. MPARs enabled large scale studies of functional annotation of putative 
regulatory elements [3, 27], variant effect prediction [22, 23, 28, 29] and evolutionary 
reconstructions [26, 30, 31]. For example, STARR-seq (self-transcribing active regula-
tory region sequencing) was used to investigate the enhancer activities of tens of millions 
of independent fragments from the Drosophila genome [3]. Microarray-based or PCA-
based (polymerase cycling assembly) synthesized DNA regulatory elements with unique 
sequence tags were used to evaluate hundreds of thousands of variants of mammalian 
promoters or enhancers [4–6]. Nguyen et al. systematically compared the promoter and 
enhancer potentials of many candidate sequences [10]. Using Gigantic Parallel Reporter 
Assay (GPRA), de Boer et al. measured the expression level associated with tens of mil-
lions of random promoter sequences and used these to learn cis-regulatory logic in the 
yeast grown in well-characterized carbon sources [14].

Machine learning methods have been developed to identify complex relationships and 
patterns in large scale DNA sequences (including MPRA data) that may not be apparent 
through conventional statistical methods. For example, convolutional neural networks 
(CNN) and recurrent neural networks (RNN) were used to capture the local depend-
ences in DNA sequences and/or genomic features and predict binding affinities [1, 32, 
33], chromatin features [34, 35], DNA methylation [36, 37], RBP (RNA-binding protein) 
binding [38–40] and gene expression levels [41]. DeepSEA employs a convolutional 
neural network and has been trained on genomic sequences and large-scale chromatin-
profiling data [32]. Its primary function is to learn and predict the regulatory sequence 
code associated with the effects of chromatin alterations. DanQ employed a deep learn-
ing model that combines a 1D CNN with a bi-directional long short-term memory net-
work to predict the function of DNA sequences [42]. DeepATT applies 1D CNN layers 
and bi-LSTM layers followed by attention networks to identify functional effects using 
DNA sequences [43]. Vaishnav et  al. proposed a CNN- and Transformer-based deep 
learning model for predicting gene expression levels using the millions of random pro-
moter sequence data originally introduced by de Boer et al. in their study [25]. CRMnet 
is a deep learning model designed for sequence-to-expression prediction, combining 1D 
CNN, Transformer, and U-net architectures [44].

In this study, we developed an end-to-end transformer encoder architecture, Profor-
mer, to predict the expression values from millions of DNA sequences. The objective 
of this study is to design an over-parametrized Transformer architecture for large scale 
regression task on DNA sequences. Proformer includes a new design named multiple 
expression heads (MEH) to stabilize the convergence compared with the conventional 
average pooling heads. Proformer ranked in the 3rd place in the final standing of the 
DREAM challenge: predicting gene expression using millions of random promoter 
sequences [45]. This DREAM challenge systematically evaluated how model architec-
ture and training strategy choices affected model performance on prediction of func-
tional genomic regions, and provided novel insights into designing and benchmarking 
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genomic models across different scenarios [46]. We believe that our model provides a 
novel method of learning and characterizing how cis-regulatory sequences determine 
the expression values. Codes pertaining to important analyses in this study are available 
from GitHub webpage: https:// github. com/ gongx 030/ dream_ PGE.

Results
Proformer overview

The architecture of the Proformer model is described in Fig. 1. We extracted the sliding 
k-mers (k = 10 in the final model) from one-hot encoded sequences and mapped them 
onto a continuous embedding platform. It has been previously shown that the k-mer 
embedding of nucleotide sequences had better performance than the convolution on 
tasks such as predicting transcription factor binding sites [47]. The k-mer embedding 
was then combined with the learned positional embedding and strand embedding (for-
ward strand vs reverse complemented strand) as one part of the input to the Macaron-
like encoder.

Proformer used a Macaron-like Transformer encoder architecture to predict the 
expression values from promoter sequences (as shown in Fig.  1) [48–50]. Compared 
with the regular Transformer encoder, the Macaron-like encoder has two half-step 
feed forward (FFN) layers at the beginning and the end of each Transformer encoder 
block, which can be mathematically interpreted as a numerical Ordinary Differential 
Equation (ODE) solver for a convection–diffusion equation in a multi-particle dynamic 
system [51, 52]. Given the stochastic nature of the input sequences, we hypothesized 
that this design may better recover the associations between nucleotide pattern and the 

Fig. 1 Proformer is a macaron‑like transformer architecture that models the relationship between DNA 
sequences and expression values

https://github.com/gongx030/dream_PGE
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expression values. We added a separable 1D convolution layer in the Macaron encoder 
block following the first FFN layer and in front of the multi-head attention layer. This 
design has been used in other Transformer architectures such as Conformer [52], and 
is shown to be critical for capturing the local signals. The residual connections were 
used in each macaron block to allow the gradients to flow more directly and smoothly 
through the network and help prevent overfitting [48]. We iterate the Macaron-like 
encoder Nm times.

We added H positions ( H = 32 in our final model) as the expression heads (as shown 
in Fig.  1). Proformer predicted one expression value for each expression head and 
used the mean of the prediction of all positions as the final predicted expression value. 
The total training losses consisted of the mean squared error between predicted and 
observed expression values ( Lexpr ), and the reconstruction loss ( Lfillmask ), where we ran-
domly masked 5% of the nucleotides and had the model predict the masked nucleotides. 
In Lexpr , yh is h In Equation Lexpr , ŷh represents the prediction made by the h -th predic-
tion head for y ( h = 1, . . . ,H ). In Lfillmask , xij denotes the value at the i-th position of the 
j-th sequence data. The variable mi is a mask filling indicator that mi = 1 indicates the 
i-th base of the sequence is masked. Finally, the total loss ( L) is defined as sum of Lexpr 
and Lfillmask with weight β . In our final model, we set the β = 1.

The final Proformer model had approximately 47 million trainable parameters, imple-
mented by TensorFlow 2 and trained on one machine with four A100 GPUs. We varied 
the learning rate over the course of training according to the formula used in the original 
Transformer paper [48]. Warmup steps of 12,500 and a batch size of 512 were used in 
the training. We used the Adam optimizer with β1 = 0.9 , β2 = 0.98 and ǫ = 10−9 for 
these studies.

MEH with mask filling has improved performance using large over‑parameterized models

Global average pooling layer at the top of a neural network is commonly used for the 
regression and classification tasks [53]. However, we found that when applying the 
global average pooling layer at the top of a large transformer model, for example, with 
a dimension size of 256 and blocks size of 8, the whole model sometimes failed to con-
verge on training on relatively small amount (~ 500 k) of samples (Fig. 2b). To address 
this issue, we proposed a new design, where the model predicted multiple expression 
values through multiple expression heads (MEH) and used the average of all predictions 
as the final predicted value (Fig. 2a), while at the same time, the model also predicted the 
randomly masked DNA nucleotide. MEH with mask filling produced stable convergence 
when training the transformer model with the same size on ~ 500 k samples (Fig. 2b). To 
systematically compare the performance of two designs, we trained the models on 10% 
of the training sequence / expression value pairs then the performance was evaluated 
on 2% of the data as the Pearson’s R between observed and predicted expression values. 
For MEH with mask filling, we also examined the performance over a different number 
of heads ( H = 1, 8, 16, 32, 64 ). Overall, we found that MEH with mask filing gave sig-
nificantly better than global average pooling when using 8 or more heads (Mann–Whit-
ney U test p values = 0.0715, 0.0102, 0.0142, 0.0224 and 0.00605 for H = 1, 8, 16, 32, 64 , 
respectively), and the best performance was achieved at a dimension size of 128 and 
macaron block size of 8 (Fig. 2c). As the model size became larger and deeper, the global 
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average pooling became difficult to converge, while in comparison, MEH with masking 
filing could still provide stable results. Figure 2d depicts the Pearson correlation results 
on the test set based on the number of macaron blocks and the type of heads in the 
Proformer model. The “AvgPooling” represents a simple head, while the heads denoted 
by names starting with “H” incorporate multi-head and mask filling mechanisms. The 
number following “H” indicates the number of prediction heads. From the illustration, it 
is evident that as the count of macaron blocks increases, the performance of the model 
with a single head deteriorates in terms of Pearson correlation. However, employing 
eight or more multiple heads can rectify this issue. Figure 2e–g present a Violin plot of 
Pearson correlations with respect to the number of Macaron Blocks, excluding situations 
of ‘Average Pooling’ and ‘H1’ based on the results from Table in Fig. 2c, while displaying 
embedded boxplots and representing raw data as gray dots. From Fig. 2e, as the number 

Fig. 2 Multiple expression heads (MEH) with mask filling has better performance on large 
over‑parameterized models. a Global average pooling layer and MEH with mask filling were used at the top 
the transformer blocks. b The training (left) and validation (left) performance of Proformer models using 
global average pooling (AP) or MEH with 32 heads (EH32) were compared. The performance was measured 
by the Pearson’s R between observed and predicted expression values. c Systematic evaluation of global 
average pooling and MEH with mask filing on different model specifications such as dimension heads (2, 4, 
and 8), macaron blocks (1, 2, 4, and 8), and number of expression heads (1, 8, 16, 32, 64) was performed. The 
best performance of each model specification was highlighted. d The bar plots show the Pearson correlation 
between predicted and observed expression levels on the testing data. The “AvgPooling” represents a 
simple head, while the heads denoted by names starting with “H” incorporate multi‑head and mask filling 
mechanisms. e–g The violin plots show the Pearson correlation between predicted and observed expression 
levels on the testing data over different number of e macaron blocks, f number of attention heads, and g 
number of prediction heads
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of Macaron Blocks increases, Pearson correlation also increases. A Wilcoxon rank-sum 
test reveals statistically significant differences among pairs, except for cases with block 
counts of 4 and 8. The increase in the number of Macaron Blocks from 1 to 2, and from 
2 to 4, exhibited statistically significant performance improvement (Wilcoxon rank-sum 
test, p < 0.05). Although the increase from 4 to 8 did not show statistical significance, a 
slight rise was observed in mean values, shifting from 0.7192 to 0.7199. From Fig. 2f, the 
increase in the number of attention heads (embedding dimension) from 2 (64) to 8 (256) 
exhibited statistically significant performance improvement (Wilcoxon rank-sum test, 
p < 0.05). While other comparisons did not exhibit statistically significant differences, on 
average, they showed Pearson values of 0.7117, 0.7162, and 0.7175 respectively. As evi-
dent in Fig. 2g, multiple prediction heads improved model convergence, but increasing 
the number of heads beyond 8 had no discernible impact on performance.

MEH with mask filling has better performance for the prediction of chromatin accessibility 

from DNA sequences

To test whether our observations on these two head designs could apply to similar 
scenarios, we designed another task to use Proformer to predict ATAC-seq (Assay for 
Transposase-Accessible Chromatin with high-throughput sequencing) signals from 
DNA sequences. The ATAC-seq is a technique to measure the chromatin accessibil-
ity across the whole genome [54]. We sampled a total of 100 k genomic sub-regions 
surrounding the ~ 80,000 summits of ATAC-seq data of GM12878 [54], while each 
genomic sub-region included 100 nucleotides. Different models were built to predict 
the mean ATAC-seq signal of the central 20 bp from 100 nt DNA sequences (Fig. 3a). 
The global average pooling performed well when the model size was relatively small. 
As the model size became larger, we observed similar trends such that the global aver-
age pooling tended to fail on large over-parameterized models. The best performance 
was achieved by using MEH with mask filling with dimension size of 128 and block 
size of 4 (Fig. 3b).

MEH with mask filling is critical for improving the prediction performance on hold‑out 

validation data

We trained the final model for the DREAM challenge by using a dimension size of 512 
and a block size of 4 on 95% of the data provided by the organizers and evaluated on 
the remaining 5%. The checkpoint after the 6th epoch was used where the validation 
Pearson’s R was maximized. As expected, MEH with mask filling produced improved 
Pearson’s R than global average pooling on the validation data (Fig. 4a). The ablation 
study showed when using only one expression head ( H = 1 ), the performance was 
similar to global average pooling. However, MEH with H = 32 showed improvement 
over hold-out validation data and produced the highest weighted scores. It is inter-
esting that adding a GLU activation [55] to expression heads produced even higher 
unweighted Pearson’s R and Spearman’s Rho on the hold-out validation data, while 
the weighted score became worse than global average pooling (Fig. 4b). Future studies 
will explore different designs of the expression heads.
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Proformer outperforms other methods on the random promoter dataset

To facilitate a comparative analysis with other existing models, we conducted 
experiments with the Proformer model on the dataset used by Vaishnav et  al. 
[25]. In total, there were 51,339,035 samples in the training data, and for evalua-
tion, we had expression level data for 61,150 yeast native promoter sequences and 
2,954 random promoter sequences. We trained the Proformer model on the train-
ing data and calculated the Pearson’s R value on the evaluation data for compari-
son with other methods. The performance of other existing methods was obtained 
from Vaishnav et al. and Ding et al. [25, 44]. Figure 5 presents a bar plot comparing 
the Pearson’s R correlation values of various existing models. As observed in Fig. 5a, 
for the native promoter dataset, both the Proformer model and the CRMNet model 
exhibited similar performance, with R values of 0.971. Vaishnav et al.’s Transformer 
model achieved the third-best performance with an R value of 0.963. On the random 
promoter dataset, the Proformer model outperformed all others with an R value of 
0.991. CRMNet and Vaishnav et al.’s Transformer model achieved R values of 0.987 
and 0.979, respectively (Fig. 5b).

Fig. 3 Multiple expression heads (MEH) with mask filling have better performance on predicting chromatin 
accessibility from DNA sequences. a The task of predicting mean ATAC‑seq signal of the central 20 bp from 
100 nt surrounding DNA sequences was examined. b Systematic evaluation of global average pooling and 
MEH with mask filing on different model specifications such as dimension heads (2 and 4), macaron blocks 
(1, 2, 4, and 8), and number of expression heads (1, 8, 16, 32, 64). The best performance of each model 
specification was highlighted
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Fig. 4 Multiple expression heads (MEH) with mask filling is critical for improving the prediction performance 
on hold‑out validation data. a The training (left) and validation (left) performance of Proformer models on 
the full DREAM dataset using global average pooling (AP) or MEH with 32 heads (EH32). The performance 
was measured by the Pearson’s R between observed and predicted expression values. The checkpoint after 
the 6th epoch was used as the final model where the validation Pearson’s R was maximized (red dotted 
line). b The performance of Proformer model on the hold‑out validation data. The performance is measured 
by weighted (score) or unweighted Pearson’s R and Spearman’s Rho between observed and predicted 
expression values. The number of Macaron blocks, number of attention heads and embedding dimension are 
4, 8 and 512, respectively

Fig. 5 Performance comparison between the Proformer model and existing models: The prediction 
performance was evaluated on yeast native promoters and random promoters, and compared with 
DeepSEA, DanQ, DeepAtt, CRMnet, and the transformer model proposed by Vaishnav et al. (2022). The 
performance metrics for CRMnet, DeepAtt, DanQ, and DeepSEA were obtained from Vaishnav et al. (2022) 
and Ding et al. (2023). a In the case of the Native Promoter dataset, our proposed Proformer model exhibited 
performance nearly equivalent to that of the CRMNet model. b For the Random Promoter dataset, our 
Proformer model outperformed all other models, demonstrating superior performance
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Discussion
Various machine learning techniques have been used to analyze and interpret the MPRA 
data and dissect the regulatory logics. Recently, over-parameterized deep networks 
or large models, with more parameters than the size of the training data, have domi-
nated the performance in various machine learning areas [56]. The global average pool-
ing layer was conventionally used to aggregate the information from multiple channels 
and to produce final predictions. However, we found that when training over-parame-
terized models on the regression tasks such as predicting expression values from DNA 
sequences, the global average pooling often led to a convergence issue, most likely due 
to the loss of information that accumulated during the training and caused the model to 
perform poorly or failed to converge. Here we presented a new architecture Proformer 
for prediction of expression values from DNA sequences. We introduced a new design 
named multiple expression heads (MEH) with mask filling to prevent the over-parame-
terized transformer models from collapsing when training on relatively small amount of 
data. Applying the Proformer model to predict expression values and to predict chroma-
tin accessibility from DNA sequences showed that MEH with masking filling produced 
significantly better performance and stable convergence compared to the commonly 
used global average pooling. This suggests that MEH with mask filling could be an effec-
tive design strategy for similar regression tasks in genomics, especially when utilizing 
large, over-parameterized models. For future research directions, it would be beneficial 
to explore the development of a versatile pre-trained network for large-scale DNA data. 
Similar to how language models are fine-tuned for specific tasks in natural language pro-
cessing, pre-training large DNA models on extensive DNA datasets and subsequently 
applying them to specific tasks could be an intriguing avenue. MEH with mask filling 
provides a new strategy of pre-training large DNA sequence models. Additionally, inves-
tigating the application of pre-trained models in genomics, utilizing transfer learning 
from existing DNA data, holds promise as an exciting research topic.

Methods
DREAM challenge dataset overview

Rafi et al. conducted a high-throughput experiment to measure the regulatory effect of 
millions of random DNA sequences. They cloned 80 bp random DNA sequences into a 
promoter-like context upstream of a yellow fluorescent protein (YFP), transformed the 
resulting library into yeast, and measured expression by fluorescent activated cell sort-
ing [4, 14, 57]. The training dataset includes 6,739,258 random promoter sequences and 
their corresponding mean expression values [45].

Rafi et  al. also provided 71,103 sequences from several promoter sequence types as 
the hold-out "validation" dataset to evaluate the model performance in different ways. 
These validation datasets included predicting the expression changes resulting from sin-
gle nucleotide variants (SNVs), perturbation of specific transcription factor (TF) binding 
sites, tiling of TF binding sites across background sequences, sequences with high- and 
low-expression levels, native yeast genomic sequences, random DNA sequences, and 
challenging sequences designed to maximize differences between a convolutional model 
and a biochemical model trained on the same data [45].
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Training the model using the entire dataset on a single A100 GPU requires a signifi-
cant amount of time, approximately one day. To reduce the time required, during the 
hyperparameter tuning process, we trained the model on a randomly selected 10% sub-
set of the training data and used approximately 2% of the data as a validation set.

Sequence trimming and padding

We removed the leading 17 and trailing 13 nucleotides (nt) that were identical in both 
training and testing promoter sequences, since these nucleotides were not informa-
tive for the prediction of expression values and removal of the nucleotides would sig-
nificantly reduce the training and inference time. The length of the resulting promoter 
sequences ranged from 48 to 112 nt for training data, while > 99.97% training promoters 
were less than 100 nucleotides. To further reduce the computational overhead, we used 
6,737,568 promoter sequences shorter than 100 nt (after trimming) in the model train-
ing. For promoters that were less than 100 nt, the left and right sides were padded with 
the letter N.

Reverse complemented sequences

We empirically found that including the reverse complemented promoter sequences 
would significantly improve the performance. Thus, the reverse complemented 
sequences were concatenated with the original sequences (after trimming and padding) 
and used as the input for model training. Thus, the total length of the input sequences 
was 200 nt.

Standardization of the expression values

The expression values were standardized to the mean of zero and standard deviation of 
one. Our experiments found that when the mean squared error loss was used, standard-
izing the expression values gave better model generalization performance (in terms of 
Pearson’s R and Spearman’s Rho) and faster convergence.

Evaluation metric

Our primary evaluation metric was the Pearson’s R correlation between the actual 
expression levels and the predicted expression levels generated by the model. Given the 
slight differences in the settings between the training and evaluation datasets, utilizing 
this metric was meaningful in preserving the order of results. It’s worth noting that simi-
lar studies conducted by Vaishnav et al. and Ding et al., using comparable datasets, also 
employed Pearson’s R correlation as their primary evaluation metric.

Vaishnav dataset overview

The Vaishnav dataset closely resembles the data from the DREAM challenge. We 
employed data obtained from cells cultured in both the complex medium (containing 
yeast extract, peptone, and dextrose) and the defined medium (lacking uracil) as speci-
fied in the study by Vaishnav et al. [25]. A total of 30,722,376 sequences were obtained 
from the complex medium, while 20,616,659 sequences originated from the defined 
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medium. This dataset was utilized for comparative analysis with several other methods. 
For the evaluation dataset, there were 61,150 native promoter sequences and 2,954 ran-
dom promoter sequences.

ATAC‑seq data proeprocessing

The human EBV-transformed lymphoblastoid cell line (LCL) ATAC-seq data were 
downloaded from NCBI GEO database (GSE47753). The sequence reads from three rep-
licates of 50 k cell sample (GSM1155957, GSM1155958 and GSM1155959) were pooled 
and used for the downstream analysis. The sequencing reads where mapped to the 
mouse genome (mm10) using Bowtie 2 [58]. The ATAC-seq lied within the blacklisted 
genomic regions for functional genomics analysis were excluded [59]. The 86,004 peaks 
called by MACS2(v2.1.1) [60, 61] were used for the downstream analysis. We randomly 
sampled a total of 100 k genomic sub-regions surrounding each summit of ATAC-seq 
data of GM12878 [54], while each genomic sub-region included 100 nucleotides. We 
built models to predict the mean ATAC-seq signal of the central 20 bp from each 100 
nt DNA sequences. We randomly used 90% (90 k) sequences for training and 10% (10 k) 
sequences for testing.
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