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Background
The development and rapid growth of high-throughput sequencing technologies 
has led to the need for ways to visualize large-scale biological experiments. A com-
mon way to summarize sequencing data is to aggregate and average signal coverages 
over many regions to generate a single graph that summarizes the collective regions, 
termed a metagene plot. Metagene plots are used to analyze data derived from a 
variety of biological experiments, including bisulfite (BS) sequencing [1], chromatin 
immunoprecipitation (ChIP) sequencing [2], RNA sequencing [3], and ribosome pro-
filing [4]. Many pipelines now exist for quickly and efficiently generating these graphs, 
including method-specific [5–7] and generalized [8, 9] software packages. These plots 
are useful for distilling many individual signals, often tens of thousands of genes, into 
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a single graphic. Despite their utility, existing methods are limited in that they pro-
duce only a single plot that represents all constituent genomic loci, potentially losing 
valuable information in the process. For instance, consider a situation in which one 
pattern has a sharp spike at the start of the gene while another a sharp spike at the 
end. The resultant plot may more closely resemble a plateau across the entire gene 
depicting levels somewhere between the peak and trough of each of the constituent 
trends. Our method is the first to seek to separate genomic loci to generate more than 
a single metagene plot from a single alignment file when conflicting trends exist.

Clustering methods are unsupervised data mining techniques that seek to find 
structure within data [10, 11]. These methods have been used in bioinformatics to 
find patterns in gene expression data [12], reconstruct phylogenetic relationships 
[13], and predict gene features [14, 15]. One such method of clustering is k-means 
clustering. K-means uses a fixed number of clusters, initializing each cluster’s center 
randomly and assigning each data point to the nearest cluster center. The clusters 
then move to the center of the data points that they represent. This process continues 
until a desired condition is met, such as convergence.

The MetageneCluster software package allows researchers to produce metagene 
plots from sequence data that have been grouped by k-means clustering. Our imple-
mentation allows users to process high-throughput sequence data directly from sam 
format alignment and gtf/gff3 annotation files. We validate our method on RNA-seq 
and ChIP-seq data taken from three different organisms.

Implementation
The aim of MetageneCluster is to provide users with metagene plots that better reflect 
the variability within large-scale biological sequence data. To achieve this, Metagene-
Cluster works in several steps. First, user input is collected, and the annotation and 
alignment files are read in. Then, coverage across each feature of interest is calculated 
and normalized according to length. K-means clustering is then performed to group 
features with similar patterns. Finally, each metagene plot is generated using MatPlot-
Lib, and the list of features that constitute each plot is printed in a text file. A graphi-
cal summary of the major steps in this workflow is shown in Fig. 1.

Length normalization of features

The start and end coordinates of features are extracted from the annotation file pro-
vided by the user, and the alignment files are read to calculate the coverage across 
each feature. In many applications, length will vary among instances of a particular 
feature type. Therefore, the length of each feature must be normalized to a standard 
before they can be compared. Furthermore, this must be done in a way in which the 
overall shape of each coverage graph is preserved. To achieve this, we calculate the 
normalization ratio as the ratio of each feature’s length to the standard we are nor-
malizing to. The normalized vector results from averaging the initial vector over win-
dows of size equal to the normalization ratio.
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K‑means clustering of feature graphs

After length-normalization, vectors built from each feature are clustered by the 
k-means algorithm. For any given number of clusters, k, MetageneCluster begins 
by generating k plots with values at each normalized point along the feature length 
selected at random within the range of values present in the data. The distance 
between every feature and each cluster is calculated by summing the distance between 
the feature and the cluster at each point along the x-axis. Each feature is then grouped 
into the cluster to which it is closest to. Each of the k plots are then recalculated to be 
the average at each position along the x-axis of the features that are assigned to it. The 
distances to the new clusters are calculated again, features are reassigned, and aver-
age clusters are recalculated. This process continues until convergence is achieved. 
MetageneCluster utilizes this procedure for increasing values of k, starting at k = 1, 
until the total distance between all features and their representative centers fails to 
decrease by more than a user-specified parameter with a default value of 20%.

Workflow integration

User input is required in sam format for alignment files and gff format for annotation 
files. Therefore, MetageneCluster can work downstream of any alignment software 
that produces sam formatted files or a filetype that can be converted to sam format. In 

Fig. 1 Flowchart demonstrating the functionality of MetageneCluster. The user provides an annotation 
file, an alignment file, and genomic features to be analyzed. Each feature has its coordinates found in the 
annotation file, has its coverage determined from the alignment file, and then has its coverage normalized by 
length. K-means clustering then groups each feature into its most representative metagene plot and exports 
each plot and the corresponding list of features
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addition to the plots themselves, the method outputs the names of all loci that com-
prise each cluster in text files, allowing for further downstream analyses, such GO 
[16].

Dependencies

MetageneCluster is written for, validated, and tested using Python3 (version 3.9.16). The 
method requires numpy for mathematical computation and matplotlib for visualization 
of plots [17, 18].

Efficiency

From a runtime perspective, the method works in three main steps: reading in the align-
ment and annotation data, identifying the regions of interest from the annotation data 
and building an array for each of these loci of interest, and then the iterative clustering 
itself. Reading in the data scales linearly with respect to the total number of alignment 
results and the total number of features in the annotation file. From the alignment data, 
we produce one coverage array per chromosome, making the total number of aligned 
reads unimportant for the runtime from this point onward. Once the regions of inter-
est are identified, we build one array per locus and the clustering algorithm works on 
this set of arrays. The creation of these arrays scales linearly with the number of loci of 
interest, here termed “n.” For the clustering algorithm, we compute the distance between 
each of these n loci and the iteratively improving cluster centers, k. Each step of this 
process scales linearly with respect to n times the size of the arrays, as determined by the 
user, times the number of cluster centers, k. While each step is relatively fast and scales 
well, the number of steps that must occur to reach convergence will differ depending 
on the final value of k as well as how far the initial randomly selected cluster centers are 
from the centers in the solution. Importantly, the step with the most potential variation 
in computation scales only with the number and size of the features of interest, not the 
number of alignments, so overall performance should remain similar as improving tech-
nology increases the number of reads that are produced by sequencing experiments.

In terms of what this runtime translates to practically, we tested on a machine with 
a 14 core, 2.6 GHz processor. For a human dataset with approximately 23 million lines 
in the alignment file, approximately 3 million lines in the annotation file, and 484,033 
loci of interest, the method took roughly 11 min to read in the data, 4 min to generate 
the arrays to cluster, and 52 min to compete the k-means clustering, for a total runtime 
of roughly 67 min. For a yeast dataset with approximately 81 million lines in the align-
ment file, approximately 23,000 lines in the annotation file, and 6897 loci of interest, the 
method took roughly 10 min to read in the data, 10 s to generate the arrays to cluster, 
and 30 s to complete the k-means clustering, for a total runtime of roughly 11 min.

Results
In this section, we validate the utility of our method on three datasets. We use a diverse 
range of organisms and data sources for the most broadly representative demonstra-
tion of effectiveness. Resultant clustered metagene plots and their constituent genes are 
analyzed to find differences between clusters and to compare their shape with a single, 
unclustered plot.
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The first dataset is derived from an RNA sequence experiment performed in Saccharo-
myces cerevisiae that analyzes the effect of mutant strains on proper spliceosome assem-
bly [19]. We use the wildtype and set2 deletion (set2Δ) strains and cluster based on all 
coding sequences (CDS). Figure 2 shows the results for each strain. For this dataset, we 
find that all data clusters in a single cluster under default conditions in both wildtype 
and set2Δ. This suggests that the pattern of gene expression over the course of CDS 
sequences does not vary substantially among genes in either strain.

We also analyze RNA sequence data generated in Arabidopsis Thaliana. We select the 
met1-1 strain data taken from a study investigating heterochromatin marks influenc-
ing DNA methylation profiles [20]. Using this dataset, our method creates three distinct 
clustered patterns (Fig. 3). We utilize Gene Ontology (GO) analysis to find biologically 
relevant differences between the genes that compose these three clusters [16, 21, 22]. 
We focus on cluster 2 (Fig. 3C) because it has the greatest dissimilarity in shape when 
compared to the unclustered metagene plot. Cluster 2 is de-enriched for genes involved 
in negative regulation of gene expression as well as epigenetic regulation of gene expres-
sion and enriched in genes involved in cellular response to hypoxia, auxin, cold, water 
deprivation, and other stimuli (Additional file 1: Table S1). Our results suggest that the 
met1-1 mutant strain leads to a difference in the expression pattern of genes involved in 
hormonal response and gene expression.

Our final test set is Homo sapiens ChIP-seq data. We apply MetageneCluster to sam-
ples of in  vitro macrophage cells exposed to 1.8× gravitational force as compared to 
standard, 1× gravity with an RNA polymerase II chip antibody [23]. Our method finds 
three distinct cluster profiles in CDS regions (Fig.  4). While all clusters show slightly 
greater RNA polymerase II binding across CDS regions in high gravity, one cluster has 
the greatest increase in occupancy at the 5′ end, one at the 3′ end, and one in the center. 

Fig. 2 Performance of MetageneCluster on CDS loci from Saccharomyces cerevisiae RNA-sequence data. 
MetageneCluster produces a single cluster for wildtype strain (B) and for set2Δ strain (D) under default 
parameters. These graphs look virtually identical to the unclustered wildtype (A) and set2Δ (C) plots
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This is in contrast to the unclustered plot, which makes it appear that there is a relatively 
flat increase in occupancy across all genes.

Together, our results indicate that next-generation sequence data signals are often 
composed of conflicting trends and that averaging across all regions of interest can cause 
these trends to be combined destructively.

Fig. 3 Performance of MetageneCluster on gene loci from Arabidopsis Thaliana RNA-sequence data. 
Comparison of unclustered (A) and clustered (B–D) plots generated from met1-1 strain RNA sequencing

Fig. 4 Performance of MetageneCluster on CDS loci from Homo sapiens ChIP-sequence data. Comparison 
unclustered (A) and clustered (B–D) plots generated from log2-ratio of polymerase II binding in macrophages 
exposed to 1.8× gravity versus control
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Conclusions and future directions
In this paper, we developed MetageneCluster, a Python package that employs k-means 
clustering to group otherwise conflicting signal trends in metagene plots. By cluster-
ing, we allow users to construct multiple metagene plots from a single alignment file. 
Each resultant plot is composed of genomic regions that show similar patterns among 
the constituent loci. We tested our method on three different sequencing applications 
using a model plant, animal, and fungus. Our results demonstrate that the metagene 
plots built from these clusters are able to discover important biological nuance across 
a variety of sequencing applications and organisms. Presently, MetageneCluster pro-
duces clusters of genomic loci using only k-means clustering. K-means is a time-effi-
cient methodology for performing clustering, but it has few algorithmic guarantees 
due to the initial random placement of clusters. In the future, we plan to add sup-
port for the user to cluster loci using hierarchical clustering to compensate for these 
limitations at the cost of likely substantially increased runtime. As access to increased 
computational power improves, we anticipate this tradeoff may become more attrac-
tive to potential users.

Availability and requirements

Project Name: MetageneCluster
Project home page: https:// github. com/ aasap orito/ Metag eneCl uster
Operating System(s): Platform independent
Programming language: Python
Other requirements: matplotlib, numpy
License: Mozilla Public License, v. 2.0
Restrictions to use by non-academics: None

Abbreviations
BS-seq  Bisulfite sequencing
CDS  Coding sequence
ChIP-Seq  Chromatin immunoprecipitation sequencing
GFF3  General Feature Format 3
GO  Gene Ontology
GTF  General transfer format
RNA  Ribonucleic acid
SAM format  Sequence Alignment Map format
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