
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Hahn et al. BMC Bioinformatics (2024) 25:43
https://doi.org/10.1186/s12859-024-05650-8

BMC Bioinformatics

Fast computation of the eigensystem
of genomic similarity matrices
Georg Hahn1*, Sharon M. Lutz1, Julian Hecker2, Dmitry Prokopenko3, Michael H. Cho2, Edwin K. Silverman2,
Scott T. Weiss2 and Christoph Lange1

Abstract

The computation of a similarity measure for genomic data is a standard tool in com-
putational genetics. The principal components of such matrices are routinely used
to correct for biases due to confounding by population stratification, for instance
in linear regressions. However, the calculation of both a similarity matrix and its
singular value decomposition (SVD) are computationally intensive. The contribution
of this article is threefold. First, we demonstrate that the calculation of three matrices
(called the covariance matrix, the weighted Jaccard matrix, and the genomic relation-
ship matrix) can be reformulated in a unified way which allows for the application
of a randomized SVD algorithm, which is faster than the traditional computation.
The fast SVD algorithm we present is adapted from an existing randomized SVD
algorithm and ensures that all computations are carried out in sparse matrix algebra.
The algorithm only assumes that row-wise and column-wise subtraction and multi-
plication of a vector with a sparse matrix is available, an operation that is efficiently
implemented in common sparse matrix packages. An exception is the so-called
Jaccard matrix, which does not have a structure applicable for the fast SVD algorithm.
Second, an approximate Jaccard matrix is introduced to which the fast SVD computa-
tion is applicable. Third, we establish guaranteed theoretical bounds on the accuracy
(in L2 norm and angle) between the principal components of the Jaccard matrix
and the ones of our proposed approximation, thus putting the proposed Jaccard
approximation on a solid mathematical foundation, and derive the theoretical runt-
ime of our algorithm. We illustrate that the approximation error is low in practice
and empirically verify the theoretical runtime scalings on both simulated data and data
of the 1000 Genome Project.

Keywords: Covariance matrix, Fast SVD, Genomic relationship matrix, Jaccard matrix,
Principal components, Weighted Jaccard matrix

Introduction
In computational genomics, the computation of eigenvectors as part of a princi-
pal component analysis (PCA) is a widespread method to infer population structure
and to correct for confounding due to ancestry. It has long been known that case–
control studies are subject to population stratification which can induce significant

*Correspondence:
ghahn@hsph.harvard.edu

1 T.H. Chan School of Public
Health, Harvard University,
Boston, MA 02115, USA
2 Channing Divsion of Network
Medicine, Brigham and Women’s
Hospital, Boston, MA 02115, USA
3 Massachusetts General
Hospital, Harvard University,
Boston, MA 02114, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05650-8&domain=pdf

Page 2 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

spurious associations at loci that are unrelated with a response [22]. For instance, in [3]
the authors highlight such a spurious association through stratification by showing that
a SNP in the lactase gene LCT varies widely in frequency across Europe and was strongly
associated with height. To correct for stratification in genome-wide association studies
[17], methodology such as EIGENSTRAT [18] has been subsequently developed. Further
computational improvements are available [16]. Further works in the literature address
confounding induced by population stratification with the help of a two-step procedure
[5], or PCA analyses with tens of thousands of single-nucleotide polymorphisms (SNPs)
to infer population structure [14].

This article focuses on the fast computation of eigenvectors of four different similarity
matrices. These matrices provide pairwise similarity measures between genomes, and
their eigenvectors are popular means to correct for population stratification. We con-
sider the (classic) covariance matrix [24], the Jaccard matrix [13, 19], the weighted Jac-
card matrix [25], and the genomic relationship matrix (GRM) [30]. All four matrices are
computed on genomic input G ∈ R

n×m , where n ∈ N is the number of loci and m ∈ N
is the number of individuals. The matrix G is usually sparse. All four similarity matri-
ces have dimensions m×m , where each entry (i, j) is a similarity measure between the
genomic data of individuals i and j. All four matrices are symmetric by definition.

In real data applications such as the 1000 Genomes Project [28] or the UK Biobank
[27], the number of individuals quickly reaches numbers in the thousands, ten thou-
sands, or hundred thousands. In this case, traditional eigenvector computations, for
instance using the function eigen in R [21], become infeasible. Alternative methods with
lower computational complexity are iterative methods such as the power method [29],
also called Von Mises iteration, or the truncated singular value decomposition (SVD)
implemented in, for instance, the R-package RSpectra [20]. However, for these alter-
natives to be applicable, the complete similarity matrix of dimension m×m has to be
computed first before extracting its eigenvectors. In the best case, calculating a similar-
ity matrix is computationally intensive itself, while in the worst case, its calculation is
computationally infeasible. The latter case occurs since the similarly matrices are usually
dense even when computed on sparse genomic input G.

As demonstrated in the literature [12], for a real-valued matrix X the eigenvectors of
the matrices X⊤X and XX⊤ can be computed without actually calculating X⊤X or XX⊤ .
This is advantageous in genomic applications, since X⊤X and XX⊤ are typically dense
even for sparse X, and can thus be infeasible to compute. Since the algorithm of [12] only
works for eigenvectors of matrices which can be expressed as the product X⊤X or XX⊤ ,
the task is to provide decompositions of the four similarity matrices we consider in the
form X⊤X or XX⊤.

A couple of remarks are in order on the two levels of approximations that are consid-
ered in this article. First, the randomized SVD algorithm of [12] does not compute the
(numerically) exact eigenvectors of X⊤X or XX⊤ for a given input X, but an approxi-
mation thereof. Second, the randomized SVD algorithm assumes that its input is of the
form X⊤X or XX⊤ . As shown in the article, this applies to three similarity measures (the
covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix),
but not to the Jaccard matrix. Therefore, we approximate the Jaccard matrix itself with a
surrogate of form X⊤X in order to apply the randomized SVD algorithm.

Page 3 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

The contribution of this article is threefold. First, we show that the eigenvectors of the
covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix
can be computed efficiently using the randomized SVD algorithm by rewriting their
computations in a unified way in the form X⊤X or XX⊤ . To this end, we propose a tai-
lored algorithm by adapting the randomized SVD algorithm of [12]. The tailored algo-
rithm never actually computes any of the similarity matrices and fully supports sparse
matrix algebra for efficient calculations. The tailored algorithm only assumes that row-
wise and column-wise subtraction and multiplication of a vector with a sparse matrix is
implemented efficiently. Second, we propose an approximate Jaccard matrix which like-
wise allows for an efficient computation of its eigenvectors via fast SVD without actually
computing the similarity measure. Third, we establish guaranteed theoretical bounds on
the distance (in L2 norm and angle) between the eigenvectors of the Jaccard matrix and
the ones of our proposed approximation, thus putting the proposed Jaccard approxima-
tion on a solid mathematical foundation. Moreover, we derive the theoretical runtime of
the fast SVD computation for all four approaches.

In an experimental section, we illustrate the exactness of the proposed computations
for the covariance matrix, the weighted Jaccard matrix, and the genomic relationship
matrix. Moreover, we experimentally verify the theoretical runtime derivations, show-
ing that indeed, the fast SVD computation outperforms the traditional SVD computa-
tion. Special attention is given to the Jaccard matrix. Using simulated data, we verify
the proven theoretical bounds on the distance between the eigenvectors of the Jaccard
matrix and our proposed approximation, showing that the approximation error is very
low in practice. Moreover, we demonstrate the (visual) trade-off in accuracy between the
Jaccard matrix and its approximation for population stratification plots using data of the
1000 Genomes Project.

The computation of a randomized PCA has also been considered in [1]. In their pub-
lication, the authors likewise adapt the original algorithm of [12]. However, the authors
only consider the genomic relationship matrix, they do not present computations for
fully sparse matrix algebra, and they do not establish a unified framework allowing one
to extend the fast PCA computation to the other similarity matrices as well. Importantly,
the Jaccard approximation and the theoretical bounds on the accuracy of the approxima-
tion we prove are unconsidered.

The paper is structured as follows. Section “Methods” introduces the proposed
decomposition of the four similarity matrices under consideration (section “Fast com-
putation of eigenvectors”), establishes that the fast computation of eigenvectors applies
to three of these matrices (section “Decomposition of three similarity matrices”), intro-
duces a new approximation of the Jaccard similarity matrix (section “A new approxima-
tion of the Jaccard similarity matrix”), establishes theoretical bounds on the accuracy
of the approximation (section “Theoretical error bounds on the eigenvectors of the
Jaccard approximation”), and summarizes all findings as an efficient algorithm (sec-
tion “An efficient algorithm using sparse matrix algebra”) together with asymptotic runt-
ime considerations (section “Runtime considerations”). All experimental results can
be found in section “Experimental results”. The article concludes with a discussion in
section “Discussion”.

Page 4 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

The proposed methodology has been implemented as part of the R-package locStra
[8, 11], available on the Comprehensive R Archive Network [21]. In the entire article, �n
and 1n denote the column vectors of length n with all entries set to 0 or 1, respectively.
Moreover, we denote with σr(Y) ∈ R

n and σc(Y) ∈ R
m the row and column sums of a

matrix Y ∈ R
n×m , and with µr(Y) ∈ R

n and µc(Y) ∈ R
m the row and column means of

Y, respectively. As usual, the notation v ⊗ w is used to denote the outer product between
two vectors v and w, and diag (v) denotes the square matrix having zero entries except
from vector v on its diagonal.

Methods
This section demonstrates that the covariance matrix, the weighted Jaccard matrix,
and the genomic relationship matrix can be expressed in a unified way which allows
for an efficient computation of their eigenvectors (sections “Fast computation of eigen-
vectors” and “Decomposition of three similarity matrices”). This does not apply to the
Jaccard matrix, for which we propose a new approximation instead that allows for a
fast eigenvector computation (section “A new approximation of the Jaccard similarity
matrix”). Importantly, we establish theoretical bounds on the accuracy of the eigenvec-
tors obtained from the Jaccard approximation (section “Theoretical error bounds on the
eigenvectors of the Jaccard approximation”). We summarize all findings in an algorithm
tailored to the four similarity matrices in section “An efficient algorithm using sparse
matrix algebra”. We conclude with considerations on the asymptotic speedup in sec-
tion “Runtime considerations”.

Fast computation of eigenvectors

The algorithm of [12] allows one to compute the eigenvectors of either the matrix X⊤X ,
or the matrix XX⊤ by considering X ∈ R

n×m only, where n,m ∈ N . The actual matrix
product X⊤X or XX⊤ does not need to be computed at any point in time. This is advan-
tageous if the matrix X is sparse since then, oftentimes, X⊤X and XX⊤ are dense. In the
following, we focus on the computation of the eigenvectors of X⊤X only.

The idea of the randomized SVD of [12] can be summarized as follows. Given a matrix
X, the aim of the randomized SVD is to compute a low-rank matrix approximation
X = U�V⊤ . To this end, we first compute an approximate basis for the range of X, that
is an orthonormal matrix Q such that X ≈ QQ⊤X (effectively, this is a low-rank matrix
factorization X ≈ AB with A ∈ R

n×r , B ∈ R
r×m and r ≪ n,m). The dimension of Q can

be chosen by the user and controls the accuracy of the approximation. Setting B = Q⊤X ,
the efficiency of the randomized SVD comes from B being much smaller than X. After
computing the SVD of B as B = Ũ�V⊤ , one obtains X ≈ QB = QŨ�V⊤ . Therefore,
setting U = QŨ results in a low-rank approximation X ≈ U�V⊤.

In order to apply the fast eigenvector computation of [12], we need to express all
similarity matrices under consideration as a product of the form X⊤X . This is not a
straightforward task, as the computation of the aforementioned similarity matrices
involves normalization and centering operations. As an additional complication, the

Page 5 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

normalization and centering operations usually destroy the sparseness of X. Therefore,
these operations are kept separate in the following formulas. We consider matrices X
which can be expressed as

or alternatively, as

where G ∈ R
n×m is the genomic input data (where n ∈ N is the number of loci and m ∈ N

is the number of individuals), a ∈ R is a scalar, and v1,w1 ∈ R
m as well as v2,w2 ∈ R

n are
vectors of appropriate dimensions. The scalar a is kept separate and not absorbed into v
for clarity of notation, as most similiarity matrices have a separate normalizing constant.
The notation (·) denotes the multiplication of a scalar with a matrix.

The expressions in Eqs. (1) and (2) are not suitable for actual computations since G
is assumed sparse, while the matrices 1n ⊗ w1 (encoding the subtraction of w1 from
all rows of G) and w2 ⊗ 1m (encoding the subtraction of w2 from all columns of G) are
dense. Instead, we assume that there are efficient row-wise and column-wise subtrac-
tion and multiplication operations available which operate directly on G in sparse matrix
algebra. Such operations are routinely available in sparse matrix packages such as the
Matrix package in R [2].

We denote with ⊙r , ⊖r as well as ⊙c , ⊖c the row/column-wise multiplication and sub-
traction operation of a vector with a (sparse) matrix, respectively. To be precise, G ⊖r w
subtracts w from all rows of G, and G ⊖c w subtracts w from all columns of G. Analo-
gously, v ⊙r G multiplies all rows of G with v, and v ⊙c G multiplies all columns of G
with v (assuming v and w are of appropriate dimensions). Using these operations, we can
express Eq. (1) as

and Eq. (2) becomes

As shown in the following sections (sections “Decomposition of three similarity matri-
ces” and “A new approximation of the Jaccard similarity matrix”), the covariance matrix,
the weighted Jaccard matrix, the genomic relationship matrix, and a newly proposed Jac-
card approximation can be expressed in a unified form as X⊤X , with X as in Eq. (3) and
Eq. (4).

While G is usually a sparse matrix, centering G with a vector w as done in Eqs. (3) and
(4) usually results in a dense matrix, which is computationally inefficient to handle or
even infeasible. As shown in section “An efficient algorithm using sparse matrix algebra”,
the main advantage of Eqs. (3) and (4) consists in the fact that they allow one to compute
eigenvectors in sparse algebra only, without ever performing the multiplication or sub-
traction operations.

(1)X = a · (G − 1n ⊗ w1) diag (v1)

(2)X = a · diag (v2)(G − w2 ⊗ 1m),

(3)X = a · v1 ⊙r (G ⊖r w1),

(4)X = a · v2 ⊙c (G ⊖c w2).

Page 6 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

Decomposition of three similarity matrices

The covariance matrix, the weighted Jaccard matrix, and the genomic relationship
matrix allow for an expression of the form of Eqs. (3) or (4):

1. The covariance matrix is computed as 1
n−1G

⊤G after centering all rows of G with
their respective column means. This fits into the framework of Eq. (3) by setting
a = 1√

n−1
 , v1 = 1m ∈ R

m , and w1 = µc(G) ∈ R
m.

2. The computation of the weighted Jaccard matrix [25] is more involved and repeated
here for convenience. First, a quantity numAlleles is computed as 2n. Then, the sum
of variants in G is computed as the row sums of G and denoted as sumVariants. In a
pre-processing step to invert the minor alleles, all rows in G are inverted if their sum
of variants is strictly larger than n. Second, a set of weights is computed as follows. A
quantity totalPairs is computed as s(s − 1)/2 , where s ∈ R

n is the vector of row sums
of G and the vector multiplication is performed componentwise. The weight vector
weights is then computed as numAlleles∗(numAlleles−1)/totalPairs, again taking all
operations to be componentwise. The vectors totalPairs and weights both have
dimension n. Third, the weighted Jaccard matrix is computed as 14n (G ⊙c weights)

⊤G .
This computation fits into the framework of Eq. (4) by setting a = 1√

4n
 ,

v2 = weights (with the square root operation performed componentwise), and
w2 = �n ∈ R

n.
3. The genomic relationship matrix [30] exists in two flavors, a robust and a non-robust

version. Both are easily defined as follows. Define p = µr(G)/2 as row means of G,
and q = 2p(1− p) , where the vector multiplication is again understood component-
wise. Let s be the sum of all entries in q. After centering the columns of G with 2p
(that is, X ← X ⊖c (2p)), the robust GRM is defined as G⊤G/s , and the non-robust
GRM is defined as 1nG

⊤(G ⊙c q
−1) , where the inverse operation q−1 is understood

componentwise. Both the robust and non-robust versions of the GRM fit into the
framework of Eq. (4). For the robust GRM, we set a = 1√

s
 , v2 = 1n ∈ R

n , and

w2 = 2p . For the non-robust GRM, we set a = 1√
n
 , v2 = 1√

q , again taking all vector

operations to be componentwise, and w2 = 2p.

Finally, it remains to note that the Jaccard matrix [19] does not allow for a decomposi-
tion into X⊤X with an appropriately chosen matrix X. This is easily verified in practice.
Indeed, it is not complicated to find a simulated or real life genomic dataset for which
the Jaccard matrix has negative eigenvalues, thus making it not positive (semi-)definite.
This proves that a decomposition into the form X⊤X , which necessarily implies positive
(semi-)definiteness, is impossible.

A new approximation of the Jaccard similarity matrix

Since the fast SVD computation of [12] is not applicable to the Jaccard similarity matrix
[19], applications in genomics which rely on the Jaccard matrix either in the form of
population stratification plots [10, 15] or to correct genome-wide association studies
[9], are severely limited from a computational standpoint. In order to be able to scale
such computations, a modification of the Jaccard matrix is required that enables the fast
SVD computation of [12]. Any such modification necessarily results in an approximation

Page 7 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

of the original Jaccard matrix, though the error of the proposed approximation will
be quantified in section “Theoretical error bounds on the eigenvectors of the Jaccard
approximation”. As a side effect, the proposed approximation of the Jaccard matrix will
be positive definite (in fact, all matrices X for which the eigenvectors of X⊤X are com-
puted with the help of the randomized SVD algorithm must have this property), which is
desirable from the standpoint of numerical stability.

The Jaccard matrix is computed as follows on a binary genomic input matrix G. First, a
matrix A ∈ R

n×n is computed. Each entry (i, j) in A is obtained by computing the logical
and operation on the binary columns i and j of G, and storing the sum of ones (or val-
ues True) in the resulting vector in Ai,j . Similarly, a matrix O ∈ R

n×n is computed whose
entry (i, j) represents the sum of ones after an or operation on the binary columns i and
j of G. The Jaccard matrix J is then computed as J = A/O , where the matrix division is
taken componentwise.

It is important to note that for binary matrices, the logical and operation required to
compute A ∈ R

n×n is equivalent to simply computing the matrix-matrix product of G
with its transpose, that is A = G⊤G . Therefore, it is in fact the or operation that prevents
the Jaccard matrix from being expressible in the form X⊤X.

To fix this, we propose a simple approximation that replaces the computation of the
matrix O. Note that, when computing the logical or operation on two columns i and j of
G, the maximal number of ones we can obtain in the resulting vector is 2max(s) , where
s is the vector of column sums of G. This case occurs if both columns of G contain the
maximal number of nonzero entries, though at different positions each. To be conserva-
tive, we therefore propose to compute an approximation of J = A/O as Ĵ = 1

2max(s)A .
The matrix Ĵ has the property that any entry in Ĵ is at most as large as the corresponding
one in J, thus never overestimating the similarity between two individuals.

Due to its simpler structure, the approximate Jaccard matrix Ĵ = 1
2max(s)A fits into the

framework of Eq. (3) by taking a = 1√
2max(s)

 , v1 = 1m ∈ R
m , and w1 = �m ∈ R

m , where s

was the vector of column sums of G ∈ R
n×m.

Theoretical error bounds on the eigenvectors of the Jaccard approximation

The original Jaccard matrix as defined in [19] and the proposed approximate Jaccard
matrix of section “A new approximation of the Jaccard similarity matrix” naturally differ
slightly, and so do their eigenvectors.

Therefore, our proposed approximate Jaccard matrix comes with a classical speed/
accuracy tradeoff. Its eigenvectors are much faster to compute, though at the expense
of a (slight) loss in accuracy. However, as the computation of eigenvectors is at the heart
of this paper, this section establishes guaranteed theoretical bounds on the distance (in
L2 norm and angle) between the eigenvectors of the Jaccard matrix and the ones of our
proposed approximation. These a priori bounds allow the user to gauge in advance the
trade-off between obtained speedup and sacrificed accuracy.

To derive the bounds, we make use of the so-called “Davis-Kahan sin(θ) ” theorem [4].
Citing the statement of the theorem in [23], let A ∈ R

d×d and Â ∈ R
d×d be two symmet-

ric matrices with eigen decompostions given by A =
∑d

i=1 �iuiu
⊤
i and Â =

∑d
i=1 �̂iûiû

⊤
i ,

Page 8 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

where �1 ≥ · · · ≥ �d and �̂1 ≥ · · · ≥ �̂d are the sorted eigenvalues. Then,
| sin(∠(u1, û1))| ≤ 2

�A−Â�op
max(�1−�2,�̂1−�̂2)

 and minǫ∈{+1,−1} �u1 − ǫû1�2 ≤
√
2| sin(∠(u1, û1))|.

The Davis-Kahan theorem allows one to bound the distance (up to multiplication with
+1 or −1 , since eigenvectors are only defined up to a unit) between the eigenvectors of
a matrix A and an arbitrary perturbation Â of A using the angle between their eigenvec-
tors, which in turn is bounded by a quantity involving the operator norm of A− Â and
their first eigenvalues.

Applied to the Jaccard matrix J and our proposed approximation Ĵ of section “A new
approximation of the Jaccard similarity matrix”, we see that the difference between the
eigenvectors u1 of J and û1 of Ĵ , up to a unit {+1,−1} , can be bounded as

where �1, �2 and �̂1, �̂2 are the first two eigenvalues of J and Ĵ , respectively. The operator
norm of the two matrices in Eq. (6) is straightforward to compute (in the simulations of
section “Experimental results”, we actually again bound the operator norm by the Frobe-
nius norm, thus making use of norm equivalence in R), and the first two eigenvalues of
the two matrices can be computed efficiently using, for instance, the power method (also
called Von Mises iteration) of [29].

It is important to note that the aforementioned approximation can also be used
without actually computing the eigenvalues of J and Ĵ . This is possible with the help of
the Gershgorin circle theorem [6], which allows one to easily obtain lower and upper
bounds on all eigenvalues of a matrix.

An efficient algorithm using sparse matrix algebra

The decomposition of Eqs. (3) and (4) allows one to formulate an efficient algorithm
to compute the eigenvectors of X⊤X using sparse algebra only. Our algorithm is
adapted from the one of [12], stated again for completeness in Algorithm 1, to pre-
serve the sparseness of the input during the entire computation.

Algorithm 1 randomized fast SVD

 Algorithm 1 returns the first k principal components of X⊤X for an input matrix X ∈ R
n×m . A full SVD can

also be obtained as U�V⊤ , where U is computed in step 6, and � and V⊤ come from the SVD of matrix B

(5)min
ǫ∈{+1,−1}

�u1 − ǫû1�2 ≤
√
2| sin(∠(u1, û1))|

(6)≤ 2
√
2

∥

∥

∥
J − Ĵ

∥

∥

∥

op

max
(

�1 − �2, �̂1 − �̂2

) ,

Page 9 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

in step 5. The parameter q is a tuning parameter, where q = 2k is recommended in [12], though larger values
provide higher numerical accuracy. To be precise, in [12] the authors provide a bound on the accuracy of the SVD
returned by Algorithm 1 for 2 ≤ k ≤ 0.5min(m, n) , given by

where E is the expectation with respect to the random Gaussian matrix, and σk+1 is the
(k + 1) th singular value of X. Note that the algorithm of [12] does not require a normali-
zation of the eigenvectors as done in, for instance, the power method [29].

Our framework is based on the observation that all arithmetic operations in Algo-
rithm 1 can be reformulated for input matrices of the type of Eqs. (3) and (4) such that
they preserve sparse matrix algebra. Without loss of generality, we consider Eq. (4)
in the following. An adapted algorithm to compute the eigenvectors of matrices in
the form of Eq. (4) is given in Algorithm 2. The input of Algorithm 2 is the matrix
X = a · v2 ⊙c (G ⊖c w2) for which one wishes to compute the eigenvectors of X⊤X ,
the number of desired eigenvectors k ∈ N , as well as q ∈ N.

Algorithm 2 randomized fast SVD for X⊤X with X = a · v2 ⊙c (G ⊖c w2)

In Algorithm 2, after initializing the matrix Y with Gaussian random numbers, the
operation Y ← (XX⊤)qXY needs to be performed. Importantly, as seen in lines 2–5,
the structure of X = a · v2 ⊙c (G ⊖c w2) allows one to separate the exponentiation into
a part using sparse matrix algebra operations for G only, and simple outer products of
lower dimension. Next, a QR decomposition is computed for Y, and B ← Q⊤X is com-
puted which again can be separated into a part using sparse matrix algebra only, and an
outer product of lower dimensions. The resulting matrix B has the dimensions (2k)× n
only, thus allowing for a fast SVD computation. Algorithm 2 returns U = QŨ ∈ R

m×k as
done in Algorithm 1.

Note that the matrix R of the QR decomposition, as well as the matrices � and V⊤
of the SVD are actually not needed if only the first k eigenvectors (given as columns in
matrix U) are sought. Their computation can therefore be omitted. An adaptation of
Algorithm 2 to Eq. (3) is straightforward and thus omitted in this article.

(7)E�X − U�V⊤� ≤
[

1+ 4

√

2min(m, n)

k − 1

]1/(2q+1)

σk+1,

Page 10 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

Runtime considerations

As shown in [8], the effort to compute the four similarity matrices is O(nm2) . If sparse
algebra is used, the effort is O(snm2) , where s ∈ [0, 1] is the matrix sparsity parameter
(the proportion of non-zero matrix entries). The resulting similarity matrix has dimen-
sions m×m in all cases. A subsequent standard SVD to compute their eigenvectors has
effort O(m3) [7]. Together, the effort for the computation of the similiary matrix and its
eigenvectors via classic SVD is O(nm2 +m3).

Using Algorithm 2, the computation of any of the four similarity matrices is entirely
omitted. Running Algorithm 2 has a computational effort of O(qk · nm+ k2(n+m)) ,
thus making the computation of the first k ∈ N eigenvectors of any similarity matrix a
linear time operation in both m and n (assuming the other is kept fixed).

The aforementioned runtime is derived as follows. Assume we apply the fast rand-
omized SVD of Algorithm 1 to an input matrix X ∈ R

n×m and k eigenvectors, using a
fixed choice of q. In step 1, we generate � ∈ R

m×(2k) which requires effort O(mk) for
writing all matrix entries. In step 2, we compute X� ∈ R

n×(2k) , which requires effort
O(mnk). Then, X� ∈ R

n×(2k) is left-multiplied with X⊤ ∈ R
m×n (likewise effort O(mnk))

and again left-multiplied with X ∈ R
n×m . This is done q times, leading to an effort of

O(qmnk). The resulting matrix Y has dimensions n× (2k) . In step 3, a QR decomposi-
tion is computed of Y ∈ R

n×(2k) . The Q-matrix of the QR-decomposition of Y has the
same dimensions n× (2k) , and since n > 2k , its computation typically costs O(k2n) . In
step 4, we compute B as Q⊤X ∈ R

(2k)×m , which requires effort O(mnk). In step 5, the
SVD of B ∈ R

(2k)×m costs O(k2m) since m > 2k . Note that actually, only a truncated
SVD for the largest k singular values is needed, causing the matrix Ũ to have dimen-
sions (2k)× k . In step 6, the algorithm returns U = QŨ ∈ R

n×k , which is computed as
a matrix-matrix product in O(nk2) . Together, we see that the effort of Algorithm 1 (and
equivalently, of Algorithm 2) can be expressed as O(qk · nm+ k2(n+m)).

Experimental results
This section first presents experimental results on the numerical quality of the eigen-
vectors returned by Algorithm 2 when applied to the genomic relationship matrix
(GRM) and the proposed approximate Jaccard matrix (section “Application to the 1000
Genomes Project data”). Afterwards, we experimentally verify both the numerical accu-
racy of Algorithm 2 (section “Investigation of numerical accuracy”), as well as the theo-
retical bounds on the accuracy of the Jaccard approximation (section “Verification of the
theoretical bounds for the approximate Jaccard matrix”). We conclude with an experi-
mental verification of the computational runtime of Algorithm 2 in section “Verification
of theoretical runtimes”.

Throughout this section, we refer to five different algorithms to compute eigenvectors.
Those are (1) a full traditional computation of eigenvectors with the function eigen in
R, denoted as traditional SVD; (2) a truncated SVD computed with the function eigs of
the R-package RSpectra [20], denoted as truncated SVD; (3) the power method with a
fixed number of 100 iterations [29], which is a specialized algorithm to compute the first
eigenvector only, denoted as power method; (4) the randomized SVD algorithm of [12]
applied to some suitable matrix X, thereby computing the eigenvectors of X⊤X , denoted
as randomized SVD; (5) the proposed Algorithm 2, denoted as Algorithm 2.

Page 11 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

Since we aim to extract the eigenvectors of similarity matrices in this section, we note
that the first three algorithms require the full calculation of the similarity matrix before
extracting its eigenvectors. The randomized SVD and Algorithm 2 do not require the

+

+

+
+ +

+

+ ++ +
++

++
+++++ ++ +

+
+

+

+

+
+

+
+

++
+

+
+++

+

+

+

+

+
+
+

+
+

+++
++

+ +
+

+

+

+

+

+
+

+

+
++

+

+

+
+

+

+

+
+

+ +

+
+

+
+
++

+
+

+
+
++

+
++++

+
+

+ +
++ ++
+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+
+

+

++ + +

+

+
+

+

+

+

+ +

+

+

+

+
+

+

+

+
+
++++

+

+

+

+
+

+

+
+

+

+

++

+

+

+

+

+
+

+

+

+

+

+
+

++
+

++++

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

++
+

+
+
+

+
++

+
+

+
+ +++

+
+

++ + ++
+

+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
++

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+ +

+
+

+

+
+

+
+

+

+

+

+
+
++ ++

+

+

+

+

+ +++
++

+

+

+

+ +

+
+

+ +
+

+

++

+ +

+

+
+

+
+

+

+ +
+
++ +++
++

+

++

+

++++
+

+
+
+

+
++

+

+

++

+

+ +
+

+

++

+

++++
+

+

+
+

+ +
++

+

+

+ +
++ +

+
+

++
+

++
+

+

++

+
+++
+++ +

+
+

+

+
++++

+

+

+
++++

+ ++ +
+

+

+
+ +

+

+ +
++

+

+
+

+

+

+

++ +
+

+

+

++

+
+ ++

+

+

+

++

+

+
++

+

+

+

+++
+

+

+

+

+

+
+
+

+

+
+
+

+

+

+

+

+

+

+
+

+ +

+
+

++
+ ++

+

+
+
+

+ ++
+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

++
+

+

+

−0.02 0.00 0.02 0.04 0.06

−0
.1

0
−0

.0
5

0.
00

0.
05

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

+

+

++ +
+

+
++ +

+
+ ++++++

+ ++ ++
+

+

+

+
+

++++
+

+ +++
+

+

+

+
++

+

+++++
+

++ +
+

+

+

+

+
+

+

+

+
++

+

+

+
+

+

+

+
+

+ +
+

+ +

+
++

+
+

+
+
++

+
++ +

++
+

+
+++

+
+ + +

+

+

+

+

++
+

+

+

+

+

+

+

+
+

+

++ + +

+

+
+

+

+

+

+ +

+

+

+

+
+

+

+

+
+

+
+++

+

+

+

+
+

+

+ +

+

+

++

+

+

+

+

+
+

+

+

+

+

+
+

++

+
++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++
+

+
+
+

+

+ +
+ + +

+ +++

+

+

++
+

+
+

+

+

+
+

+

+

+ +

+
+

+
+

+

+

+

++ +
+

+

+

+ ++

++

++

+

+

+

+

+ +

++

+

++
+

+
+++

+
+

+
+ ++

+

+

+

+

+ +++++

+

+

+

+
+

+
+

+

+
+

+

+
+

+
+

+

+++ + ++ +
+

++ +
++

+ +

+

+
+

+

++++
++ +

+
+

++

+
+

++

+

+ +
+

+

++

+

+ +
+
+++

++
+

+
++

+

+

+
+

++ +

+

+
+

+
+

+
+

+
+

+
+

+
+++

+
+

+ ++
+

+

+
++++

+

+

+
++++
+

++ +
+

+

+
+ +

+

+ +
+

+

+

+

+ +
+

+

++ + +

+

+

++

+

+
+
+

+

+

+

++
+++

+ +

+

+

+ ++

+

+

+

+

+
+

+

++
++

+
+

+

+

+

+

+

+
++ +

+

+
+

++
+

+

++

+
+

+

+
+

+
+

+

++
++

+ +

+

+

+
+

+
+

+

+

+

+
++

+

+

+

−0.02 0.00 0.02 0.04

−0
.1

0
−0

.0
5

0.
00

0.
05

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

Fig. 1 Genomic relationship matrix (GRM). First two principal components colored by population for the
1000 Genomes Project dataset. Truncated SVD (left) and Algorithm 2 (right)

+
+

+++

+

++
+

+

+ +
++

+ +
+

+ +
+ ++

+
+

++ +

+

++ +

+
+

+
+

++++

+

+

+

++

+
+

++
+

+
+

+
++

+

+
+

+
++

+

+

++

+ +

+
+

+

+

++
+

+
+

+
+
+

+

+

+ +

+

++++

+

+
++ +

+

+
++

+

+++

+

+

+
+

+

+

+ +
+

+

+

+

+

+

+

+
+

+

+

+

++
+

+
+

+

+

+

+
++

+

+

++

+

+

+
+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

++ ++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++ +++
+

+

+

+
+ +

+

+ +
+

++

+

+

+
+ +

++

+

+

+

+

+

+

+

+ +

+

+
+

+ +

+ +
+ +

+

+

+

+

+
+
+

++

++

+
+ +

+

+

+
+

+

+

+

+
+

+
+

++

+

+
+

+

+

+
+

++ +
+

+

+
+

+

+
++

+
+

+

+

+
+

+

+

+

+ +
+

+
+

++

+
++

+

+
+

++
+ +++ + + +++

+

+ +
++

+
+

+

+ +

+

+

+
+

+

+
+

+

+
+

+
+

+
+

+

+

+
+

+ +

+
+

+

+ +
+

+ +
+
+++ +
+
+

++

++++

+
+

+

+ +
+

+

+
+ ++ +

+
+

+
+ ++ +

+

+
+

+

+
+ +

+

+

+ +
++ +

+ +++
+

+ +

+

+

+
+

+

+
++

+
+ +

+

+
+

+

+
+

+ +
+

+ ++
+++

+

+
++ +

+

+ +

+
+

+ +
+ +++

+
+

+

+

+++

+

+ +
+

+
++ +++

+
+

+
++

+
+

+
+

+

+

+
+

+

++ +
++

+
+

+
+ + +

+ +

−0.07 −0.06 −0.05 −0.04 −0.03

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

+
+ +++

+

++
+

+

+ +
++ +

+
+

+
+

+ ++
+

+
++ +

+

++ +
+

+
+

+

++++

+

+

+

++

+
+

++
+

+
+

+
++

+

+
+

+
++

+

+

++

+ +

+
+

+

+

++

+

+
+

+
+
+

+

+

+ +

+

++++

+

+
++ +

+

+
++

+

+++

+

+

+
+

+

+

+ +
+

+

+

+

+

+

+

+
+

+

+

+
++

+

+
+

+

+

+

+
++

+

+

++

+

+

+
+

+

+
+

+
+

+
+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

++ ++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++ +++

+
+

+

+

+ +
+

+ ++
++

+

+

+

+ +

++

+
+

+

+

+

+

+

+ +

+

+
+

+ +

+ +
+ +

+

+

+

+

+
+

+

+
+

++

+
+ +

+

+

+
+

+

+

+

+ +

+
+

++

+

+
+

+

+

+

+

++ +
+

+

+
+

+

+
++

+

+
+

+

+
+

+

+

+

+ +

+

+
+ ++

+
++

+

+
+

++
+

+++ + + +++
+

+ +
++

+
+

+

+
+

+

+

+ +

+

+
+

+

+
+

+ +

+
+ +

+

+
+

+ +

+
+

+

+ +
+

+
+

+
+++ +

+
+

++

+
+++

+
+

+

+ +
+

+
+

+ ++ +
+

+
+

+ ++ +
+

+
+

+

+
+ +

+

+

+
+
++ +

+
+++

+
+ +

+

+

+
+

+

+
+

+

+
+ +

+

+
+

+

+
+

+
+

+
+ ++

+++

+

+
++ +

+

+ +

+
+

+ +
+ +

++
+

++

+

+++

+

+ +
+

+
++ +++

+
+

+
+

+
+

+

+
+

+

+
+

+

+

+
+ +

++
+

+
+

+ + +
+

+

−0.07 −0.06 −0.05 −0.04 −0.03

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

Fig. 2 Covariance matrix. First two principal components colored by population for the 1000 Genome
Project dataset. Truncated SVD (left) and Algorithm 2 (right)

+
+

+

+

+
+

+
++

+

+
+

+
+

+ ++
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+ +
+

+
++

+

+

+

+
++++
+
+

+++
++++++

+
++
+

+

+

+

+
++

+

+

+

++

+
+

+
++

++
+

+

+

+
+

+
+
++
+
+

+++
+

+
+

++
+
+

+

+ +
++
+

+

+

+

+

+++++

+

+
++
++

+

+++

+
+

+
+

+
+
++
+ ++++

+

+
+
+

+

+
+

++

+

+
+

+
+

++

+
++

+

+

+
+

+

+++ ++ +
+

+ ++ ++
++
+

+

+ +

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

++
+

+

+

+

++

+

+

+
++

+

+
+

+

+

+

+
+

+
+

+

++

++
+

+

+

+

+

+

+
+

+

+

+
+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

++

+

+

+

+

+

++ +
+++
++ ++

++
+++
+++

++++
+
+

++
+

+
+

+

+
+

+

+

+
+

+ +

+

+

++

+

+

+
+
++

+

+
+
+

++

+
+ +

+
+++

+

+ +
+ ++
++

+
++++
++

+

+++++

+++

+

+
+
++

+
+

+
+

+

+

+

+

+

+

+ +
+
++

+ +
++

+

+

+

++

+
+

+

+
+

+

+

++

+

+
+

+

+

+

+
+

+

++
+

+

+

+
+

+

+

+

++

+

+

++

+

+

+

+

+

+

++
+
+ +

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

++

+

+

+

+ ++

+

+

+

+

+

+

+

+

+

+

+
+

+

0.02 0.04 0.06 0.08 0.10 0.12

0.
00

0.
02

0.
04

0.
06

0.
08

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

+
+

+

+

+
+

+
+++

+
+

+

+
+ ++

+
+

+
+

++
+

+
+

+

+
+

+

+

+ +
+

+
++

+

+

+
+++

++
+
+

++++
+++++

++
++

+

+

+
+

++

+

+
+

++
+

+
+++

++
+

+++
+

+
+++

+
+++++

++

+++
+

+

+
+

++
+

+

+

+

+

+++++

+

+
++

++
+

+++
+
+

+
+

+
+++
+ ++++

+

+
++

+

+
+++

+

+
+ +

+

++

+
++

+

+

+
+

+

+++ ++ +
++ ++

++++
+

+

+ +

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
++

+

+
+

+

+

+

++

+

+

+

+

+
+

+

+

+ ++

+ +

+

+

+ +

+

+
+

+
+

+

++

+++
+

+

+

+

+
+

+

+
+

+
+

+ +

+

+

+
+

+

+

+
+

+

+

+

+

+

+

++

+
+

+

+ +

+

+
+

+ +
+

+

+

+

+

+
+

+

+
+

+

+

+

++
++

+

+

+

+

+

++ ++++
++
++ ++
+

+
++++
++++
+
+

++
+

++
+

+
+

+

+

++
+ +

+

+
++

+

+

++
++

+

+
+

+

+

+++ +

+
+++

+

+ ++ ++ ++

+
++++
++

+

+ +++
+

+++

+

+
+
+++ +

+
+

+

+

+

+

+

+

+ +
+

+++ + +
+

+

+

+
++

+
+

+

+

+

+
+

++

+

+
+

+

+

+

+

+

+ ++
+

+

+

++

+

+

+

++
+

+

+
+

+

+

+

+

+

+

++

++ +
+

+

+

+ +

+

+

+

+

+
+

+

+
+

+

++

+
+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

++

0.02 0.04 0.06 0.08 0.10 0.12

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

Fig. 3 Weighted Jaccard matrix. First two principal components colored by population for the 1000 Genome
Project dataset. Truncated SVD (left) and Algorithm 2 (right)

Page 12 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

calculation of the similarity matrix and work on matrix G instead (see section “Fast com-
putation of eigenvectors”).

Application to the 1000 Genomes Project data

We apply Algorithm 2 to chromosome 1 of the 1000 Genomes Project [28], with the aim
to visually examine the accuracy of the first two eigenvectors in population stratification
figures.

We first prepare the raw data of the 1000 Genome Project using PLINK2 [26] using a
cutoff value 0.01 for the option—max-maf to select rare variants. Moreover, we employ
LD pruning with parameters—indep-pairwise 2000 10 0.01. All results focus on the
European super population, containing 503 subjects and approximately 5 million rare
variants.

Figure 1 shows results for the first two eigenvectors of the genomic relationship matrix
(GRM), colored by subpopulation (GBR, FIN, IBS, CEU, TSI). The eigenvectors are com-
puted with two methods: (1) we fully construct the GRM matrix on the 1000 Genomes
Project dataset before extracting its eigenvectors using a truncated SVD; and (2) we use
our proposed Algorithm 2, thereby avoiding the actual computation of the GRM matrix.
We observe that the plots are almost identical. This is to be expected, as the GRM matrix
allows for an exact decomposition in the from X⊤X suitable for Algorithm 2, see sec-
tion “Decomposition of three similarity matrices”.

Similar plots for the covariance matrix and the weighted Jaccard matrix applied to the
same dataset can be found in Figs. 2 and 3, respectively. As seen in both figures, the
population stratification plots obtained by either computing the similarity matrix first
and then its eigenvectors via truncated SVD, or by running Algorithm 2 are virtually
identical. As before, this is to be expected as the decomposition into the form X⊤X is
exact for both the GRM and the weighted Jaccard matrix (see section “Decomposition of
three similarity matrices”).

We repeat this computation for the Jaccard matrix. Similarly to the previous case, we
compute the first two eigenvectors by fully constructing the Jaccard matrix and extract-
ing its eigenvectors using a truncated SVD, and by using the Jaccard approximation of

+

+

+

+
+

+ +

+

+

+

+
+

+

+

+
+

+

+

++
+

+
+

++

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+ +

+

+

++

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+ ++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++ +
++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

++ +
+

+ +

+

+

+

+

+

+

+
+

+

+

+

++
+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+ +
+

+

+

+

+ ++

+
+

+

+
++

+

+

+
+

+

++

+

+++ +

+

+
++

+

+

+ +

+ +
+
+

+

+ +
++

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+
+

+ +
+

+

+
+ +

+

+

+

+ ++

+

+ + +

+

+
++

+

+ ++

+

+

+

+
+

+

+

+

+

+ ++
+

++ +

+

+

+
+

+
++

+

+

++
+

+

+ +
+

+
+

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

++

+

+
+

−0.065 −0.060 −0.055 −0.050 −0.045 −0.040 −0.035

−0
.0

15
−0

.0
10

−0
.0

05
0.

00
0

0.
00

5

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

+
+ +++

+
+

+
+

+

+ +
++ + +

++ +
+ ++ +

+
++ +
+

++
+

++
+

+

+++
+

+

+

+

++

++
++

+

+
+

+
++

+

+
+

+
+

+

+

+

++

+
+

+

+

+

+

++
+

+
+

+ ++
+

+

+
+

+

++++

+

+
+

+ +

+

+
+

+
+

+++

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
++

+
+

++

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
++ ++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+ +

+
+

+

+

++
+

++
+

+

+

+

+
++

+
++++

+

+

+
+ +

++

+
+

+

+

+
+ +

+ +

+

+

++
+

+ +
+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

+
++

++

+
+

+
+ ++

+
+

+

+

+

+
+

+

++ ++

+

+
+

+ + ++

+

+ +

+

+
+

+
+

+

+ +
+

+
+

++
+ ++

+

++

++

+

+++ + + +++
+

+ +
++

+
+

+

+
+

+
+

+

+

+

+
+

+

++
+ +

+
+ +

+
++

+ +

+

+
+

+ +
++

+
+

++
+ +

+
+

+
+

+
+

++
+

+
+

+ +
+

+

++ ++ +
+

+
+

+ ++ + +

+

+
+

++ +

+

+
+

+++ +
+

+
++

+
+ +

+

+

++

+

+
++ +

+ +

+

+

+ +
+

+

+
+

+
+

+

+

+
++

+
+

++
+

+

+ +

+
+

+ +
+

+++
+

++
+

+
+

+
+

+ +
+

+ ++
++

+

+ +
+ +

+ +
+

+
+

+

+

+

+

+

++
+++ +

+
+

+
+

++
+

−0.07 −0.06 −0.05 −0.04 −0.03

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

+
+
+
+
+

GBR
FIN
IBS
CEU
TSI

Fig. 4 Jaccard matrix. First two principal components colored by population for the 1000 Genomes Project
dataset. Truncated SVD (left) and Algorithm 2 (right)

Page 13 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

section “A new approximation of the Jaccard similarity matrix” in connection with Algo-
rithm 2. Figure 4 shows the first two eigenvectors of the original Jaccard and the approx-
imate Jaccard matrix. We observe that here, the stratification plots are visibly different,
though the approximate Jaccard matrix provides a very good stratification of the 1000
Genomes Project dataset.

Investigation of numerical accuracy

The principal components of the genomic relationship matrix in Fig. 1, computed
once with a truncated SVD and once with Algorithm 2, are almost identical. However,
although the decomposition in Eqs. (3) and (4) is exact for the genomic relationship
matrix, the two plots in Fig. 1 exhibit small differences attributed to numerical error/
approximations. To investigate those, we measure the L2 distance and sine of angle
between the two first principle components.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

number of variants

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

number of subjects

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)

Fig. 5 Measured L2 distance and sine of angle between the first eigenvector of the genomic relationship
matrix (GRM) computed with both a truncated SVD and with Algorithm 2. Variable number of variants n while
keeping m = 100 fixed (left) and variable number of subjects m while keeping n = 100 fixed (right)

0
1

2
3

4

number of variants

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)
matrix bound

0
1

2
3

4

number of subjects

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)
matrix bound

Fig. 6 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Variable number of variants n while
keeping m = 100 fixed (left) and variable number of subjects m while keeping n = 100 fixed (right)

Page 14 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

For the experiments in this and all following subsections, we employ simulated data.
We create sparse matrices G of dimensions n×m , where a proportion π ∈ [0, 1] of
entries is set to one (acting as nonzero alleles). The dimensions n×m are given individu-
ally for each experiment. Unless stated otherwise, we set π = 0.1.

Figure 5 shows the scaling of the numerical error as a function of the number of vari-
ants n while keeping m = 100 fixed, and as a function of the number of subjects m while
keeping n = 100 fixed. We observe that the error does not seem to grow with a scaling of
the input, but rather plateaus at a low level.

Verification of the theoretical bounds for the approximate Jaccard matrix

We are interested in quantifying further the numerical tradeoff made when comput-
ing the eigenvectors of the approximate Jaccard matrix. Additionally, we aim to verify
the theoretical bounds on the approximate eigenvectors derived in section “Theoretical
error bounds on the eigenvectors of the Jaccard approximation”.

To this end, we again investigate both the validity and the scaling behavior of the
bounds of section “Theoretical error bounds on the eigenvectors of the Jaccard approxi-
mation” as a function of the number of variants n, the number of subjects m, the propor-
tion of nonzero alleles, and higher order eigenvectors. We use the simulation setting of
section “Investigation of numerical accuracy”.

Figure 6 (left) shows results as the number of variants n increases while keeping the
number of subjects m = 100 fixed. The figure displays the measured L2 distance between
the first eigenvector of the Jaccard matrix and the approximate Jaccard matrix, the angle
bound of Eq. (5), and the matrix bound of Eq. (6). Similarly, in Fig. 6 (right) we vary
the number of subjects m while keeping the number of variants n = 100 fixed. In both

0.
0

0.
5

1.
0

1.
5

2.
0

proportion of nonzero alleles

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L2 distance
sin(angle)
matrix bound

Fig. 7 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Proportion π ∈ {0.1, . . . , 0.9} of entries 1
while keeping the number of variants n = 1000 and the number of subjects m = 100 fixed

Page 15 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

cases, we observe that the measured L2 distance between the first eigenvector of the Jac-
card matrix and its approximation is negligible. The angle bound (which requires the
computation of both eigenvectors) seems to be a very tight bound, while the matrix
bound (which requires no computation of eigenvectors and is thus an a priori bound)
is valid but less tight. This is to be expected, as less information is required to compute
the matrix bound. In particular, in can be computed without having computed any
eigenvectors.

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

number of eigenvector

1 2 3 4 5 6 7 8 9 10

L2 distance
sin(angle)
matrix bound

Fig. 8 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Bound progression for the first 10
eigenvectors while keeping the number of variants n = 1000 , the number of subjects m = 100 , and π = 0.1
fixed

number of variants

tim
e

[s
]

1000 3250 5500 7750 10000

0.
00

8
0.

10
3

0.
19

7

Power method
Truncated SVD
Randomized SVD
Algorithm 2

number of subjects

tim
e

[s
]

1000 3250 5500 7750 10000

0.
01

7.
91

7
23

.7
31

Power method
Truncated SVD
Randomized SVD
Algorithm 2

Fig. 9 Leading eigenvector of the genomic relationship matrix (GRM) for dense matrices. Runtime (in
seconds) as a function of the number of variants n while keeping m = 100 fixed (left), and as a function of the
number of subjects m while keeping n = 100 fixed (right). Log scale on both axes

Page 16 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

Figure 7 investigates the accuracy of the theoretical bounds as a function of the pro-
portion π ∈ {0.1, . . . , 0.9} determining the sparseness of the matrix G while keeping the
number of variants n = 1000 and the number of subjects m = 100 fixed. We observe that
again, the error in L2 distance between the eigenvector computed for the Jaccard and
approximate Jaccard matrices is negligible. The angle bound is again tight. The matrix
bound is valid, more relaxed than the angle bound, and exhibits its closest bound for
around π = 0.4.

Finally, Fig. 8 applies the bounds of Eqs. (5) and (6) to higher order eigenvectors. We
observe that the approximate Jaccard matrix is more accurate for the first eigenvectors
than the later ones. The angle bound nicely follows the actual observed L2 norm between
the eigenvectors computed for the Jaccard matrix and its approximation, while the
matrix bound is the same for all since it only takes the Jaccard matrix and its approxima-
tion into account (but no information on the eigenvector being computed).

Verification of theoretical runtimes

Finally, we aim to investigate the empirical runtime scalings of the algorithms discussed
in the previous sections, in particular we aim to verify the theoretical runtimes derived
in section “Runtime considerations”.

As shown in section “Runtime considerations”, the calculation of a full similar-
ity measure with a subsequent eigenvector computation using a (truncated) SVD has
a theoretical runtime of O(nm2 +m3) , while Algorithm 2 has a theoretical runtime of
O(qk · nm+ k2(n+m)).

We consider two scenarios. The first scenario examines the computation of the
leading eigenvector only, in which case it is sensible to use a specialized algorithm
such as the power method [29]. The second scenario examines the general case of
k > 1 eigenvectors being computed. Each of the two scenarios is yet again considered
separately for dense and sparse matrices. For sparse matrix support, we employ the
R-package Matrix on CRAN [2]. We select the genomic relationship matrix as the
similarity measure in our runtime comparisons.

number of variants

tim
e

[s
]

1000 3250 5500 7750 10000

0.
00

5
0.

10
2

0.
19

8

Power method
Truncated SVD
Randomized SVD
Algorithm 2

number of subjects

tim
e

[s
]

1000 3250 5500 7750 10000

0.
01

6
10

.2
08

30
.5

93

Power method
Truncated SVD
Randomized SVD
Algorithm 2

Fig. 10 Leading eigenvector of the genomic relationship matrix (GRM) for sparse matrices. Runtime (in
seconds) as a function of the number of variants n while keeping m = 100 fixed (left), and as a function of the
number of subjects m while keeping n = 100 fixed (right). Log scale on both axes

Page 17 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

We first consider the computation of the leading eigenvector for dense matrices.
We compare the power method, the truncated SVD, the randomized SVD (Algo-
rithm 1), and our proposed Algorithm 2. Figure 9 shows empirical runtime scalings in
the number of variants n (left) and the number of subjects m (right) while keeping the
other fixed at value 100.

In Fig. 9 (left) investigating the scaling in n, all lines have a slope of around 1. This is in
good accordance with the theoretical runtime which predicts a linear scaling in n for all
methods. In Fig. 9 (right) investigating the scaling in m, the lines have slopes of around 2
for the power method, truncated SVD, and randomized SVD. The slope for Algorithm 2
is 0.87. The experimental runtime dependence for the power method and the truncated
SVD are therefore as expected since these methods rely on the computation of the GRM
matrix first, which requires quadratic effort in m [8]. The runtime dependence of the
randomized SVD turns out to be higher than expected. The dependence of Algorithm 2
is roughly linear and thus matches its theoretical runtime.

number of variants

tim
e

[s
]

1000 3250 5500 7750 10000

0.
00

6
0.

07
5

0.
14

4

Traditional SVD
Truncated SVD
Randomized SVD
Algorithm 2

number of subjects

tim
e

[s
]

1000 3250 5500 7750 10000

0.
00

8
10

58
.3

59

Traditional SVD
Truncated SVD
Randomized SVD
Algorithm 2

Fig. 11 Computation of k = 2 eigenvectors of the GRM matrix for dense matrices. Runtime (in seconds) as a
function of the number of variants n while keeping m = 100 fixed (left), and as a function of the number of
subjects m while keeping n = 100 fixed (right). Log scale on both axes

number of variants

tim
e

[s
]

1000 3250 5500 7750 10000

0.
00

5
0.

09
0.

17
5

Traditional SVD
Truncated SVD
Randomized SVD
Algorithm 2

number of subjects

tim
e

[s
]

1000 3250 5500 7750 10000

0.
01

5
14

58
.9

25

Traditional SVD
Truncated SVD
Randomized SVD
Algorithm 2

Fig. 12 Computation of k = 2 eigenvectors of the GRM matrix for sparse matrices. Runtime (in seconds) as
a function of the number of variants n while keeping m = 100 fixed (left), and as a function of the number of
subjects m while keeping n = 100 fixed (right). Log scale on both axes

Page 18 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

We repeat the same experiment in sparse matrix algebra. Figure 10 displays results for
the computation of the leading eigenvector of sparse matrices. Due to the usage of fast
sparse matrix algebra in R, we observe in Fig. 10 (left) that all methods attain an empiri-
cal runtime that is either roughly linear (the slope for the randomized SVD is 0.96) or
even faster than linear (empirical slopes of roughly 0.5) in the number of variants n.
When looking at the scaling in the number of subjects m, Fig. 10 (right) shows that the
power method, truncated SVD, and randomized SVD all achieve a similar runtime scal-
ing with slopes of around 2 (as predicted by the theoretical runtime). The runtime scal-
ing of Algorithm 2 is roughly linear and thus more favorable.

We now consider the second scenario in which we compute k = 2 eigenvectors. In
contrast to the previous comparisons, we include the traditional (full) eigenvector com-
putation. As before, the other algorithms included in the comparison are the truncated
SVD, the randomized SVD (Algorithm 1), and our proposed Algorithm 2. Figure 11
shows empirical runtime scalings for computing k = 2 eigenvectors in dense matrix
algebra, again in the number of variants n (left) or the number of subjects m (right) while
keeping the other fixed at value 100.

In Fig. 11 (left) investigating the scaling in n, all lines again have a slope of around 1,
which is in good accordance with the theoretical linear runtime. In Fig. 11 (right) inves-
tigating the scaling in m, we observe three different slopes. The traditional SVD has an
empirical slope of 3.10, thus hinting at a cubic runtime, as expected. The truncated SVD
and the randomized SVD have slopes of roughly 2.05 and 2.10, as seen previously. The
slope for Algorithm 2 is around 0.86 and thus roughly matches its predicted linear theo-
retical runtime.

The corresponding results for computing k = 2 eigenvectors in sparse matrix algebra
are displayed in Fig. 12. As shown in Fig. 12 (left), the runtime scaling of the randomized
SVD is roughly linear (empirical slope of roughly 1.1), while the runtimes of the other
three methods are even faster than linear (empirical slopes of roughly 0.5), an observa-
tion that is attributed to the fast sparse matrix algebra in R. This result matches the one
observed for the computation of the leading eigenvector of sparse matrices in Fig. 10
(left).

Figure 12 (right) displays the asymptotic scalings for computing k = 2 eigenvectors
in sparse matrix algebra. As it seems, the traditional SVD does not make good use of
the sparse matrix algebra and attains an empirical cubic slope (see the left panel of
Fig. 11), while the truncated SVD and the randomized SVD have slopes of roughly 2.
The slope for Algorithm 2 in connection with sparse matrix algebra is only around 0.2
and thus below its predicted linear theoretical runtime.

Overall, these results indicate that Algorithm 2 is faster both experimentally and
theoretically than many of the traditional approaches for computing the leading or
the first leading eigenvectors, both in dense matrix algebra (Figs. 9 and 11) and in
sparse matrix algebra (Figs. 10 and 12).

Page 19 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

Discussion
This article considered the fast and efficient computation of eigenvectors of four
similarity matrices, the covariance matrix, the Jaccard matrix, the weighted Jaccard
matrix, and the genomic relationship matrix. The computation of such eigenvectors is
a standard tool in computational genetics, and it is of importance for correcting lin-
ear regressions, revealing population stratification, and many more application areas.

In this contribution, we first introduce a unified way to express the covariance
matrix, the weighted Jaccard matrix, and the genomic relationship matrix which
allows one to efficiently compute their eigenvectors in sparse matrix algebra using an
adaptation of a fast SVD algorithm of [12]. Notably, the only requirement for the pro-
posed Algorithm 2 to work efficiently is the existence of efficient row-wise and col-
umn-wise subtraction and multiplication operations of a vector with a sparse matrix.
Those are standard operations commonly available in sparse matrix packages. An
exception is the Jaccard matrix, which does not have a structure applicable for fast
SVD computations. Second, we thus introduce a new approximate Jaccard matrix to
which the fast SVD computation is applicable. Third, we establish guaranteed theoret-
ical bounds on the distance (in L2 norm and angle) between the principal components
of the Jaccard matrix and the ones of our proposed approximation. These a priori
bounds allow the user to gauge in advance the trade-off between obtained speedup
and sacrificed accuracy when using the proposed approximate Jaccard matrix.

We verify theoretically and experimentally that our proposed Algorithm 2 keeps
the predicted error bounds and has a more favorable runtime scaling than the tradi-
tional computation of a similarity measure and a subsequent extraction of principal
components.

The derivation of further theoretical properties of the proposed approximate Jac-
card matrix is left for future work.
Acknowledgements
The authors gratefully acknowledge the contributors of the 1000 Genome Project.

Author Contributions
GH conducted all experiments and wrote the manuscript. SL, JH, DP, MC, ES, SW, and CL gave technical advice and
reviewed the manuscript. All authors read and approved the final version of the manuscript.

Funding
Funding for this research was provided through Cure Alzheimer’s Fund, the National Institutes of Health [1R01 AI 154470-
01; 2U01 HG 008685; R21 HD 095228 008976; U01 HL 089856; U01 HL 089897; P01 HL 120839; P01 HL 132825; 2U01 HG
008685; R21 HD 095228, P01HL132825], the National Science Foundation [NSF PHY 2033046; NSF GRFP 1745302], and a
NIH Center grant [P30-ES002109].

Availability of data and materials
The datasets analyzed during the current study are available from the 1000 Genome Project under the identifier EUR
Phase3 v5 hg38/GRCh38, see https:// www. inter natio nalge nome. org/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 June 2023 Accepted: 11 January 2024

https://www.internationalgenome.org/

Page 20 of 20Hahn et al. BMC Bioinformatics (2024) 25:43

References
 1. Abraham G, Inouye M. Fast principal component analysis of large-scale genome-wide data. PLoS ONE.

2014;9(4):e93766.
 2. Bates D, Maechler M, Jagan M, Davis TA, Oehlschlägel J, and Riedy J. Matrix: sparse and dense matrix classes and

methods, 2023. R-package version 1.5-4.1: https:// cran.r- proje ct. org/ packa ge= Matrix.
 3. Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG, Hirschhorn JN.

Demonstrating stratification in a European American population. Nat Genet. 2005;37(8):868–72.
 4. Davis C, Kahan WM. The rotation of eigenvectors by a perturbation. III SIAM J Numer Anal. 1970;7(1):1–46.
 5. Epstein MP, Allen AS, Satten GA. A simple and improved correction for population stratification in case-control stud-

ies. Am J Hum Genet. 2007;80(5):921–30.
 6. Gerschgorin S. Über die abgrenzung der eigenwerte einer matrix. Izv Akad Nauk USSR Otd Fiz-Mat Nauk.

1931;6:749–54.
 7. Golub GH, Van Loan CF. Matrix computations. 3rd ed. Johns Hopkins Studies in Mathematical Sciences; 1996.
 8. Hahn G, Lutz SM, Hecker J, Prokopenko D, Cho MH, Silverman EK, Weiss ST. Christ langeoph and The NHLBI trans-

omics for precision medicine (TOPMed) consortium. locStra: fast analysis of regional/global stratification in whole-
genome sequencing studies. Genet Epidemiol. 2021;45(1):82–98.

 9. Hahn G, Wu C, Lee S, Lutz S, Khurana S, Baden L, Haneuse S, Qiao D, Hecker J, DeMeo D, Tanzi R, Choudhary M,
Etemad B, Mohammadi A, Esmaeilzadeh E, Cho M, Li J, Randolph A, Laird N, Weiss S, Silverman E, Ribbeck K, Lange
C. Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the
SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain. Genet Epidemiol. 2021;45(7):685–93.

 10. Hahn G, Lee S, Prokopenko D, Abraham J, Novak T, Hecker J, Cho M, Khurana S, Baden L, Randolph A, Weiss S, Lange
C. Unsupervised outlier detection applied to SARS-CoV-2 nucleotide sequences can identify sequences of common
variants and other variants of interest. BMC Bioinf. 2022;23:547.

 11. Hahn G, Lutz SM, Lange C. locStra: fast implementation of (Local) population stratification methods; 2022. R-pack-
age version 1.9: https:// cran.r- proje ct. org/ packa ge= locSt ra.

 12. Halko N, Martinsson P-G, Tropp JA. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions. SIAM Rev. 2011;53(2):217–88.

 13. Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaud Des Sci
Nat. 1901;37:547–79.

 14. Lee S, Epstein MP, Duncan R, Lin X. Sparse principal component analysis for identifying ancestry-informative markers
in genome-wide association studies. Genet Epidemiol. 2012;36(4):293–302.

 15. Lee S, Hahn G, Hecker J, Lutz S, Mullin K, Hide W, Bertram L, DeMeo D, Tanzi R, Lange C, Prokopenko D, Alzheimer’s
Disease Neuroimaging Initiative (ADNI). A comparison between similarity matrices for principal component analysis
to assess population stratification in sequenced genetic data sets. Brief Bioinf. 2023;24(1):bbac611.

 16. Li Q, Yu K. Improved correction for population stratification in genomewide association studies by identifying hid-
den population structures. Genet Epidemiol. 2008;32(3):215–26.

 17. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190.
 18. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for

stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.
 19. Prokopenko D, Hecker J, Silverman EK, Pagano M, Nöthen MM, Dina C, Lange C, Fier HL. Utilizing the Jaccard index

to reveal population stratification in sequencing data: a simulation study and an application to the 1000 genomes
project. Bioinformatics. 2016;32(9):1366–72.

 20. Qiu Y, Mei J, Guennebaud G, Niesen J. RSpectra: solvers for large-scale eigenvalue and SVD problems, 2022.
R-package version 0.16-1: https:// cran.r- proje ct. org/ packa ge= RSpec tra.

 21. R Core Team. R: a language and environment for statistical computing. R Foundation for Stat Comp, Vienna, Austria;
2014.

 22. Reich D, Goldstein D. Detecting association in a case-control study while correcting for population stratification.
Genet Epidemiol. 2001;20(1):4–16.

 23. Rigollet P. IDS.160 - mathematical statistics: a non-asymptotic approach, 2020. MIT lecture: https:// math. mit. edu/
~rigol let/ IDS160/.

 24. Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for func-
tional genomics. Stat Appl Genet Mol Biol. 2005;4(32):1–30.

 25. Schlauch D, Fier H, Lange C. Identification of genetic outliers due to sub-structure and cryptic relationships. Bioinfor-
matics. 2017;33(13):1972–9.

 26. Shaun Purcell and Christopher Chang. PLINK2, 2019. Version 2.0: www. cog- genom ics. org/ plink/2. 0/.
 27. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P,

Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK biobank: an open access resource for identify-
ing the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

 28. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015;526(68–74).
 29. von Mises R, Pollaczek-Geiringer H. Praktische verfahren der gleichungsaufloesung. ZAMM Z Angew Math Mech.

1929;9:152–64.
 30. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet.

2011;88(1):76–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=locStra
https://cran.r-project.org/package=RSpectra
https://math.mit.edu/%7erigollet/IDS160/
https://math.mit.edu/%7erigollet/IDS160/
http://www.cog-genomics.org/plink/2.0/

	Fast computation of the eigensystem of genomic similarity matrices
	Abstract
	Introduction
	Methods
	Fast computation of eigenvectors
	Decomposition of three similarity matrices
	A new approximation of the Jaccard similarity matrix
	Theoretical error bounds on the eigenvectors of the Jaccard approximation
	An efficient algorithm using sparse matrix algebra
	Runtime considerations

	Experimental results
	Application to the 1000 Genomes Project data
	Investigation of numerical accuracy
	Verification of the theoretical bounds for the approximate Jaccard matrix
	Verification of theoretical runtimes

	Discussion
	Acknowledgements
	References

