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Abstract 

The computation of a similarity measure for genomic data is a standard tool in com-
putational genetics. The principal components of such matrices are routinely used 
to correct for biases due to confounding by population stratification, for instance 
in linear regressions. However, the calculation of both a similarity matrix and its 
singular value decomposition (SVD) are computationally intensive. The contribution 
of this article is threefold. First, we demonstrate that the calculation of three matrices 
(called the covariance matrix, the weighted Jaccard matrix, and the genomic relation-
ship matrix) can be reformulated in a unified way which allows for the application 
of a randomized SVD algorithm, which is faster than the traditional computation. 
The fast SVD algorithm we present is adapted from an existing randomized SVD 
algorithm and ensures that all computations are carried out in sparse matrix algebra. 
The algorithm only assumes that row-wise and column-wise subtraction and multi-
plication of a vector with a sparse matrix is available, an operation that is efficiently 
implemented in common sparse matrix packages. An exception is the so-called 
Jaccard matrix, which does not have a structure applicable for the fast SVD algorithm. 
Second, an approximate Jaccard matrix is introduced to which the fast SVD computa-
tion is applicable. Third, we establish guaranteed theoretical bounds on the accuracy 
(in L2 norm and angle) between the principal components of the Jaccard matrix 
and the ones of our proposed approximation, thus putting the proposed Jaccard 
approximation on a solid mathematical foundation, and derive the theoretical runt-
ime of our algorithm. We illustrate that the approximation error is low in practice 
and empirically verify the theoretical runtime scalings on both simulated data and data 
of the 1000 Genome Project.

Keywords: Covariance matrix, Fast SVD, Genomic relationship matrix, Jaccard matrix, 
Principal components, Weighted Jaccard matrix

Introduction
In computational genomics, the computation of eigenvectors as part of a princi-
pal component analysis (PCA) is a widespread method to infer population structure 
and to correct for confounding due to ancestry. It has long been known that case–
control studies are subject to population stratification which can induce significant 
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spurious associations at loci that are unrelated with a response [22]. For instance, in [3] 
the authors highlight such a spurious association through stratification by showing that 
a SNP in the lactase gene LCT varies widely in frequency across Europe and was strongly 
associated with height. To correct for stratification in genome-wide association studies 
[17], methodology such as EIGENSTRAT [18] has been subsequently developed. Further 
computational improvements are available [16]. Further works in the literature address 
confounding induced by population stratification with the help of a two-step procedure 
[5], or PCA analyses with tens of thousands of single-nucleotide polymorphisms (SNPs) 
to infer population structure [14].

This article focuses on the fast computation of eigenvectors of four different similarity 
matrices. These matrices provide pairwise similarity measures between genomes, and 
their eigenvectors are popular means to correct for population stratification. We con-
sider the (classic) covariance matrix [24], the Jaccard matrix [13, 19], the weighted Jac-
card matrix [25], and the genomic relationship matrix (GRM) [30]. All four matrices are 
computed on genomic input G ∈ R

n×m , where n ∈ N is the number of loci and m ∈ N 
is the number of individuals. The matrix G is usually sparse. All four similarity matri-
ces have dimensions m×m , where each entry (i, j) is a similarity measure between the 
genomic data of individuals i and j. All four matrices are symmetric by definition.

In real data applications such as the 1000 Genomes Project [28] or the UK Biobank 
[27], the number of individuals quickly reaches numbers in the thousands, ten thou-
sands, or hundred thousands. In this case, traditional eigenvector computations, for 
instance using the function eigen in R [21], become infeasible. Alternative methods with 
lower computational complexity are iterative methods such as the power method [29], 
also called Von Mises iteration, or the truncated singular value decomposition (SVD) 
implemented in, for instance, the R-package RSpectra [20]. However, for these alter-
natives to be applicable, the complete similarity matrix of dimension m×m has to be 
computed first before extracting its eigenvectors. In the best case, calculating a similar-
ity matrix is computationally intensive itself, while in the worst case, its calculation is 
computationally infeasible. The latter case occurs since the similarly matrices are usually 
dense even when computed on sparse genomic input G.

As demonstrated in the literature [12], for a real-valued matrix X the eigenvectors of 
the matrices X⊤X and XX⊤ can be computed without actually calculating X⊤X or XX⊤ . 
This is advantageous in genomic applications, since X⊤X and XX⊤ are typically dense 
even for sparse X, and can thus be infeasible to compute. Since the algorithm of [12] only 
works for eigenvectors of matrices which can be expressed as the product X⊤X or XX⊤ , 
the task is to provide decompositions of the four similarity matrices we consider in the 
form X⊤X or XX⊤.

A couple of remarks are in order on the two levels of approximations that are consid-
ered in this article. First, the randomized SVD algorithm of [12] does not compute the 
(numerically) exact eigenvectors of X⊤X or XX⊤ for a given input X, but an approxi-
mation thereof. Second, the randomized SVD algorithm assumes that its input is of the 
form X⊤X or XX⊤ . As shown in the article, this applies to three similarity measures (the 
covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix), 
but not to the Jaccard matrix. Therefore, we approximate the Jaccard matrix itself with a 
surrogate of form X⊤X in order to apply the randomized SVD algorithm.
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The contribution of this article is threefold. First, we show that the eigenvectors of the 
covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix 
can be computed efficiently using the randomized SVD algorithm by rewriting their 
computations in a unified way in the form X⊤X or XX⊤ . To this end, we propose a tai-
lored algorithm by adapting the randomized SVD algorithm of [12]. The tailored algo-
rithm never actually computes any of the similarity matrices and fully supports sparse 
matrix algebra for efficient calculations. The tailored algorithm only assumes that row-
wise and column-wise subtraction and multiplication of a vector with a sparse matrix is 
implemented efficiently. Second, we propose an approximate Jaccard matrix which like-
wise allows for an efficient computation of its eigenvectors via fast SVD without actually 
computing the similarity measure. Third, we establish guaranteed theoretical bounds on 
the distance (in L2 norm and angle) between the eigenvectors of the Jaccard matrix and 
the ones of our proposed approximation, thus putting the proposed Jaccard approxima-
tion on a solid mathematical foundation. Moreover, we derive the theoretical runtime of 
the fast SVD computation for all four approaches.

In an experimental section, we illustrate the exactness of the proposed computations 
for the covariance matrix, the weighted Jaccard matrix, and the genomic relationship 
matrix. Moreover, we experimentally verify the theoretical runtime derivations, show-
ing that indeed, the fast SVD computation outperforms the traditional SVD computa-
tion. Special attention is given to the Jaccard matrix. Using simulated data, we verify 
the proven theoretical bounds on the distance between the eigenvectors of the Jaccard 
matrix and our proposed approximation, showing that the approximation error is very 
low in practice. Moreover, we demonstrate the (visual) trade-off in accuracy between the 
Jaccard matrix and its approximation for population stratification plots using data of the 
1000 Genomes Project.

The computation of a randomized PCA has also been considered in [1]. In their pub-
lication, the authors likewise adapt the original algorithm of [12]. However, the authors 
only consider the genomic relationship matrix, they do not present computations for 
fully sparse matrix algebra, and they do not establish a unified framework allowing one 
to extend the fast PCA computation to the other similarity matrices as well. Importantly, 
the Jaccard approximation and the theoretical bounds on the accuracy of the approxima-
tion we prove are unconsidered.

The paper is structured as follows. Section  “Methods” introduces the proposed 
decomposition of the four similarity matrices under consideration (section “Fast com-
putation of eigenvectors”), establishes that the fast computation of eigenvectors applies 
to three of these matrices (section “Decomposition of three similarity matrices”), intro-
duces a new approximation of the Jaccard similarity matrix (section “A new approxima-
tion of the Jaccard similarity matrix”), establishes theoretical bounds on the accuracy 
of the approximation (section  “Theoretical error bounds on the eigenvectors of the 
Jaccard approximation”), and summarizes all findings as an efficient algorithm (sec-
tion “An efficient algorithm using sparse matrix algebra”) together with asymptotic runt-
ime considerations (section  “Runtime considerations”). All experimental results can 
be found in section  “Experimental results”. The article concludes with a discussion in 
section “Discussion”.
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The proposed methodology has been implemented as part of the R-package locStra 
[8, 11], available on the Comprehensive R Archive Network [21]. In the entire article, �n 
and 1n denote the column vectors of length n with all entries set to 0 or 1, respectively. 
Moreover, we denote with σr(Y ) ∈ R

n and σc(Y ) ∈ R
m the row and column sums of a 

matrix Y ∈ R
n×m , and with µr(Y ) ∈ R

n and µc(Y ) ∈ R
m the row and column means of 

Y, respectively. As usual, the notation v ⊗ w is used to denote the outer product between 
two vectors v and w, and diag (v) denotes the square matrix having zero entries except 
from vector v on its diagonal.

Methods
This section demonstrates that the covariance matrix, the weighted Jaccard matrix, 
and the genomic relationship matrix can be expressed in a unified way which allows 
for an efficient computation of their eigenvectors (sections “Fast computation of eigen-
vectors” and “Decomposition of three similarity matrices”). This does not apply to the 
Jaccard matrix, for which we propose a new approximation instead that allows for a 
fast eigenvector computation (section  “A new approximation of the Jaccard similarity 
matrix”). Importantly, we establish theoretical bounds on the accuracy of the eigenvec-
tors obtained from the Jaccard approximation (section “Theoretical error bounds on the 
eigenvectors of the Jaccard approximation”). We summarize all findings in an algorithm 
tailored to the four similarity matrices in section  “An efficient algorithm using sparse 
matrix algebra”. We conclude with considerations on the asymptotic speedup in sec-
tion “Runtime considerations”.

Fast computation of eigenvectors

The algorithm of [12] allows one to compute the eigenvectors of either the matrix X⊤X , 
or the matrix XX⊤ by considering X ∈ R

n×m only, where n,m ∈ N . The actual matrix 
product X⊤X or XX⊤ does not need to be computed at any point in time. This is advan-
tageous if the matrix X is sparse since then, oftentimes, X⊤X and XX⊤ are dense. In the 
following, we focus on the computation of the eigenvectors of X⊤X only.

The idea of the randomized SVD of [12] can be summarized as follows. Given a matrix 
X, the aim of the randomized SVD is to compute a low-rank matrix approximation 
X = U�V⊤ . To this end, we first compute an approximate basis for the range of X, that 
is an orthonormal matrix Q such that X ≈ QQ⊤X (effectively, this is a low-rank matrix 
factorization X ≈ AB with A ∈ R

n×r , B ∈ R
r×m and r ≪ n,m ). The dimension of Q can 

be chosen by the user and controls the accuracy of the approximation. Setting B = Q⊤X , 
the efficiency of the randomized SVD comes from B being much smaller than X. After 
computing the SVD of B as B = Ũ�V⊤ , one obtains X ≈ QB = QŨ�V⊤ . Therefore, 
setting U = QŨ results in a low-rank approximation X ≈ U�V⊤.

In order to apply the fast eigenvector computation of [12], we need to express all 
similarity matrices under consideration as a product of the form X⊤X . This is not a 
straightforward task, as the computation of the aforementioned similarity matrices 
involves normalization and centering operations. As an additional complication, the 
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normalization and centering operations usually destroy the sparseness of X. Therefore, 
these operations are kept separate in the following formulas. We consider matrices X 
which can be expressed as

or alternatively, as

where G ∈ R
n×m is the genomic input data (where n ∈ N is the number of loci and m ∈ N 

is the number of individuals), a ∈ R is a scalar, and v1,w1 ∈ R
m as well as v2,w2 ∈ R

n are 
vectors of appropriate dimensions. The scalar a is kept separate and not absorbed into v 
for clarity of notation, as most similiarity matrices have a separate normalizing constant. 
The notation (·) denotes the multiplication of a scalar with a matrix.

The expressions in Eqs.  (1) and (2) are not suitable for actual computations since G 
is assumed sparse, while the matrices 1n ⊗ w1 (encoding the subtraction of w1 from 
all rows of G) and w2 ⊗ 1m (encoding the subtraction of w2 from all columns of G) are 
dense. Instead, we assume that there are efficient row-wise and column-wise subtrac-
tion and multiplication operations available which operate directly on G in sparse matrix 
algebra. Such operations are routinely available in sparse matrix packages such as the 
Matrix package in R [2].

We denote with ⊙r , ⊖r as well as ⊙c , ⊖c the row/column-wise multiplication and sub-
traction operation of a vector with a (sparse) matrix, respectively. To be precise, G ⊖r w 
subtracts w from all rows of G, and G ⊖c w subtracts w from all columns of G. Analo-
gously, v ⊙r G multiplies all rows of G with v, and v ⊙c G multiplies all columns of G 
with v (assuming v and w are of appropriate dimensions). Using these operations, we can 
express Eq. (1) as

and Eq. (2) becomes

As shown in the following sections (sections “Decomposition of three similarity matri-
ces” and “A new approximation of the Jaccard similarity matrix”), the covariance matrix, 
the weighted Jaccard matrix, the genomic relationship matrix, and a newly proposed Jac-
card approximation can be expressed in a unified form as X⊤X , with X as in Eq. (3) and 
Eq. (4).

While G is usually a sparse matrix, centering G with a vector w as done in Eqs. (3) and 
(4) usually results in a dense matrix, which is computationally inefficient to handle or 
even infeasible. As shown in section “An efficient algorithm using sparse matrix algebra”, 
the main advantage of Eqs. (3) and (4) consists in the fact that they allow one to compute 
eigenvectors in sparse algebra only, without ever performing the multiplication or sub-
traction operations.

(1)X = a · (G − 1n ⊗ w1) diag (v1)

(2)X = a · diag (v2)(G − w2 ⊗ 1m),

(3)X = a · v1 ⊙r (G ⊖r w1),

(4)X = a · v2 ⊙c (G ⊖c w2).
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Decomposition of three similarity matrices

The covariance matrix, the weighted Jaccard matrix, and the genomic relationship 
matrix allow for an expression of the form of Eqs. (3) or (4): 

1. The covariance matrix is computed as 1
n−1G

⊤G after centering all rows of G with 
their respective column means. This fits into the framework of Eq.  (3) by setting 
a = 1√

n−1
 , v1 = 1m ∈ R

m , and w1 = µc(G) ∈ R
m.

2. The computation of the weighted Jaccard matrix [25] is more involved and repeated 
here for convenience. First, a quantity numAlleles is computed as 2n. Then, the sum 
of variants in G is computed as the row sums of G and denoted as sumVariants. In a 
pre-processing step to invert the minor alleles, all rows in G are inverted if their sum 
of variants is strictly larger than n. Second, a set of weights is computed as follows. A 
quantity totalPairs is computed as s(s − 1)/2 , where s ∈ R

n is the vector of row sums 
of G and the vector multiplication is performed componentwise. The weight vector 
weights is then computed as numAlleles∗(numAlleles−1)/totalPairs, again taking all 
operations to be componentwise. The vectors totalPairs and weights both have 
dimension n. Third, the weighted Jaccard matrix is computed as 14n (G ⊙c weights)

⊤G . 
This computation fits into the framework of Eq.  (4) by setting a = 1√

4n
 , 

v2 = weights (with the square root operation performed componentwise), and 
w2 = �n ∈ R

n.
3. The genomic relationship matrix [30] exists in two flavors, a robust and a non-robust 

version. Both are easily defined as follows. Define p = µr(G)/2 as row means of G, 
and q = 2p(1− p) , where the vector multiplication is again understood component-
wise. Let s be the sum of all entries in q. After centering the columns of G with 2p 
(that is, X ← X ⊖c (2p) ), the robust GRM is defined as G⊤G/s , and the non-robust 
GRM is defined as 1nG

⊤(G ⊙c q
−1) , where the inverse operation q−1 is understood 

componentwise. Both the robust and non-robust versions of the GRM fit into the 
framework of Eq.  (4). For the robust GRM, we set a = 1√

s
 , v2 = 1n ∈ R

n , and 

w2 = 2p . For the non-robust GRM, we set a = 1√
n
 , v2 = 1√

q , again taking all vector 

operations to be componentwise, and w2 = 2p.

Finally, it remains to note that the Jaccard matrix [19] does not allow for a decomposi-
tion into X⊤X with an appropriately chosen matrix X. This is easily verified in practice. 
Indeed, it is not complicated to find a simulated or real life genomic dataset for which 
the Jaccard matrix has negative eigenvalues, thus making it not positive (semi-)definite. 
This proves that a decomposition into the form X⊤X , which necessarily implies positive 
(semi-)definiteness, is impossible.

A new approximation of the Jaccard similarity matrix

Since the fast SVD computation of [12] is not applicable to the Jaccard similarity matrix 
[19], applications in genomics which rely on the Jaccard matrix either in the form of 
population stratification plots [10, 15] or to correct genome-wide association studies 
[9], are severely limited from a computational standpoint. In order to be able to scale 
such computations, a modification of the Jaccard matrix is required that enables the fast 
SVD computation of [12]. Any such modification necessarily results in an approximation 
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of the original Jaccard matrix, though the error of the proposed approximation will 
be quantified in section  “Theoretical error bounds on the eigenvectors of the Jaccard 
approximation”. As a side effect, the proposed approximation of the Jaccard matrix will 
be positive definite (in fact, all matrices X for which the eigenvectors of X⊤X are com-
puted with the help of the randomized SVD algorithm must have this property), which is 
desirable from the standpoint of numerical stability.

The Jaccard matrix is computed as follows on a binary genomic input matrix G. First, a 
matrix A ∈ R

n×n is computed. Each entry (i, j) in A is obtained by computing the logical 
and operation on the binary columns i and j of G, and storing the sum of ones (or val-
ues True) in the resulting vector in Ai,j . Similarly, a matrix O ∈ R

n×n is computed whose 
entry (i, j) represents the sum of ones after an or operation on the binary columns i and 
j of G. The Jaccard matrix J is then computed as J = A/O , where the matrix division is 
taken componentwise.

It is important to note that for binary matrices, the logical and operation required to 
compute A ∈ R

n×n is equivalent to simply computing the matrix-matrix product of G 
with its transpose, that is A = G⊤G . Therefore, it is in fact the or operation that prevents 
the Jaccard matrix from being expressible in the form X⊤X.

To fix this, we propose a simple approximation that replaces the computation of the 
matrix O. Note that, when computing the logical or operation on two columns i and j of 
G, the maximal number of ones we can obtain in the resulting vector is 2max(s) , where 
s is the vector of column sums of G. This case occurs if both columns of G contain the 
maximal number of nonzero entries, though at different positions each. To be conserva-
tive, we therefore propose to compute an approximation of J = A/O as Ĵ = 1

2max(s)A . 
The matrix Ĵ  has the property that any entry in Ĵ  is at most as large as the corresponding 
one in J, thus never overestimating the similarity between two individuals.

Due to its simpler structure, the approximate Jaccard matrix Ĵ = 1
2max(s)A fits into the 

framework of Eq. (3) by taking a = 1√
2max(s)

 , v1 = 1m ∈ R
m , and w1 = �m ∈ R

m , where s 

was the vector of column sums of G ∈ R
n×m.

Theoretical error bounds on the eigenvectors of the Jaccard approximation

The original Jaccard matrix as defined in [19] and the proposed approximate Jaccard 
matrix of section “A new approximation of the Jaccard similarity matrix” naturally differ 
slightly, and so do their eigenvectors.

Therefore, our proposed approximate Jaccard matrix comes with a classical speed/ 
accuracy tradeoff. Its eigenvectors are much faster to compute, though at the expense 
of a (slight) loss in accuracy. However, as the computation of eigenvectors is at the heart 
of this paper, this section establishes guaranteed theoretical bounds on the distance (in 
L2 norm and angle) between the eigenvectors of the Jaccard matrix and the ones of our 
proposed approximation. These a priori bounds allow the user to gauge in advance the 
trade-off between obtained speedup and sacrificed accuracy.

To derive the bounds, we make use of the so-called “Davis-Kahan sin(θ) ” theorem [4]. 
Citing the statement of the theorem in [23], let A ∈ R

d×d and Â ∈ R
d×d be two symmet-

ric matrices with eigen decompostions given by A =
∑d

i=1 �iuiu
⊤
i  and Â =

∑d
i=1 �̂iûiû

⊤
i  , 
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where �1 ≥ · · · ≥ �d and �̂1 ≥ · · · ≥ �̂d are the sorted eigenvalues. Then, 
| sin(∠(u1, û1))| ≤ 2

�A−Â�op
max(�1−�2,�̂1−�̂2)

 and minǫ∈{+1,−1} �u1 − ǫû1�2 ≤
√
2| sin(∠(u1, û1))|.

The Davis-Kahan theorem allows one to bound the distance (up to multiplication with 
+1 or −1 , since eigenvectors are only defined up to a unit) between the eigenvectors of 
a matrix A and an arbitrary perturbation Â of A using the angle between their eigenvec-
tors, which in turn is bounded by a quantity involving the operator norm of A− Â and 
their first eigenvalues.

Applied to the Jaccard matrix J and our proposed approximation Ĵ  of section “A new 
approximation of the Jaccard similarity matrix”, we see that the difference between the 
eigenvectors u1 of J and û1 of Ĵ  , up to a unit {+1,−1} , can be bounded as

where �1, �2 and �̂1, �̂2 are the first two eigenvalues of J and  Ĵ  , respectively. The operator 
norm of the two matrices in Eq. (6) is straightforward to compute (in the simulations of 
section “Experimental results”, we actually again bound the operator norm by the Frobe-
nius norm, thus making use of norm equivalence in R ), and the first two eigenvalues of 
the two matrices can be computed efficiently using, for instance, the power method (also 
called Von Mises iteration) of [29].

It is important to note that the aforementioned approximation can also be used 
without actually computing the eigenvalues of J and Ĵ  . This is possible with the help of 
the Gershgorin circle theorem [6], which allows one to easily obtain lower and upper 
bounds on all eigenvalues of a matrix.

An efficient algorithm using sparse matrix algebra

The decomposition of Eqs. (3) and (4) allows one to formulate an efficient algorithm 
to compute the eigenvectors of X⊤X using sparse algebra only. Our algorithm is 
adapted from the one of [12], stated again for completeness in Algorithm 1, to pre-
serve the sparseness of the input during the entire computation.

Algorithm 1 randomized fast SVD

 Algorithm 1 returns the first k principal components of X⊤X  for an input matrix X ∈ R
n×m . A full SVD can 

also be obtained as U�V⊤ , where U is computed in step 6, and � and V⊤ come from the SVD of matrix B 

(5)min
ǫ∈{+1,−1}

�u1 − ǫû1�2 ≤
√
2| sin(∠(u1, û1))|

(6)≤ 2
√
2

∥

∥

∥
J − Ĵ

∥

∥

∥

op

max
(

�1 − �2, �̂1 − �̂2

) ,
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in step 5. The parameter q is a tuning parameter, where q = 2k is recommended in [12], though larger values 
provide higher numerical accuracy. To be precise, in [12] the authors provide a bound on the accuracy of the SVD 
returned by Algorithm 1 for 2 ≤ k ≤ 0.5min(m, n) , given by

where E is the expectation with respect to the random Gaussian matrix, and σk+1 is the 
(k + 1) th singular value of X. Note that the algorithm of [12] does not require a normali-
zation of the eigenvectors as done in, for instance, the power method [29].

Our framework is based on the observation that all arithmetic operations in Algo-
rithm 1 can be reformulated for input matrices of the type of Eqs. (3) and (4) such that 
they preserve sparse matrix algebra. Without loss of generality, we consider Eq.  (4) 
in the following. An adapted algorithm to compute the eigenvectors of matrices in 
the form of Eq.  (4) is given in Algorithm  2. The input of Algorithm  2 is the matrix 
X = a · v2 ⊙c (G ⊖c w2) for which one wishes to compute the eigenvectors of X⊤X , 
the number of desired eigenvectors k ∈ N , as well as q ∈ N.

Algorithm 2 randomized fast SVD for X⊤X  with X = a · v2 ⊙c (G ⊖c w2)

In Algorithm  2, after initializing the matrix Y with Gaussian random numbers, the 
operation Y ← (XX⊤)qXY  needs to be performed. Importantly, as seen in lines  2–5, 
the structure of X = a · v2 ⊙c (G ⊖c w2) allows one to separate the exponentiation into 
a part using sparse matrix algebra operations for G only, and simple outer products of 
lower dimension. Next, a QR decomposition is computed for Y, and B ← Q⊤X is com-
puted which again can be separated into a part using sparse matrix algebra only, and an 
outer product of lower dimensions. The resulting matrix B has the dimensions (2k)× n 
only, thus allowing for a fast SVD computation. Algorithm 2 returns U = QŨ ∈ R

m×k as 
done in Algorithm 1.

Note that the matrix R of the QR decomposition, as well as the matrices � and V⊤ 
of the SVD are actually not needed if only the first k eigenvectors (given as columns in 
matrix U) are sought. Their computation can therefore be omitted. An adaptation of 
Algorithm 2 to Eq. (3) is straightforward and thus omitted in this article.

(7)E�X − U�V⊤� ≤
[

1+ 4

√

2min(m, n)

k − 1

]1/(2q+1)

σk+1,
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Runtime considerations

As shown in [8], the effort to compute the four similarity matrices is O(nm2) . If sparse 
algebra is used, the effort is O(snm2) , where s ∈ [0, 1] is the matrix sparsity parameter 
(the proportion of non-zero matrix entries). The resulting similarity matrix has dimen-
sions m×m in all cases. A subsequent standard SVD to compute their eigenvectors has 
effort O(m3) [7]. Together, the effort for the computation of the similiary matrix and its 
eigenvectors via classic SVD is O(nm2 +m3).

Using Algorithm 2, the computation of any of the four similarity matrices is entirely 
omitted. Running Algorithm  2 has a computational effort of O(qk · nm+ k2(n+m)) , 
thus making the computation of the first k ∈ N eigenvectors of any similarity matrix a 
linear time operation in both m and n (assuming the other is kept fixed).

The aforementioned runtime is derived as follows. Assume we apply the fast rand-
omized SVD of Algorithm 1 to an input matrix X ∈ R

n×m and k eigenvectors, using a 
fixed choice of q. In step  1, we generate � ∈ R

m×(2k) which requires effort O(mk) for 
writing all matrix entries. In step  2, we compute X� ∈ R

n×(2k) , which requires effort 
O(mnk). Then, X� ∈ R

n×(2k) is left-multiplied with X⊤ ∈ R
m×n (likewise effort O(mnk)) 

and again left-multiplied with X ∈ R
n×m . This is done q times, leading to an effort of 

O(qmnk). The resulting matrix Y has dimensions n× (2k) . In step 3, a QR decomposi-
tion is computed of Y ∈ R

n×(2k) . The Q-matrix of the QR-decomposition of Y has the 
same dimensions n× (2k) , and since n > 2k , its computation typically costs O(k2n) . In 
step 4, we compute B as Q⊤X ∈ R

(2k)×m , which requires effort O(mnk). In step 5, the 
SVD of B ∈ R

(2k)×m costs O(k2m) since m > 2k . Note that actually, only a truncated 
SVD for the largest k singular values is needed, causing the matrix Ũ to have dimen-
sions (2k)× k . In step 6, the algorithm returns U = QŨ ∈ R

n×k , which is computed as 
a matrix-matrix product in O(nk2) . Together, we see that the effort of Algorithm 1 (and 
equivalently, of Algorithm 2) can be expressed as O(qk · nm+ k2(n+m)).

Experimental results
This section first presents experimental results on the numerical quality of the eigen-
vectors returned by Algorithm  2 when applied to the genomic relationship matrix 
(GRM) and the proposed approximate Jaccard matrix (section “Application to the 1000 
Genomes Project data”). Afterwards, we experimentally verify both the numerical accu-
racy of Algorithm 2 (section “Investigation of numerical accuracy”), as well as the theo-
retical bounds on the accuracy of the Jaccard approximation (section “Verification of the 
theoretical bounds for the approximate Jaccard matrix”). We conclude with an experi-
mental verification of the computational runtime of Algorithm 2 in section “Verification 
of theoretical runtimes”.

Throughout this section, we refer to five different algorithms to compute eigenvectors. 
Those are (1) a full traditional computation of eigenvectors with the function eigen in 
R, denoted as traditional SVD; (2) a truncated SVD computed with the function eigs of 
the R-package RSpectra [20], denoted as truncated SVD; (3) the power method with a 
fixed number of 100 iterations [29], which is a specialized algorithm to compute the first 
eigenvector only, denoted as power method; (4) the randomized SVD algorithm of [12] 
applied to some suitable matrix X, thereby computing the eigenvectors of X⊤X , denoted 
as randomized SVD; (5) the proposed Algorithm 2, denoted as Algorithm 2.
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Since we aim to extract the eigenvectors of similarity matrices in this section, we note 
that the first three algorithms require the full calculation of the similarity matrix before 
extracting its eigenvectors. The randomized SVD and Algorithm  2 do not require the 
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Fig. 1 Genomic relationship matrix (GRM). First two principal components colored by population for the 
1000 Genomes Project dataset. Truncated SVD (left) and Algorithm 2 (right)
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Fig. 2 Covariance matrix. First two principal components colored by population for the 1000 Genome 
Project dataset. Truncated SVD (left) and Algorithm 2 (right)
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Project dataset. Truncated SVD (left) and Algorithm 2 (right)
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calculation of the similarity matrix and work on matrix G instead (see section “Fast com-
putation of eigenvectors”).

Application to the 1000 Genomes Project data

We apply Algorithm 2 to chromosome 1 of the 1000 Genomes Project [28], with the aim 
to visually examine the accuracy of the first two eigenvectors in population stratification 
figures.

We first prepare the raw data of the 1000 Genome Project using PLINK2 [26] using a 
cutoff value 0.01 for the option—max-maf to select rare variants. Moreover, we employ 
LD pruning with parameters—indep-pairwise 2000 10 0.01. All results focus on the 
European super population, containing 503 subjects and approximately 5 million rare 
variants.

Figure 1 shows results for the first two eigenvectors of the genomic relationship matrix 
(GRM), colored by subpopulation (GBR, FIN, IBS, CEU, TSI). The eigenvectors are com-
puted with two methods: (1) we fully construct the GRM matrix on the 1000 Genomes 
Project dataset before extracting its eigenvectors using a truncated SVD; and (2) we use 
our proposed Algorithm 2, thereby avoiding the actual computation of the GRM matrix. 
We observe that the plots are almost identical. This is to be expected, as the GRM matrix 
allows for an exact decomposition in the from X⊤X suitable for Algorithm 2, see sec-
tion “Decomposition of three similarity matrices”.

Similar plots for the covariance matrix and the weighted Jaccard matrix applied to the 
same dataset can be found in Figs.  2 and 3, respectively. As seen in both figures, the 
population stratification plots obtained by either computing the similarity matrix first 
and then its eigenvectors via truncated SVD, or by running Algorithm  2 are virtually 
identical. As before, this is to be expected as the decomposition into the form X⊤X is 
exact for both the GRM and the weighted Jaccard matrix (see section “Decomposition of 
three similarity matrices”).

We repeat this computation for the Jaccard matrix. Similarly to the previous case, we 
compute the first two eigenvectors by fully constructing the Jaccard matrix and extract-
ing its eigenvectors using a truncated SVD, and by using the Jaccard approximation of 
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Fig. 4 Jaccard matrix. First two principal components colored by population for the 1000 Genomes Project 
dataset. Truncated SVD (left) and Algorithm 2 (right)
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section “A new approximation of the Jaccard similarity matrix” in connection with Algo-
rithm 2. Figure 4 shows the first two eigenvectors of the original Jaccard and the approx-
imate Jaccard matrix. We observe that here, the stratification plots are visibly different, 
though the approximate Jaccard matrix provides a very good stratification of the 1000 
Genomes Project dataset.

Investigation of numerical accuracy

The principal components of the genomic relationship matrix in Fig.  1, computed 
once with a truncated SVD and once with Algorithm 2, are almost identical. However, 
although the decomposition in Eqs.  (3) and (4) is exact for the genomic relationship 
matrix, the two plots in Fig.  1 exhibit small differences attributed to numerical error/ 
approximations. To investigate those, we measure the L2 distance and sine of angle 
between the two first principle components.
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Fig. 5 Measured L2 distance and sine of angle between the first eigenvector of the genomic relationship 
matrix (GRM) computed with both a truncated SVD and with Algorithm 2. Variable number of variants n while 
keeping m = 100 fixed (left) and variable number of subjects m while keeping n = 100 fixed (right)

0
1

2
3

4

number of variants

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)
matrix bound

0
1

2
3

4

number of subjects

100 200 300 400 500 600 700 800 900 1000

L2 distance
sin(angle)
matrix bound

Fig. 6 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate 
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Variable number of variants n while 
keeping m = 100 fixed (left) and variable number of subjects m while keeping n = 100 fixed (right)
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For the experiments in this and all following subsections, we employ simulated data. 
We create sparse matrices G of dimensions n×m , where a proportion π ∈ [0, 1] of 
entries is set to one (acting as nonzero alleles). The dimensions n×m are given individu-
ally for each experiment. Unless stated otherwise, we set π = 0.1.

Figure 5 shows the scaling of the numerical error as a function of the number of vari-
ants n while keeping m = 100 fixed, and as a function of the number of subjects m while 
keeping n = 100 fixed. We observe that the error does not seem to grow with a scaling of 
the input, but rather plateaus at a low level.

Verification of the theoretical bounds for the approximate Jaccard matrix

We are interested in quantifying further the numerical tradeoff made when comput-
ing the eigenvectors of the approximate Jaccard matrix. Additionally, we aim to verify 
the theoretical bounds on the approximate eigenvectors derived in section “Theoretical 
error bounds on the eigenvectors of the Jaccard approximation”.

To this end, we again investigate both the validity and the scaling behavior of the 
bounds of section “Theoretical error bounds on the eigenvectors of the Jaccard approxi-
mation” as a function of the number of variants n, the number of subjects m, the propor-
tion of nonzero alleles, and higher order eigenvectors. We use the simulation setting of 
section “Investigation of numerical accuracy”.

Figure 6 (left) shows results as the number of variants n increases while keeping the 
number of subjects m = 100 fixed. The figure displays the measured L2 distance between 
the first eigenvector of the Jaccard matrix and the approximate Jaccard matrix, the angle 
bound of Eq.  (5), and the matrix bound of Eq.  (6). Similarly, in Fig.  6 (right) we vary 
the number of subjects m while keeping the number of variants n = 100 fixed. In both 
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Fig. 7 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate 
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Proportion π ∈ {0.1, . . . , 0.9} of entries 1 
while keeping the number of variants n = 1000 and the number of subjects m = 100 fixed
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cases, we observe that the measured L2 distance between the first eigenvector of the Jac-
card matrix and its approximation is negligible. The angle bound (which requires the 
computation of both eigenvectors) seems to be a very tight bound, while the matrix 
bound (which requires no computation of eigenvectors and is thus an a priori bound) 
is valid but less tight. This is to be expected, as less information is required to compute 
the matrix  bound. In particular, in can be computed without having computed any 
eigenvectors.
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Fig. 8 Measured L2 distance between the first eigenvector of the Jaccard matrix and the approximate 
Jaccard matrix, angle bound of Eq. (5), and matrix bound of Eq. (6). Bound progression for the first 10 
eigenvectors while keeping the number of variants n = 1000 , the number of subjects m = 100 , and π = 0.1 
fixed
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Figure 7 investigates the accuracy of the theoretical bounds as a function of the pro-
portion π ∈ {0.1, . . . , 0.9} determining the sparseness of the matrix G while keeping the 
number of variants n = 1000 and the number of subjects m = 100 fixed. We observe that 
again, the error in L2 distance between the eigenvector computed for the Jaccard and 
approximate Jaccard matrices is negligible. The angle bound is again tight. The matrix 
bound is valid, more relaxed than the angle bound, and exhibits its closest bound for 
around π = 0.4.

Finally, Fig. 8 applies the bounds of Eqs. (5) and (6) to higher order eigenvectors. We 
observe that the approximate Jaccard matrix is more accurate for the first eigenvectors 
than the later ones. The angle bound nicely follows the actual observed L2 norm between 
the eigenvectors computed for the Jaccard matrix and its approximation, while the 
matrix bound is the same for all since it only takes the Jaccard matrix and its approxima-
tion into account (but no information on the eigenvector being computed).

Verification of theoretical runtimes

Finally, we aim to investigate the empirical runtime scalings of the algorithms discussed 
in the previous sections, in particular we aim to verify the theoretical runtimes derived 
in section “Runtime considerations”.

As shown in section  “Runtime considerations”, the calculation of a full similar-
ity measure with a subsequent eigenvector computation using a (truncated) SVD has 
a theoretical runtime of O(nm2 +m3) , while Algorithm 2 has a theoretical runtime of 
O(qk · nm+ k2(n+m)).

We consider two scenarios. The first scenario examines the computation of the 
leading eigenvector only, in which case it is sensible to use a specialized algorithm 
such as the power method [29]. The second scenario examines the general case of 
k > 1 eigenvectors being computed. Each of the two scenarios is yet again considered 
separately for dense and sparse matrices. For sparse matrix support, we employ the 
R-package Matrix on CRAN [2]. We select the genomic relationship matrix as the 
similarity measure in our runtime comparisons.
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Fig. 10 Leading eigenvector of the genomic relationship matrix (GRM) for sparse matrices. Runtime (in 
seconds) as a function of the number of variants n while keeping m = 100 fixed (left), and as a function of the 
number of subjects m while keeping n = 100 fixed (right). Log scale on both axes
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We first consider the computation of the leading eigenvector for dense matrices. 
We compare the power method, the truncated SVD, the randomized SVD (Algo-
rithm 1), and our proposed Algorithm 2. Figure 9 shows empirical runtime scalings in 
the number of variants n (left) and the number of subjects m (right) while keeping the 
other fixed at value 100.

In Fig. 9 (left) investigating the scaling in n, all lines have a slope of around 1. This is in 
good accordance with the theoretical runtime which predicts a linear scaling in n for all 
methods. In Fig. 9 (right) investigating the scaling in m, the lines have slopes of around 2 
for the power method, truncated SVD, and randomized SVD. The slope for Algorithm 2 
is 0.87. The experimental runtime dependence for the power method and the truncated 
SVD are therefore as expected since these methods rely on the computation of the GRM 
matrix first, which requires quadratic effort in m [8]. The runtime dependence of the 
randomized SVD turns out to be higher than expected. The dependence of Algorithm 2 
is roughly linear and thus matches its theoretical runtime.
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Fig. 11 Computation of k = 2 eigenvectors of the GRM matrix for dense matrices. Runtime (in seconds) as a 
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We repeat the same experiment in sparse matrix algebra. Figure 10 displays results for 
the computation of the leading eigenvector of sparse matrices. Due to the usage of fast 
sparse matrix algebra in R, we observe in Fig. 10 (left) that all methods attain an empiri-
cal runtime that is either roughly linear (the slope for the randomized SVD is 0.96) or 
even faster than linear (empirical slopes of roughly 0.5) in the number of variants n. 
When looking at the scaling in the number of subjects m, Fig. 10 (right) shows that the 
power method, truncated SVD, and randomized SVD all achieve a similar runtime scal-
ing with slopes of around 2 (as predicted by the theoretical runtime). The runtime scal-
ing of Algorithm 2 is roughly linear and thus more favorable.

We now consider the second scenario in which we compute k = 2 eigenvectors. In 
contrast to the previous comparisons, we include the traditional (full) eigenvector com-
putation. As before, the other algorithms included in the comparison are the truncated 
SVD, the randomized SVD (Algorithm  1), and our proposed Algorithm  2. Figure  11 
shows empirical runtime scalings for computing k = 2 eigenvectors in dense matrix 
algebra, again in the number of variants n (left) or the number of subjects m (right) while 
keeping the other fixed at value 100.

In Fig. 11 (left) investigating the scaling in n, all lines again have a slope of around 1, 
which is in good accordance with the theoretical linear runtime. In Fig. 11 (right) inves-
tigating the scaling in m, we observe three different slopes. The traditional SVD has an 
empirical slope of 3.10, thus hinting at a cubic runtime, as expected. The truncated SVD 
and the randomized SVD have slopes of roughly 2.05 and 2.10, as seen previously. The 
slope for Algorithm 2 is around 0.86 and thus roughly matches its predicted linear theo-
retical runtime.

The corresponding results for computing k = 2 eigenvectors in sparse matrix algebra 
are displayed in Fig. 12. As shown in Fig. 12 (left), the runtime scaling of the randomized 
SVD is roughly linear (empirical slope of roughly 1.1), while the runtimes of the other 
three methods are even faster than linear (empirical slopes of roughly 0.5), an observa-
tion that is attributed to the fast sparse matrix algebra in R. This result matches the one 
observed for the computation of the leading eigenvector of sparse matrices in Fig.  10 
(left).

Figure 12 (right) displays the asymptotic scalings for computing k = 2 eigenvectors 
in sparse matrix algebra. As it seems, the traditional SVD does not make good use of 
the sparse matrix algebra and attains an empirical cubic slope (see the left panel of 
Fig. 11), while the truncated SVD and the randomized SVD have slopes of roughly 2. 
The slope for Algorithm 2 in connection with sparse matrix algebra is only around 0.2 
and thus below its predicted linear theoretical runtime.

Overall, these results indicate that Algorithm  2 is faster both experimentally and 
theoretically than many of the traditional approaches for computing the leading or 
the first leading eigenvectors, both in dense matrix algebra (Figs.  9 and 11) and in 
sparse matrix algebra (Figs. 10 and 12).
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Discussion
This article considered the fast and efficient computation of eigenvectors of four 
similarity matrices, the covariance matrix, the Jaccard matrix, the weighted Jaccard 
matrix, and the genomic relationship matrix. The computation of such eigenvectors is 
a standard tool in computational genetics, and it is of importance for correcting lin-
ear regressions, revealing population stratification, and many more application areas.

In this contribution, we first introduce a unified way to express the covariance 
matrix, the weighted Jaccard matrix, and the genomic relationship matrix which 
allows one to efficiently compute their eigenvectors in sparse matrix algebra using an 
adaptation of a fast SVD algorithm of [12]. Notably, the only requirement for the pro-
posed Algorithm 2 to work efficiently is the existence of efficient row-wise and col-
umn-wise subtraction and multiplication operations of a vector with a sparse matrix. 
Those are standard operations commonly available in sparse matrix packages. An 
exception is the Jaccard matrix, which does not have a structure applicable for fast 
SVD computations. Second, we thus introduce a new approximate Jaccard matrix to 
which the fast SVD computation is applicable. Third, we establish guaranteed theoret-
ical bounds on the distance (in L2 norm and angle) between the principal components 
of the Jaccard matrix and the ones of our proposed approximation. These a priori 
bounds allow the user to gauge in advance the trade-off between obtained speedup 
and sacrificed accuracy when using the proposed approximate Jaccard matrix.

We verify theoretically and experimentally that our proposed Algorithm  2 keeps 
the predicted error bounds and has a more favorable runtime scaling than the tradi-
tional computation of a similarity measure and a subsequent extraction of principal 
components.

The derivation of further theoretical properties of the proposed approximate Jac-
card matrix is left for future work.
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