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Abstract 

Background: Given a genome-scale metabolic model (GEM) of a microorganism 
and criteria for optimization, flux balance analysis (FBA) predicts the optimal growth 
rate and its corresponding flux distribution for a specific medium. FBA has been 
extended to microbial consortia and thus can be used to predict interactions by com-
paring in-silico growth rates for co- and monocultures. Although FBA-based methods 
for microbial interaction prediction are becoming popular, a systematic evaluation 
of their accuracy has not yet been performed.

Results: Here, we evaluate the accuracy of FBA-based predictions of human 
and mouse gut bacterial interactions using growth data from the literature. For this, 
we collected 26 GEMs from the semi-curated AGORA database as well as four pre-
viously published curated GEMs. We tested the accuracy of three tools (COMETS, 
Microbiome Modeling Toolbox and MICOM) by comparing growth rates predicted 
in mono- and co-culture to growth rates extracted from the literature and also investi-
gated the impact of different tool settings and media. We found that except for curated 
GEMs, predicted growth rates and their ratios (i.e. interaction strengths) do not corre-
late with growth rates and interaction strengths obtained from in vitro data.

Conclusions: Prediction of growth rates with FBA using semi-curated GEMs is cur-
rently not sufficiently accurate to predict interaction strengths reliably.

Keywords: Flux balance analysis, Metabolic modelling, Microbial interactions

Background
Microorganisms interact with one another, thereby forming complex interaction net-
works. Knowledge of these networks is necessary to understand community dynam-
ics and steer it toward a desired behavior. However, it is a challenge to infer microbial 
interaction networks from abundance data [1], and only a few such networks have been 
fully resolved to date experimentally (e.g. [2]). In recent years, metabolic modelling has 
emerged as a new technique to address this problem [3–5].

In metabolic modeling, the knowledge about a cell’s biochemistry is represented in a 
concise format known as a genome-scale metabolic model (GEM). A GEM incorporates 
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a matrix that stores the stoichiometric coefficients of the substrates and products of 
all the known biochemical reactions of an organism. GEMs can be constructed auto-
matically from annotated genomes [6–8] or built in a work-intensive process of manual 
curation [9]. The former approach is much faster but results in GEMs of lower quality. 
Low-quality GEMs can contain dead-end metabolites (i.e., metabolites that are neither 
substrates of internal reactions nor excreted), gaps (missing reactions), missing enzyme-
reaction links, mass or charge imbalances or futile cycles (irreversible reactions coupled 
in a cycle). MEMOTE is a recent tool that checks GEM quality systematically [10].

Once a GEM has been obtained, it can be analyzed to learn more about the cell’s meta-
bolic capabilities. Flux balance analysis (FBA) is a constraint-based optimization method 
and a popular technique to computes fluxes through the biochemical reactions assum-
ing that intracellular metabolites are at a steady state, i.e., the production rate of each 
metabolite equals its consumption rate [11]. FBA maximizes a certain objective function 
and returns the flux of each reaction (flux vector) when the flux of the objective function 
equals its optimal. However, while the optimal value of the objective function is unique, 
the corresponding flux vector may have an infinite number of possibilities [12]. Usu-
ally, the objective function maximizes the flux through the (artificial) biomass reaction, 
which represents cell maintenance and growth [13]. While maximizing for the objective 
function, the number of non-zero fluxes can be minimized (parsimonious FBA, abbrevi-
ated as pFBA[14]). In this case, the objective value is the same as in the standard FBA 
but the number of required enzymes and, thus, the cost of enzyme production are mini-
mized. Further constraints on flux values can be specified to implement thermodynamic 
constraints, such as irreversibility of reactions, or to represent limited metabolite con-
centrations in the medium. In FBA, the medium is defined constraints on fluxes through 
import reactions (uptake rates).

Given the stoichiometric matrix represented by the GEM, FBA predicts a flux distri-
bution and the growth rate of an organism, where the latter is the flux through the bio-
mass reaction. This is useful in several applications, such as medium optimization, the 
design of knock-out mutants producing target metabolites, and the exploration of meta-
bolic responses to altered conditions [15]. However, because of its steady-state assump-
tion, FBA is static by default and thus cannot model batch processes. This restriction is 
circumvented in dynamic FBA, which combines FBA with the differential equations of 
a kinetic model [16]. The kinetic model describes the changes in biomass and metabo-
lite concentrations, which are updated with growth, consumption, and production rates 
computed with FBA, in turn providing new uptake rates for the next FBA iteration.

Recently, several tools have been developed that rely on static or dynamic FBA vari-
ants to model microbial communities. The definition of a community objective function 
is still an open problem [17]. As discussed previously [18], most of the tools developed 
so far can be divided into three groups depending on their solution to this problem, 
namely (1) introduction of a group-level objective function to optimize the community 
growth rate [19–21], (2) optimization of the growth rate of each species independently 
of the others [22–25], and (3) reliance on measured abundances to adjust species growth 
rates [3, 19].

Reverse ecology aims to learn as much as possible about the ecology of an organism 
or group of organisms from their genomes [26]. Community FBA is a powerful reverse 
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ecology approach capable of predicting ecological interactions between species pairs 
from their genomes. This is achieved by building a GEM for each species and then 
computing growth rates alone and in the presence of another species in silico. Follow-
ing Gause’s famous strategy [27], the comparison of growth rates in mono- and in co-
culture then elucidates the interaction sign and strength. For instance, two species that 
compete will both grow better in mono- than in co-culture, whereas a species cross-
feeding on metabolites produced by another will grow better in co- than in monocul-
ture. FBA-based interaction prediction was previously applied to study interactions as a 
driver of microbial co-occurrence [28], investigate the prevalence of interaction types [4] 
and their resilience to nutrient change and invasion [5], as well as the synthesis of novel 
metabolites in the presence of interaction partners [29]. Despite this range of applica-
tions, a systematic evaluation of its accuracy has not yet been performed to date. Thus, 
our goal here is to assess the accuracy of interaction prediction by community FBA tools.

To evaluate interaction prediction accuracy, we collected interactions measured 
in vitro in 6 studies investigating human and mouse gut microbial communities [2, 30–
34]. GEMs were obtained either from AGORA, which is a repository of semi-refined 
metabolic reconstructions for gut bacteria [35] or from the literature for high-quality 
reconstructions [36–39].

We focus on three tools that cover a range of approaches regarding the treatment of 
the (community) biomass function(s) (see Table  1 and Fig.  1). The Microbiome Mod-
eling Toolbox (MMT) [3] implements a pairwise screen for microbe–microbe and/
or host–microbe metabolic interactions that are inferred by determining metabolic 
exchanges between them. For this, the biomass functions of the species under study are 
both included in a merged model. Using the merged model, one species is silenced while 
the growth rate for the other is optimized, and vice-versa (monocultures). Then, a third 
optimization is performed, maximizing both growth rates simultaneously (co-culture). 
Given the predicted growth rates in mono- and co-culture, an interaction is reported 
if the ratio of growth rates in mono- and co-culture is above or below a user-defined 
threshold. MMT also offers another approach (not evaluated here), where it incorporates 
relative abundances from sequencing data into the community model. In this case, the 
community model consists of three compartments (diet—lumen—fecal), and a commu-
nity biomass reaction is built based on the biomass functions of each of several species 
present in a sample and on their corresponding relative abundances. In both approaches, 
the protein-demand reactions, i.e., reactions that enable the accumulation of enzymes, 
are coupled with their corresponding protein recycling/utilization reactions. This way, 
the dependency between protein synthesis and utilization is ensured [40].

Like the community modeling module of MMT, MICOM uses relative abundances 
derived from amplicon or metagenomic sequencing [19] as a proxy for dry-weight taxon 
abundances. MICOM can be considered as an extension of the multiobjective OptCom 
[21], and SteadyCom [20] approaches that simultaneously maximize both the individ-
ual and the community growth rates. OptCom acknowledged the existence of a trade-
off between growth at the level of the community and its members and addressed it by 
solving a bilevel optimization problem (one optimization problem embedded within 
another) where the inner problem pertains to the individual species’ biomass produc-
tion and the outer to the community and its corresponding objective function. Using 
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a computationally simpler approach, MICOM assumes a (constant) growth rate μi for 
each species and constrains the overall community growth rate μC, which is obtained 
by a weighted sum of the individual species growth rates using a trade-off parameter. As 
there are infinitely many combinations of weights even for a single value of μC, MICOM 
implements a regularization by implementing an additional function over the individual 
growth rates μi, requiring consistency with the observed abundances. As shown by the 
authors, quadratic regularization (L2) fulfills these requirements. Thus, the ‘cooperative 
trade-off’ approach in MICOM incorporates a  trade-off  between optimal community 
growth (maximizing μC) and individual growth rate maximization (L2 minimization). 
MICOM also supports OptCom-based approaches. More specifically, one can maxi-
mize the total community biomass subject to the maximization of every species’ bio-
mass (“original” strategy). Alternatively, one can minimize the cooperative cost, meaning 
the relative loss of a species to benefit the community, subject to the maximization of 

Fig. 1 Overview of the tools used in the evaluation. Three tools were selected for the 
evaluation: MICOM with the cooperative tradeoff function and different OptCom versions, MMT 
simulatePairwiseinteractions function, and COMETS. The input parameters are further 
discussed in Table 3 in Methods. The “biomass maximization” panel represents the objective function 
maximization for all methods. For the OptCom implementation in MICOM, the original strategy of 
optimisation is shown
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the community’s total biomass (minimization of metabolic adjustment; “moma” strategy 
[41]); the cooperative cost, in this case, is based on the sum of the subtraction of each 
species’ growth rate from its optimal growth. Likewise, the “lmoma” strategy minimizes 
the cooperative cost considering its absolute value.

The COMETS package [23, 42] introduces two dimensions not considered by MMT 
and MICOM, namely the physical space (in two or three dimensions) and time. In 
COMETS, each species has an initial biomass that can optionally be placed in certain 
location(s). As the environment of a community changes over time due to the con-
sumption or secretion of compounds by the species present, COMETS simulates these 
changes over time through dynamic FBA [43]. At each iteration, COMETS estimates 
each species’ uptake bounds based on the concentration of nutrients in the medium to 
check that there is a sufficient amount considering the total uptake rate and optimizes 
each model using standard FBA. The resulting fluxes are then provided as inputs to 
estimate the changes in the biomass of each species as well as the concentration of the 
extracellular metabolites for the next iteration. Therefore, contrary to the MMT mod-
ule for community modeling and the MICOM approaches, COMETS does not assume a 
community biomass function.

Here, we evaluated the performance of MMT, MICOM and COMETS on 100 experi-
mentally quantified ecological interactions using 29 metabolic reconstructions (includ-
ing four high-quality ones) of 25 mammalian gut bacteria (see Fig. 1). Table 1 provides 
details on the three tools.

Results
This study evaluated the performance of three different tools (MICOM, MMT and 
COMETS) with different parameters, two environments including in vitro media (simu-
lations of the ones used in the actual in vitro experiments) and Western diet, and two 
sets of models (GEMs) with different levels of curation (AGORA models and refined 
models). First, growth rates were calculated for each monoculture in each condition and 
compared to the experimental growth rate of the corresponding species to determine 
a correlation (Fig. 2A, Additional file 1: Table S1 and Additional file 2: Text). Then, co-
culture growth rates were predicted using 13 different tool settings across the four con-
ditions (two environments and two curation levels). Interaction strength was quantified 
as the ratio between either the growth rates or the maximal abundance in co-culture 
versus monoculture. Predicted ratios were then compared to the experimental ratios of 
the species growth rate or abundance in co-culture versus monoculture (Fig. 2B, Addi-
tional file 1: Tables S2–S3 and Additional file 2: Figs. S1–S2). Here, we present the results 
related to the AGORA reconstructions using the in-silico representations of the corre-
sponding media used in vitro, as this is common practice [35, 44]. Further analyses using 
(1) the AGORA models with the Western diet medium, (2) the refined models with the 
in vitro media simulations and (3) the refined models with the Western diet are available 
in the Additional file 2: Figs. S1–S2, Additional file 1: Tables S3–S4).

Monoculture growth rates

When the AGORA reconstructions were used along with in silico media that matched 
the experimental media, there was no significant correlation between the predicted 
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and the expected growth rate (Fig.  3, Additional file  1: Tables S1 and S2), whereas 
refined GEMs grown in silico on a Western diet resulted in a significant Spearman 
correlation (Additional file  1: Table  S1, see also Additional file  2: Text), which was 
however driven by an outlier.

We also evaluated the effect of different methods (COMETS, MICOM, MMT) on 
prediction accuracy in the two environmental conditions. For AGORA models, the 
agreement between observed and predicted growth rates is low for all tools.

To evaluate prediction accuracy in a species-specific manner, we calculated the 
mean absolute difference between predicted and observed growth rates for each spe-
cies across all methods (Additional file  1: Table  S2). As expected, our results show 
that the mean absolute difference per species is lower in simulations matching in vitro 
media than in the Western diet (in 72% of the species). Interestingly, for a few AGORA 
models, the difference between predicted and observed growth rates was an order of 
magnitude smaller than for others, such as Desulfovibrio piger (0.455) and Prevotella 
copri (0.576), compared to Bacteroides thetaiotaomicron (3.282) or Clostridium inoc-
ulum (3.558). Furthermore, only the refined models of Bacteroides thetaiotaomicron 
and Faecalibacterium prausnitzii performed better than their AGORA equivalents 
for both conditions (Western diet and in vitro media).

The perfect agreement between MICOM and MMT was expected for monocultures as 
both carry out standard static FBA for single species. In case of co-cultures, where the 

Fig. 2 Overview of the process in this analysis: The three software tools (MICOM, MMT and COMETS) were 
validated using 18 semi-refined models from AGORA (Am) and four refined (i.e. manually curated) models 
(Rm). Predictions were carried out using in vitro media matching the composition of the media in the 
experiments with the uptake flux bound values (mmol/gDW/h). The predicted monoculture growth rates 
were compared to growth rates derived from experimental growth curves as the slope of the exponential 
phase in log scale. Finally, ratios of growth rates or maximal abundance (the latter only in COMETS) in co- and 
monoculture were compared to corresponding experimental data in co- and monoculture to evaluate the 
accuracy of interaction strength prediction
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approach for the community model varies (Table 1), differing growth rates for each spe-
cies, and thus interactions, were predicted from each tool.

Interaction strengths

Next, we assessed how well metabolic modelling tools predict interaction strength. For 
this, we quantified interaction strength either as the ratio of the growth rate in co- ver-
sus mono-culture (MMT, MICOM, COMETS) or as the ratio of the maximal abundance 
in co- versus mono-culture (COMETS). A positive effect of an interaction partner on 
a species results in a positive interaction strength (ratio above one), while a negative 
effect gives a negative one (ratio below one). We note that this measure can result in 
several interaction strengths per species (as many as there are interactions in which it 
participates).

Additional file  1: Table  S3 summarizes the expected versus observed interaction 
strengths and Fig. 3B shows their corresponding correlations. For the refined GEMs (see 
also Additional file 2: Text), predicted interaction strengths were significantly negatively 
correlated to measured ones for most methods. Overall, the effect sizes (correlation val-
ues) were too small to draw a conclusion on the impact of curation level or the medium.

The effect of the methods used was also assessed. Overall, when all the models are 
taken into account, none of the four methods performed well, with correlation values 
being below 0.3 (Additional file 1: Table S3). Additional file 1: Table S4 shows the corre-
lation between the expected and experimental ratios for each species across all methods. 

Fig. 3 Experimental versus predicted growth rates in simulations matching the media used in the 
experiments for: A mono-cultures and B co-cultures with pairs of AGORA reconstructions using several 
parameters sets for the 3 software tools (see Table 3). The black line indicates where perfect matches 
between predictions and observations would be positioned. Spearman correlation coefficient values 
between expected and predicted growth rates are shown in the respective color per method; black coloring 
denotes the global Spearman correlation coefficient
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The best correlation was obtained for the refined Flavonifractor plautii (Spearman cor-
relation 0.657) and Lactobacillus reuteri (Spearman correlation 0.613) models when 
using the Western diet; surprisingly, these models had a correlation close to 0 when 
the matching media for those two species were used. In addition, there were fewer nega-
tive correlations than in the per method analysis (a mean of 22.8% negative correlations 
per species versus a mean of 43.3% negative correlations per method).

ROC curves were generated per method and per species (see Additional file 2: Figs. S3 
and S4 in Additional file 2: Text) for three classes representing negative, absent, or posi-
tive interactions. The only category that reached an AUC higher than 70% for any class 
was the refined models when simulated with matching media (Additional file 1: Fig. 3) 
and merely for the negative reactions. ROC curves per species (Additional file  2: Fig. 
S4) were only computed for species for which at least two types of interactions were 
observed. Out of 20 AGORA GEMs, only 2 performed better than expected by chance, 
whereas 7 refined models (on different media) out of 19 performed better than chance. 
Bacteroides ovatus and Bacteroides vulgatus reached the best AUC for positive interac-
tions when simulated with the Western diet (76% and 71%). Concerning the prediction 
of positive interactions, the refined model of Faecalibacterium prausnitzii in Western 
diet performs the best among all four refined models in all media. In summary, although 
predicted interaction strengths were not correlated to observed strengths, the ROC 
curves illustrate that interaction signs are often predicted correctly with curated models.

Adjustment of medium definition and investigation of metabolite production

So far, we defined the medium through lower bounds for uptake fluxes, which define 
maximum uptake rates. However, cells often consume nutrients in a non-linear manner, 
following Michaelis–Menten kinetics. The parameters of this kinetics can be derived 
from metabolite concentrations, which are often not available. However, one can also 
improve model performance by fine-tuning lower bounds such that observed growth 
rates are reproduced. To explore to what extent such finetuning can improve the predic-
tion accuracy, we selected Faecalibacterium prausnitzii, for which several growth exper-
iments are available for comparison [30, 32, 36, 45]. We ran the monoculture simulation 
with the optimizeCBmodel of the COBRA Toolbox [45] in Matlab for this analysis.

We made modifications to the in silico media (ABB, mMCB, YCFA, and YCGD) by 
reducing amino acid uptake rates, preventing  CO2 uptake, adjusting sugar uptake rates 
to match the Western diet definition (“less sugar”), and aligning sugar uptake rates with 
the YCFAG medium as defined by Heinken et al. [36] in a separate simulation (referred 
to as “corrected sugar”). The case with less sugar fixed the maximum uptake rate for all 
carbon sources present in the model to a flux value of ca. 0.149 mmol/(gDW*h) whereas 
the case with corrected sugar modified the sugar fluxes between 0.2 (for starch) and 
18.5 mmol/(gDW*h) (for fructose) depending on the ratio of the carbon source and its 
molar mass. A metabolite was counted as ’produced’ if it had a positive flux in at least 1 
FBA solution.

The results in Fig.  4 (see also Additional file  1: Table  S6) showed that the overestima-
tion of the growth rate, observed in both the refined and AGORA models, was primarily 
due to the high maximal uptake rates for sugars that were originally set to their mmol/L 
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concentrations assuming unit values for biomass and time. In the ABB and YCGD media, 
amino acid concentrations were the main factor affecting the growth rate. To address the 
underestimation of growth rates in the YCGD medium, we increased the maximum uptake 
rate for sugar to achieve a similar growth rate observed in other media. The mean squared 
errors of the closest predicted values to the expected ones, from the prediction set of the 
altered media, equals 0.009 while the one of the initial predictions is 2.984.

Figure  4C and D (based on Additional file  1: Table  S6) compare predicted metabolite 
production to the experimentally observed metabolites. Overall, both the AGORA and the 
refined model did not significantly differ in how accurately they reproduced known metab-
olite production. The AGORA models were able to produce propionate and the refined 
models  CO2 in most cases. However, the media alterations increased prediction accuracy 
compared to the original ones; e.g. in the AGORA model case, in the mMCB medium, 
the predictions using the original in silico medium did not include propionate produc-
tion, which was the case for several modified media. In summary, the key metabolites were 
mostly produced as expected, with some variations between the models.

Discussion
Here, we present the first systematic evaluation of FBA-based interaction prediction 
for gut bacteria. The evaluation was subject to several limitations. For instance, growth 
curves were collected with different techniques, such as optical densities and 16S rRNA 

Fig. 4 Growth and products of the Faecalibacterium prausnitzii AGORA model using different in silico media 
simulating the ones used in in vitro experiments with modifications. A1 Growth rates of the AGORA model 
of F. prausnitzii in the in vitro media and their modifications as well as its expected value in each of those. A2 
Comparison of the predicted growth rates from the modifications (cyan) compared to those from the original 
media (purple) against the expected values (black). B Metabolite production (presence: black, absence: 
white, unknown: grey) of the AGORA F. prausnitzii in different media and in their modifications compared to 
experimental observations. C As B but using the refined model of F. prausnitzii 
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copy numbers determined by qPCR, which are not free of biases. Optical density is 
known to saturate at high cell densities, whereas DNA extraction and amplification 
required for qPCR and 16S rRNA sequencing can differ in efficiency across species [46]. 
Furthermore, there are a few known cases of bistability, where either one or the other 
gut bacterium ends up as the sole survivor of the pair, depending on small differences in 
initial conditions [2]. In addition, there are different methods to calculate growth rates 
from growth curves, which we did not evaluate here but which may impact results [47].

Defining media accurately is critical, as models require specific metabolites, often vita-
mins and ions, in varying amounts in the environment. In silico, these metabolites can 
become limiting factors, even though in vitro bacterial species require only low amounts 
of vitamins. Furthermore, the number of refined models was too small to reach a strong 
conclusion on the impact of curation. In addition, we matched mouse gut bacteria to 
AGORA models of closely related human gut bacteria to work with the same level of 
curation. However, omitting the AGORA models matched to mouse gut bacteria did not 
improve the interaction strength predictions (data not shown). Finally, our evaluation 
was limited to the prediction of growth rates in mono- and bi-cultures and of interac-
tion strengths based on these (except for COMETS, where we also considered maximal 
abundances). We did not evaluate whether interaction mechanisms were correctly pre-
dicted since such mechanisms are rarely systematically explored and mostly unknown.

Prediction accuracy was generally low and, as expected, was not improved by keeping 
the number of non-zero fluxes at a minimum (pFBA). The minimal cooperative value for 
the MICOM tradeoff function resulted in low growth rates for both species most of the 
time. However, it did not systematically perform worse than other MICOM methods. 
In contrast, shortening the time step in COMETS increased the predicted growth rate, 
which in some cases positively impacted the interaction strength prediction. As men-
tioned, each of the tools implements a different approach to community FBA. However, 
our evaluation did not indicate that one approach systematically outperformed the oth-
ers. While there was no clear winner, the tools do have unique strengths. For instance, 
only COMETS implements dynamic FBA and thus was the only tool that could assess 
interaction strength as the ratio of maximal abundances in co- and monoculture. Inter-
estingly, the maximal abundance ratio outperformed the growth rate ratio when predict-
ing positive interactions with curated GEMs (in IVm, AUC = 0.63). Except for this case, 
only the prediction of negative interactions performed significantly better than random, 
with a large variation across species. We observed that the use of curated GEMs sig-
nificantly increased the accuracy of growth rate prediction. However, this observation is 
based on only four curated models and driven by an outlier (Enterococcus faecalis).

There are several reasons for the low prediction accuracy. The quality of the metabolic 
reconstruction is an important factor since missing or wrongly assigned reactions can 
lead to false flux distributions and, consequently, misleading growth rate predictions.

Recently, Schäfer et al. [48] were able to obtain accurate predictions using GEMs after 
gap-filling draft reconstructions several times using in silico media simulating known 
growth-supporting carbon sources (45 carbon sources in total). They integrated several 
alternative reaction sets for each carbon source separately into the draft reconstruction and 
tested whether they could predict growth in a minimal medium. Notably, combinations of 
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reaction sets from up to 3 carbon sources returned the most accurate model. This high-
lights the extent to which phenotypic data benefit metabolic modeling.

In addition, the biomass reaction should ideally be based on measurements of macro-
molecule percentages in the cell but is often transferred from a model organism with only 
minimal curation [49]. Even if macromolecule percentages are available, these are usually 
limited to monocultures and may change in co-culture. Interaction prediction with FBA-
based methods also has several inherent limitations. Importantly, only metabolite-mediated 
interactions can be predicted, which means that other interactions, for instance, through 
the Type VI secretion system or quorum sensing, are outside the scope of FBA. Also, it is 
unclear how to define interaction strength. In FBA, it is usually computed as the ratio of 
co- and mono-culture growth rate, assuming cells are in exponential phase [4, 50]. In other 
phases of the growth curve, the growth rate cannot be quantified easily with FBA. Abun-
dance ratios can be used as an alternative measure, which, however, requires dynamic FBA. 
Further, extracting growth rates from the in vitro experiments was not straightforward as 
growth curve data are often not provided in numerical form.

Our conclusions are in line with the findings of Jansma and El Aidy [50], who highlight 
the need to use condition-specific GEMs. In agreement with this, Magnusdottir et al. [51] 
compared the relationship between a standard and condition-specific GEM to the one 
between the genome of a species and its transcriptome. In another FBA tool evaluation, 
Scott Jr et al. [52] also highlighted the need for tool improvement regarding quantitative 
predictions.

Future evaluations of FBA-based microbial interaction prediction could include addi-
tional tools and approaches not tested here, such as Pareto optimality [53, 54] as well as top-
ological approaches that ignore reaction stoichiometries [26, 55, 56], and FBA approaches 
integrating further biologically driven constraints (e.g., resource allocation [57], enzyme 
abundances [58] or Gibbs energy [59]). In addition, it will be interesting to increase the spe-
cies number per experiment to test methods developed for communities (such as mgPipe 
in MMT) and to use more curated models to investigate whether curation improves predic-
tion accuracy. Finally, since this evaluation was limited to mammalian gut bacteria, micro-
organisms from other environments need to be considered.

Conclusions
We tested several FBA-based interaction prediction approaches on in vitro data of mam-
malian gut bacteria collected from the literature and found that prediction accuracy is low 
without further curation or parameter tuning. This finding is a warning that interaction 
prediction with metabolic models requires model refinement and thus cannot be carried 
out in a high-throughput manner.

Methods
Data

We searched the literature for gut microbiota datasets containing growth curves for 
mono- and co-cultures. We identified six articles that provided relevant data for our 
study, which we organized into seven data sets (see Table 2).
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Monocultures

When a growth rate was not provided, we calculated it as the slope of the linear part 
of the growth curve in logarithmic scale, computed between start time point  (t1) and 
end time point  (t2). The abundances are measured as optical density, log 16S rDNA 
copy number per ml or cell count per ml, and  t1 and  t2 are time points chosen in 
the exponential phase. These were not identical across the curves since the onset of 
the exponential phase varied across species. In the Human1 data set, the Eggerthella 
lenta growth rate could not be determined because it was too close to the x-axis. The 
growth rates obtained for each monoculture in vitro are gathered in Additional file 1: 
Table S7.

Co‑cultures

To quantify interaction strength, we calculated the ratio of co-culture to monoculture 
abundance:

where x represents the maximal abundance in monoculture (mono) or co-culture (co). 
In the Human1 data set, co-cultures were grown in serial dilution at 24 and 48 h. The 
authors provided up to three maximal OD values in the stationary phase and three rela-
tive abundance values. The transformed maximal OD was obtained for each species by 
averaging maximal OD values multiplied by the relative abundance. However, in the 
Human1 data set, Prevotella copri never reached the stationary phase, making it impos-
sible to calculate the ratios for this species. Thus, we ignored all co-cultures involving 
this species in this series. In the Human4 data set, the OD of the co-cultures and mon-
ocultures were available, but relative abundance information was not provided. There-
fore, we were unable to calculate the ratio for this series. Nevertheless, we included the 
monocultures for growth rate prediction. In total, we used 30 monocultures and 88 co-
cultures (176 ratios) in our analysis. Additional file 1: Table S8 provides the species name 
used in the literature and the updated species name after a recent taxonomic revision.

GEMs

To compare the effect of model refinement on prediction quality, we used both semi-
refined and refined metabolic models. An overview of the models used is presented in 
Additional file 1: Table S8.

Semi‑refined models

The semi-refined models used in this study were obtained from the AGORA [35, 
60] project, which provides metabolic model reconstructions for human gut species 
and is available on the VMH. life website. However, as none of the available models 
matched the mouse bacterial species or strains used in our study, we computed the 
Average Nucleotide Identity (ANI) score [61] between the mouse bacterial strain 
genomes and the genomes used to reconstruct the AGORA models. ANI scores 
were calculated with the FastANI tool [62]. The AGORA genome with the highest 
ANI score was considered as the most closely related species to the mouse one, and 

ratio =

xco

xmono

https://vmh.life/
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its corresponding AGORA model was used for the analysis. In all but one case, the 
ANI score of the genome used was higher than 95%, indicating that the two genomes 
belong to the same species (Additional file 1: Tables S9 and S10).

As AGORA2 was recently published [60], we repeated the ANI score calculation using 
the reconstructions of it (Additional file 1: Table S11). For all the query genomes a differ-
ent genome was found with a higher ANI score than from the ones included in AGORA. 
Therefore, a different reconstruction was mapped for each strain under study. We per-
formed the MMT analysis with those models and the interaction predictions differed 
from those using the AGORA models but were not in statistically significant agreement 
with the expected ones (Additional file 1: Table S12).

Refined models

For the refined models, we identified four GEMs that matched species in the experimen-
tal data, but only a few were available for gut bacterial species. Two models were found 
for the human data set, Bacteroides thetaiotaomicron (BT_iAH991) [37] and Faecalibac-
terium prausnitzii (iFprauz) [36], and two for the mouse data set, namely Akkerman-
sia muciniphila (Yakk_v2)[39] and Enterococcus faecalis (enterococcus_faecalisV583) 
[38]. These refined models were curated by different scientists, using different names for 
metabolites and reactions, which made them incompatible with each other. To resolve 
this issue, we modified the exchange reaction and metabolite names in the refined mod-
els to match those in the AGORA models. However, some entities in the Enterococcus 
faecalis model had no equivalent in the AGORA model and were left unchanged. Some 
fields (i.e. annotations) were added to the structure of some refined GEMs to meet the 
expectations of MMT, which was developed to be used with AGORA models and is 
designed to be consistent with their structure.

Medium definition

Accurately defining the environment is critical for reliable metabolic predictions. To 
assess the impact of environmental complexity, we selected two sets of media for our 
analyses. The first set is used in metabolic models of human gut microbiota, but it is 
not representative of the selected experimental conditions. The second set is designed to 
mimic the in-vitro selected experimental environment.

MMT medium

The MMT tutorial offers four media formulations that mimic the gut metabolic environ-
ment [35]. We chose the Western diet-like medium without oxygen as the baseline for 
our analysis since it is compatible with AGORA models (identical reactions and metabo-
lite names). Furthermore, all models were able to grow on the Western diet-like medium 
except for the refined model of Akkermansia muciniphila.

In vitro media

We used a total of seven complex media, namely ABB, AF, mMCB, YCAG, YCGMS, 
YCFA, and YCGD, which were supplied in anaerobic conditions with nitrogen (5–10%), 
carbon dioxide (10%), and dihydrogen (5–7%) (Table 3). The exact chemical composi-
tion of these media is unknown since they include components such as peptones, amino 
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acids, yeast extract, brain heart infusion, and calf serum. To ensure consistency in the 
composition of peptones and other amino acid mixtures, we assimilated them to have 
the same composition per gram of amino acid and salt, as described by Microxpress® for 
soya peptone. Calf serum and heart infusion were supplemented with vitamins to ensure 
optimal bacterial growth.

For tryptone and yeast extract, we followed the protocol described by Marinos et al. 
[63] for GEMs and converted the flux constraints according to the initial quantity of 
each in the respective medium. The concentration of other components was provided 
either in molar or gram per liter units, which we converted to molar mass. The molar 
concentration (mol/L) was used as flux value (mmol/gdW*h).

We modified the in vitro media to ensure optimal bacterial growth, using the West-
ern diet as a reference for most bacterial models. The yeast extract and tryptone defined 
in silico contained oxygen, which was not compatible with the anaerobic conditions 
of the experiments, and so was removed. Additionally, although selected vitamins and 
ions were added to the composition of some complex components, such as calf serum 
and heart infusion (e.g., vitamin B12, thiamin, riboflavin, biotin), it was not enough to 
ensure the growth of each species in silico. Therefore, vitamins were added at a quan-
tity judged not to be limiting for bacterial growth (1 g/L) in amounts equal to the ones 
described in the MMT Western diet medium. Furthermore, some GEMs required other 
specific metabolites to initiate minimal growth, such as arabinose for Eggerthella lenta, 
N-Acetyl-Neuraminic Acid and 5,6-Dimethylbenzimidazole for Akkermansia mucin-
iphila and for Enterococcus faecalis. These metabolites were also added to the media at 
a concentration of 1 g/L, following the amount described in the Western diet medium. 
The complete description of each medium can be found in Additional file 1: Table S13.

Tools

The scripts for the three methods are available through a GitHub repository. The scripts 
were executed using MATLAB R2022a or Python 3.10, and all methods were used with 
Gurobi 9.5.1. Table 3 shows the complete set of parameters values used.

Microbiome Modeling Toolbox (MMT)

The “Computation and analysis of microbe-microbe metabolic interactions” tutorial [64] 
was followed to predict pairwise interactions with MMT. This method takes as input a 
list of GEMs and their paths, as well as a list of media or dietary conditions containing 
the exchange reactions, the lower and the upper bounds. Then, MMT performs all pair-
wise co-cultures and calculates both monoculture and co-culture growth rates.

The minimum growth rate difference between mono and co-culture that is considered 
significantly different (sigD value) was initially set to 0.1 (10%). This allows identifying 
the type of interaction between the two species, but this parameter was not used here 
since only ratios were considered for this analysis. The coupling factor (c) was kept at its 
default value of 400, and the threshold (u), defining the flux value allowed through reac-
tions if biomass is null, was set to zero.
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Table 3 Overview of the parameters used for each of the methods

Method ID Name Description Value in 
experiment

MMT c Coupling factor Define how the 
reaction fluxes are 
coupled to the 
biomass reaction 
flux and defined 
as: flux span = − (c 
* flux(biomass)) 
to + (c * 
flux(biomass))

400

SigD Significant differ-
ence

Value that counts 
as a significant dif-
ference between 
monoculture and 
coculture growth 
rate

0.1

u Threshold u Flux allowed in 
reactions if bio-
mass flux = 0

0

mergeGenes Gene merging 
variable

Boolean, wether 
the gene are 
added and merge 
in the commu-
nity mode (Time 
consuming)

FALSE

MICOM cooperative_
tradeoff

cooperative_tradeoff(= fraction) Minimum propor-
tion of the maxi-
mal community 
growth to allocate 
to species growth 
rate

Min value where 
both species are 
growing between 
0.1 and 1 with 0.1 
step

pfba Parsimonious FBA Define if a parsi-
monious FBA is 
performed

TRUE

min_growth Minimum growth 
rate

Minimum growth 
rate required for 
each species

0

Abundance Relative abun-
dance of each 
species in the 
community. By 
default each spe-
cies has the same 
abundance

0.5 and 0.5

OptCom Strategy Strategy used to 
solve the optimiza-
tion problem

MOMA

lMOMA

Original

min_growth Minimal growth Minimal growth 
required for each 
species

0

pfba Parsimonious FBA Define if a parsi-
monious FBA is 
performed

TRUE
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MICOM

We used MICOM [65]  to predict community growth rates. We provided the identifi-
ers and filenames of the species in pairs and then created a community and furnished 
the medium to parameterize the model. The MICOM medium is defined as a list of 
exchange reaction names of the community associated with the available flux of the 
metabolite (positive values). The monoculture growth rates were obtained by creating a 

Table 3 (continued)

Method ID Name Description Value in 
experiment

COMETS H/10 initial_pop Gram of biomass 
in the environ-
ment

0.002

time_step Time step of a FBA 
problem in hour

0.1

maxCycles Number of steps 
max

20

H initial_pop Gram of biomass 
in the environ-
ment

1

time_step Time step of a FBA 
problem in hour

1

maxCycles Number of steps 
max

10

BOTH defaultVmax V max value per 
default in mmol/g. 
CDW/h

18.5

defaultKm KM value per 
default in M (molar 
conc.)

0.000015

SpaceWidth size of the cell in 
cm3

1

maxSpaceBiomass Capacity maxi-
mum in gr. cell dry 
weight

100

minspaceBiomass Capacity mini-
mum in gr. cell dry 
weight

1.00E−11

obj_stype Objective type Define if the strat-
egy used to solve 
the optimization 
problem

MAX_OBJ_MIN_
TOTAL =  > Pfba 
AND MAXI-
MIZE_OBJECTIVE_
FLUX =  > pFBA

Grid Grid size Number of boxes 
in the x and y axis 
to define the grid 
size

[1,1]

Static Related to 
metabolites in 
media defini-
tion, define if the 
metabolites are in 
limited amount

TRUE

Parameters not shown here were kept at their default value in the calculation
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community with only one species using the function optimize_single. The optcom 
function was used with the three strategies lMoma, Moma, and original, with minimal 
growth of 0 and pFBA. The community prediction was run with the Gurobi solver. The 
cooperative_tradeoff function was used for the community, with a fraction value 
that was defined using the tradeoff function and taking the smallest tradeoff value that 
allowed both species to grow, without consideration for the value of the growth rate, to 
minimize the cooperation between species. The minimal growth rate was also zero for 
this function and calculated with pFBA. Finally, the growth rates were extracted from 
the output.

COMETS

COMETS implements dFBA and takes as input the metabolic model of the community 
and the medium, defined as a dictionary of the metabolites in the medium and their 
corresponding molar concentration. We followed the comestpy "Growth in a test tube" 
tutorial [66]. COMETS was run with two settings for mono and co-cultures: For the H 
(hour) condition, an initial biomass of one gram was used with a time step of one hour. 
This approach was expected to yield comparable outcomes to other techniques that 
use a biomass function computed per gram of dry weight and hour. As for the H/10 
condition, the initial biomass was set to 2 mg with a time step of 0.1 h. COMETS was 
run for both settings with both FBA (obj_style: MAXIMIZE_OBJECTIVE_FLUX) and 
pFBA (obj_style: MAX_OBJECTIVE_MIN_TOTAL). In general, the maximum number of 
cycles was set to 20 but was increased for some monocultures to ensure that the station-
ary phase was reached. The other community parameters were the same as described in 
the tutorial.

Predictions

All three tools predicted monoculture and co-culture growth rates for 30 AGORA 
monocultures and 89 pairs. Additionally, monoculture predictions were made for four 
refined models (four for the Western diet and eight for in-vitro media) and co-culture 
predictions were made for 76 co-cultures using one of the two available refined mod-
els. All predictions were made using the Western diet and one of the seven media that 
matched the experimental conditions. Finally, the ratios were calculated based on the 
growth rates obtained from these predictions.

Statistics

For each species, the effect of growth in co-culture was quantified by computing the 
ratio of its growth rate in co- versus monoculture. When both a curated and a semi-
curated GEM were available for a species, both were included in the analysis. Statistical 
values were computed using R 4.1.3 and Python 3.10.

Spearman correlation

To assess correlations based on both values and ranks, Spearman’s correlations were 
computed for monoculture growth rates and co-culture ratios (predicted versus experi-
mental). For each of the four groups of combinations (Western diet and AGORA mod-
els, Western diet and refined models, in-vitro media and AGORA models and in-vitro 
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media and refined models), a global correlation value was calculated without separat-
ing the species or the methods, highlighting the impact of different media and levels 
of refinement of the prediction. The ‘cor.test’ function in R was used to calculate 
Spearman correlations and their p values.

Wilcoxon test

The Wilcoxon test was performed with the R function wilco16xon.test. For all con-
ditions, the mean absolute difference was calculated between the predicted and experi-
mental growth rate for monocultures and between the predicted and experimental ratio 
of growth rates for cocultures. A paired Wilcoxon test was then carried out to compare 
AGORA and refined models in both media conditions.

ROC curves

We used a multiclass ROC curve to handle three interaction sign classes: positive, 
neutral, and negative interactions. We arbitrarily defined these classes for non-neutral 
effects, at 20% of the difference between mono- and co-culture. Consequently, ratios 
under 0.8 were designated negative, ratios over 1.2 were designated positive, and ratios 
in between were classified as neutral. Using the sklearn Python package’s roc_curve 
function, we computed the true positive rate (TPR) and false positive rate (FPR) for each 
threshold value. The threshold represents the value above which an interaction strength 
is classified as belonging to the positive class and below which it is classified as belong-
ing to the negative class. The maximum number of thresholds is the number of ratios per 
method plus one. We employed the same range of threshold values to compute the TPR 
and FPR for each class within a method.

Abbreviations
Am  AGORA model (semi-curated GEM obtained from AGORA)
AUC   Area under the curve
FBA  Flux balance analysis
GEM  Genome-scale metabolic model
IVm  In-vitro media
MMT  Microbiome Modeling Toolbox
pFBA  Parsimonious FBA
GR  Growth rate
Rm  Refined model (curated GEM)
WD  Western diet
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the literature used for experimental data and modelling and their updated names (nomenclature update 12/22). 
Table S9. Mouse strains and their matched AGORA metabolic models. The selection was based on the highest ANI 
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