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Abstract 

Background: Clustering is a fundamental problem in statistics and has broad applica-
tions in various areas. Traditional clustering methods treat features equally and ignore 
the potential structure brought by the characteristic difference of features. Especially 
in cancer diagnosis and treatment, several types of biological features are collected 
and analyzed together. Treating these features equally fails to identify the heterogene-
ity of both data structure and cancer itself, which leads to incompleteness and ineffi-
cacy of current anti-cancer therapies.

Objectives: In this paper, we propose a clustering framework based on hierarchical 
heterogeneous data with prior pairwise relationships. The proposed clustering method 
fully characterizes the difference of features and identifies potential hierarchical struc-
ture by rough and refined clusters.

Results: The refined clustering further divides the clusters obtained by the rough 
clustering into different subtypes. Thus it provides a deeper insight of cancer that can 
not be detected by existing clustering methods. The proposed method is also flexible 
with prior information, additional pairwise relationships of samples can be incorpo-
rated to help to improve clustering performance. Finally, well-grounded statistical 
consistency properties of our proposed method are rigorously established, includ-
ing the accurate estimation of parameters and determination of clustering structures.

Conclusions: Our proposed method achieves better clustering performance 
than other methods in simulation studies, and the clustering accuracy increases 
with prior information incorporated. Meaningful biological findings are obtained 
in the analysis of lung adenocarcinoma with clinical imaging data and omics data, 
showing that hierarchical structure produced by rough and refined clustering is neces-
sary and reasonable.
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Introduction
Clustering is a fundamental problem in unsupervised learning, which aims to group 
objects of similar kind into respective categories. It has broad applications in different 
areas such as finance [1, 2], machine learning [3, 4], and molecular biology [5]. Classic 
clustering methods include: K-means clustering, hierarchical clustering, DBSCAN, and 
Gaussian mixture models. See a brief overview of these methods in [6].
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Traditional clustering methods treat all features equally and perform algorithm on 
all dimensions. As the world steadily becomes more connected with an ever-increasing 
number of electronic devices, the dimension of data grows rapidly. Traditional cluster-
ing methods may not be sufficient for the high-dimensional and complex data structure. 
In the area of supervised learning, lots of methods such as lasso [7] and others [8–10] 
have been proposed to deal with these situations. Similar to supervised learning meth-
ods, [11] has proposed a clustering algorithm to deal with complex data structure in 
unsupervised learning. They assumed that in high-dimensional scenario, some of fea-
tures may be non-informative and only part of features should be used in clustering pro-
cedure. Thus, they combined convex clustering method [12] with group-lasso penalty 
[10], and proposed sparse convex clustering to conduct clustering and variable selec-
tion at the same time. Different from the sparse assumption, in this paper, we focus on 
developing clustering algorithm of somehow different data structure which is commonly 
encountered in the area of complex diseases.

Heterogeneity is one of the most important hallmarks in complex diseases [13], espe-
cially cancers [14]. Human cancers exhibit formidable molecular heterogeneity, to a 
large extent accounting for the incompleteness and transitory efficacy of current anti-
cancer therapies [15]. Clustering can help to find subtypes of diseases in the context of 
precision medicine [16], specific designed treatments based on these subtypes can fur-
ther improve cancer survival. The idea of obtaining more refined cancer heterogene-
ity structure with the increased resolution of information/technique is not new. Take 
breast cancer as an example. In the past, with information/technique limitations, it was 
considered as a single disease. With the development of high-throughput profiling and 
information contained in gene expressions, it was separated into five subtypes: Luminal 
A, Luminal B, HER2-enriched, Triple-negative, and Claudin-low [17]. Further advance-
ments in sequencing have suggested that these subtypes may contain finer structures. 
For example, a recent study [18] suggests that the Triple-negative subtype can be further 
separated into three sub-subtypes (Lipogenic, Glycolytic, and Mixed). Besides breast 
cancer, lung cancer also has heterogeneity and is very challenging for diagnosis [19] and 
drug development [20].

Not only the diseases, the data used in disease analysis also have heterogeneous struc-
ture. That is, different types of features may represent different aspect of data and can 
be used for different goals. For example, clinical imaging data including magnetic reso-
nance images (MRI), computed tomography (CT) scans, positron emission tomography 
(PET), and mammographic images [21], are routinely ordered for cancer and suspicious 
patients for their quicker screening and less expense [22]. One important advantage of 
clinical imaging data is that imaging provides a global, unbiased view of the entire tumor 
as well as its surrounding tissue [23]. On the other hand, omics data, including genom-
ics, transcriptomics, and methylomics data, have also been broadly used in discovering 
modules of co-regulated genes and finding subtypes of diseases in the context of preci-
sion medicine [16]. The availability of large-scale omics datasets has spurred a significant 
interest in linking tumor phenotypes at molecular level, leading to an improved under-
standing of the molecular mechanisms behind imaging datasets [23]. To summarize, 
clinical imaging data provide a global view with rough information while omics data 
provide a more detailed and refined structure of the disease. Combining analysis of these 
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two kinds of data may further improve the understanding of cancer and other complex 
diseases. In this paper, we assume that the clustering problem has a hierarchical struc-
ture, that is, the rough information divides samples into different types while the refined 
information works beneath the rough information and further divides particular type 
defined by the rough information into numbers of subtypes while preserving the original 
rough structure.

Another aspect of our proposed method is motivated by real data. Recent advances of 
data sharing make it increasingly available to gain additional information for data analy-
sis. In the context of genome wide association analysis (GWAS), summary statistics gen-
erated from external datasets with large sample size can be used to aid the analysis of 
internal data [24]. Another example is that, in the area of machine learning, semi-super-
vised learning methods combine a small amount of human-labeled data (exclusively used 
in more expensive and time-consuming supervised learning paradigms), followed by a 
large amount of unlabeled data. This paradigm of using external data has been proved to 
increase the accuracy of prediction and clustering [25]. Here in our real data analysis, a 
small amount of the data are collected with additional clinical biological variables. Thus, 
to fully use the external information and make our method more flexible, we first extract 
prior information, and then incorporate it into our clustering problem.

In this paper, we conduct hierarchical heterogeneity analysis of clinical imaging data 
and omics data with prior information incorporated. Different from existing methods 
treating all features equally, we define hierarchical structure based on the difference of 
features. The first type of clinical imaging data define a rough clustering structure and 
the second type of omics data define a refined clustering structure. This study contrib-
utes beyond the existing literature in following ways. First, an innovative clustering 
framework of joint analysis of hierarchical heterogeneous data is developed as well as an 
efficient ADMM algorithm. Second, prior knowledge extracted from additional variables 
can be flexibly used and help to improve clustering performance to a great extent. Third, 
the much-desired and well-grounded statistical consistency properties of our method 
are rigorously established, including the accurate estimation of parameters and deter-
mination of clustering structures. Last but not the least, the application of our method 
on lung adenocarcinoma potentially provides a more effective way for exploring valu-
able insights on precision medicine and disease diagnosis from multi-type biological 
datasets.

Methodology
Access to prior information

Before we introduce our clustering algorithm, we first give the definition of prior infor-
mation. In reality, although we may not have a clear picture of the overall clustering 
structure of all subjects, local structure may be obtained with a small number of sam-
ples, which is based on manual labeling or pre-training of some existing methods on 
additional beneficial variables contained in part of samples. Based on such additional 
information, we can accurately extract the pairwise relationships between correspond-
ing samples, specifically, whether a certain two subjects are in the same cluster. Con-
sider n subjects whose indexes are {1, . . . , n} , we denote A = j,m : 1 � j < m � n  
as the set of all pairwise relationships. It is straight forward to see that whole pairwise 
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relationships contain |A| = 1
2n(n− 1) elements, where |·| is the cardinality of the set. The 

extracted prior information Ap is a subset of A , which indicates a set of some pairwise 
subject indexes satisfying the following two conditions. 

(1) If 
(
j,m

)
∈ Ap , then the j-th and m-th subjects are in the same cluster, and j < m.

(2) If 
(
j1, j2

)
∈ Ap , 

(
j2, j3

)
∈ Ap , then 

(
j1, j3

)
∈ Ap . If 

(
j1,m

)
∈ Ap , 

(
j2,m

)
∈ Ap , 

and j1 < j2 , then 
(
j1, j2

)
∈ Ap . If 

(
j,m1

)
∈ Ap , 

(
j,m2

)
∈ Ap , and m1 < m2 , then 

(m1,m2) ∈ Ap.

The first condition implies that the element in Ap indicates an prior belief on their 
belonging to the same cluster, and they form pairwise relationship according to natu-
ral order. The second condition implies that Ap holds transitivity and ensures that prior 
pairwise relationships do not contradict themselves. It should be noted that only small 
proportion of samples contain such prior information. For example, in our real data 
analysis, prior information is available for 51 of the 355 patients. We can further trans-
form these pairwise prior information Ap contained in these samples to clustering struc-
ture, denoted by {F1, . . . ,FK } , as a assistance for our clustering algorithm. When the 
prior information is not available, Ap = ∅ , then the clustering structure defined by Ap 
is {{1}, {2}, . . . , {n}} and K = n . Thus, the lack of prior assistance is also included in our 
consideration as a special case.

A small example. Let n = 8 and Ap = {(1, 2), (1, 4), (2, 4), (5, 6)} , then the prior clus-
tering structure defined by Ap is {{1, 2, 4}, {3}, {5, 6}, {7}, {8}} and K = 5.

Hierarchical penalties with prior information incorporated

Consider n independent subjects {X i,Zi}
n
i=1 , where X i =

(
Xi1, . . . ,Xiq

)T are q-dimen-

sional features and Zi =
(
Zi1, . . . ,Zip

)T are p-dimensional features. In the context of 
cancer clustering, the first type of features X are clinical imaging data, while the second 
type of features Z are omics data and have relatively high dimension. Cancer clustering 
aims to divide the n subjects into several clusters, thus obtains potential patterns of can-
cers to further develop specific treatment of different types of cancers. In our medical 
research, the first type of features have intuitively biological meanings at clinical level, 
while the second type of features at molecular level are determined to be more informa-
tive. Hence they are validated to be hierarchical [26], where a rough clustering structure 
can be identified by X , and a refined clustering structure can be identified by Z . For the 
i-th subject, β i =

(
βi1, . . . ,βiq

)T and γ i =
(
γi1, . . . , γip

)T are denoted as the clustering 
centers (parameters) of the rough and refined clusters which the i-th subject belongs 
to, respectively. Denote β =

(
β1, . . . ,βn

)
∈ R

q × R
n and γ =

(
γ 1, . . . , γ n

)
∈ R

p × R
n 

are matrices of clustering parameters. Note that each subject is flexibly modeled to have 
its own clustering center, and two subjects belong to the same rough/refined cluster if 
and only if they have the same rough/refined clustering center. By prior information 
suggested in section  “Access to prior information”, define the following two constraint 
parameter sets,
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We propose a prior-incorporated clustering model with hierarchical penalties (PCH) by 
minimizing the following objective function,

subject to β j − βm = 0 and γ j − γm = 0 when 
(
j,m

)
∈ Ap , where p(·; �) is the concave 

penalty with tuning parameter � . Note that the first term in (2.1) is similar to traditional 
convex clustering methods [12, 27–29] while the second and the third term are the pen-
alties that guarantee hierarchical structure [30]. In our implementation, we adopt the 
minimax concave penalty (MCP; [9]). It is noted that the smoothly clipped absolute 
deviation penalty (SCAD; [8]) and some alternatives are equally applicable.

We obtain 
(
β̂ , γ̂

)
 by minimizing (2.1) subject to β ∈ M1 and γ ∈ M2 . Denote 

ξ̂ =
(
ξ̂1, . . . , ξ̂ K̂1

)
 and α̂ =

(
α̂1, . . . , α̂K̂2

)
 as the distinct values of β̂ and γ̂  , respectively. 

Then the number of rough clusters K̂1 and the rough clustering structure 
{
Ĝ1, . . . , ĜK̂1

}
 

are determined by checking the distinct values of β̂ , where 
{
Ĝ1, . . . , ĜK̂1

}
 constitutes 

mutually exclusive partitions of {1, . . . , n} with Ĝk1 =
{
i : β̂ i = ξ̂ k1 , i = 1, . . . , n

}
 for 

k1 = 1, . . . , K̂1 . Accordingly, the number of refined clusters K̂2 and the refined clustering 
structure 

{
T̂1, . . . , T̂K̂2

}
 are determined by checking the distinct values of γ̂  ,  

where 
{
T̂1, . . . , T̂K̂2

}
 constitutes mutually exclusive partitions of {1, . . . , n} with 

T̂k2 =
{
i : γ̂ i = α̂k2 , i = 1, . . . , n

}
 for k2 = 1, . . . , K̂2 . Moreover, ξ̂ k1 is the estimated clus-

tering center of the k1-th cluster of the rough clustering structure, and α̂k2 is the esti-
mated clustering center of the k2-th cluster of the refined clustering structure.

It is noted that �1 and �2 control the number of estimated clusters. When �1 and �2 are 
large enough, all clustering parameters tends to be equal, leading to all subjects belong 
to one cluster. When �1 and �2 are close to 0, the hierarchical penalties may slightly influ-
ence on Q(β , γ ) , then all subjects tend to be in separate clusters. To gain more insight 
into such characteristics, K̂1(�1, �2) and K̂2(�1, �2) can be seen as functions of �1 and �2 , 
respectively. For one simulated data in section “Simulation studies”, as shown in Addi-
tional file  1: Figure S7, we observe how tuning parameters affect the number of esti-
mated hierarchical clusters. The tuning procedure is well-behaved and recovers the true 
numbers of clusters 

(
K̂1, K̂2

)
= (3, 6) with optimized (�1, �2).

It should be especially noted that hierarchy is guaranteed indeed by the hierarchical 
penalties. For the j-th and m-th subjects, the term related to γ j − γm only appears in the 

M1 =
{
β ∈ R

q × R
n : β j = βm,

(
j,m

)
∈ Ap

}
,

M2 =
{
γ ∈ R

p × R
n : γ j = γm,

(
j,m

)
∈ Ap

}
.

(2.1)

Q(β , γ ) =
1

2

n∑

i=1

(∥∥X i − β i

∥∥2
2
+

∥∥Zi − γ i

∥∥2
2

)

+
∑

(j,m)∈A\Ap

p

((∥∥∥β j − βm

∥∥∥
2

2
+

∥∥∥γ j − γm

∥∥∥
2

2

) 1
2

; �1

)

+
∑

(j,m)∈A\Ap

p
(∥∥∥β j − βm

∥∥∥
2
; �2

)
,
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first group penalty. Due to “all in or all out” property of the group penalty, the case with 
β̂ j  = β̂m and γ̂ j = γ̂m cannot happen. Thus, the case with β̂ j = β̂m and γ̂ j = γ̂m leads 
them to be assigned to the same rough cluster and the same refined cluster, the case with 
β̂ j = β̂m and γ̂ j  = γ̂m leads them to be assigned to the same rough cluster and differ-
ent refined clusters, and the case with β̂ j  = β̂m and γ̂ j  = γ̂m leads them to be assigned 
to different rough clusters and different refined clusters. In conclusion, if two subjects 
are assigned to the same refined cluster, they must be assigned to the same rough clus-
ter, which implies that the estimated refined clustering structure is exactly nested in the 
rough clustering structure. It should be noted that although no clustering methods pro-
duce hierarchical structure to the best of our knowledge, this hierarchy can be done by 
performing traditional convex clustering method twice, named as two-step clustering. 
To be more specific, two-step clustering first performs clustering based on X with meth-
ods like convex clustering. Then second step clustering can be done based on Z within 
each identified cluster of the first step. Compared to the aforementioned method, using 
hierarchical penalties is more informative since it only needs one step clustering and 
combines the information of X and Z while two-step clustering only uses the informa-
tion within X and Z . We will also demonstrate the supreme of clustering with hierarchi-
cal penalties over two-step clustering in our simulation studies.

Statistical properties
Denote 

{
G∗
1 , . . . ,G

∗
K1

}
 and 

{
T ∗
1 , . . . , T

∗
K2

}
 as the true rough and refined clustering structure 

of the independent n subjects, respectively. Denote ξ∗k1 as the center of the k1-th rough clus-
ter for k1 = 1, . . . ,K1 . Denote α∗

k2
 as the center of the k2-th refined cluster for k2 = 1, . . . ,K2 . 

For the i-th subject, define β∗
i = ξ∗k1 and γ ∗

i = α∗
k2

 if i belongs to G∗
k1

 and T ∗
k2

 . We assume that 
X i = β∗

i + ǫ1i and Zi = γ ∗
i + ǫ2i , where ǫi =

(
ǫT1i, ǫ

T
2i

)T is a random error vector with 
E(ǫi) = 0 and Var(ǫi) = � . By the hierarchical structure, there exists a partition of 
{1, . . . ,K2} denoted by 

{
H∗

1, . . . ,H
∗
K1

}
 satisfying G∗

k1
= ∪k2∈H

∗
k1
T ∗
k2
, k1 = 1, . . . ,K1 . We 

define the minimal differences of the centers between two rough and refined clusters as

Moreover, we define the minimum of subject numbers of rough and refined clusters as

In our theoretical properties establishment, we assume some mild conditions.

Condition 1 The random error vectors {ǫi}ni=1 =
{(

ǫT1i, ǫ
T
2i

)T}n

i=1
 independently follow 

sub-Gaussian distribution with variance proxy σ 2
0  , where σ0 is a finite positive constant.

Condition 2 The penalty p(t; �) is non-decreasing and concave on [0,∞) . There exists a 
constant a > 0 such that p(t; �) is a constant for all t � a� , and p(0; �) = 0 . The deriva-
tive p′(t; �) is continuous, bounded by � and satisfies limt→0+ p′(t; �) = �.

bn =minj∈G∗
k1
,m∈G∗

k′1
,1�k1 �=k′1�K1

∥∥∥β∗
j − β∗

m

∥∥∥
2
= min1�k1 �=k′1�K1

∥∥∥ξ∗k1 − ξ∗k′1

∥∥∥
2
,

dn =minj∈T ∗
k2
,m∈T ∗

k′2
,1�k2 �=k′2�K2

∥∥∥γ ∗
j − γ ∗

m

∥∥∥
2
= min1�k2 �=k′2�K2

∥∥∥α∗
k2

− α∗
k′2

∥∥∥
2
.

Gmin = min1�k1�K1

∣∣∣G∗
k1

∣∣∣, Tmin = min1�k2�K2

∣∣∣T ∗
k2

∣∣∣.
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Theorem 1 Suppose that Tmin ≫ (q + p) log n and Conditions 1-2 hold. If �1 and �2 are 
chosen satisfying that

where φn = (q + p)
1
2T

− 1
2

min

(
log n

) 1
2 and κ is an arbitrary positive constant. As n → ∞ , 

there exists a local minimizer 
(
β̂ , γ̂

)
 of Q(β , γ ) subject to β ∈ M1 and γ ∈ M2 such that

(1) (Parameters estimation consistency)

(2) (Clustering structures consistency)

Theorem 1 has demonstrated the much-desired consistency properties of our proposed 
method. Condition 1 assumes clustering noises to follow sub-Gaussian distribution, which 
is widely seen in high-dimensional statistical analysis and fusion-based clustering analysis 
[11, 28, 31–34]. Condition 2 is a common assumption in penalization-based methods [8–
10], and our adopted MCP is applicable. With sample sizes nearly balanced among refined 
clusters and far greater than the dimension of features, still allowing q + p to tend to infin-
ity, the convergence rate φn → 0 . As a result, with proper parameters, the model can accu-
rately determine the number of rough and refined clusters, and reliably reconstruct their 
corresponding structures with high probability. In addition, the rough and refined center 
estimation consistency is well-established. Different from the existing convex clustering 
framework which adopts a single-level penalty, the theoretical development presents sig-
nificant complexity and challenges. The proof is available in Additional file 1.

Computational algorithm
We derive an ADMM algorithm for optimizing the objective function. By introducing two 
new sets of parameters ω =

{
ωjm,

(
j,m

)
∈ A

}
 and η =

{
ηjm,

(
j,m

)
∈ A

}
 , minimization 

of objective function is equivalent to the following constrained minimization problem,

Then the augmented Lagrangian function is

�1 < (a+ κ)−1dn, �2 < (a+ κ)−1bn, min {�1, �2} ≫ φn,

sup
1�k1�K1

sup
i∈G∗

k1

∥∥∥β̂ i − ξ∗k1

∥∥∥
2
+ sup

1�k2�K2

sup
i∈T ∗

k2

∥∥∥γ̂ i − α∗
k2

∥∥∥
2
= Op(φn).

Pr
(
K̂1 = K1

)
→ 1, Pr

(
Ĝk1 = G∗

k1
, k1 = 1, . . . , K1

)
→ 1,

Pr
(
K̂2 = K2

)
→ 1, Pr

(
T̂k2 = T ∗

k2
, k2 = 1, . . . , K2

)
→ 1.

L0(β , γ ,ω, η) =
1

2

n∑

i=1

(∥∥X i − β i

∥∥2
2
+

∥∥Zi − γ i

∥∥2
2

)

+
∑

(j,m)∈A

p

((∥∥ωjm

∥∥2
2
+

∥∥∥ηjm
∥∥∥
2

2

) 1
2

; �1

)
+

∑

(j,m)∈A

p
(∥∥ωjm

∥∥
2
; �2

)
,

s.t. β j − βm − ωjm = 0, γ j − γm − ηjm = 0,
(
j,m

)
∈ A,

β j − βm = 0, γ j − γm = 0,
(
j,m

)
∈ Ap.
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subject to β j − βm = 0 , γ j − γm = 0 , ωjm = 0 , and ηjm = 0 , when 
(
j,m

)
∈ Ap . The dual 

variables v =
{
vjm,

(
j,m

)
∈ A

}
 and u =

{
ujm,

(
j,m

)
∈ A

}
 are the Lagrange multipliers, 

vjm and ujm are q- and p-dimensional vectors, and ϑ is a fixed ADMM algorithm penalty 
parameter. Then the standard ADMM optimization procedures [35] can be applied to 
find the local minimizer of L(β , γ ,ω, η, v,u) . For initial values, we adopt a two-step 
K-means method and incorporate prior information. We first capture a rough clustering 
structure by K-means method, and then generate refined estimation within above rough 
initial clusters. In both steps, the numbers of clusters are selected by Calinski-Harabasz 
index using R package NbClust [36, 37], which is widely used for determining the num-
ber of components in various clustering methods. An adjustment is made based on prior 
information, and the initial values are denoted by 

(
β(0), γ (0)

)
 . Moreover, the other initial 

parameters are set as 
(
ω
(0)
jm , η

(0)
jm

)
=

(
β
(0)
j − β(0)

m , γ
(0)
j − γ

(0)
m

)
 , and 

(
v(0),u(0)

)
= (0, 0) . 

Given 
(
β(t), γ (t),ω(t), η(t), v(t),u(t)

)
 at the begin of (t + 1)-th iteration, the (t + 1)-th 

iteration goes as follows,

To obtain the solutions of the above optimization problems, we introduce some new 
notations. Recall the clustering structure {F1, . . . ,FK } transformed by prior informa-
tion in section  “Access to prior information”, we define a n× K  matrix L with lik = 1 
for i ∈ Fk and lik = 0 . Define J � L⊗ Iq+p , where ⊗ is Kronecker product and Iq+p is 
(q + p)× (q + p) identity matrix. Here, J  is a n(q + p)× K (q + p) matrix. Define matrix 
D =

{
ej − em,

(
j,m

)
∈ A

}T with ei being a n× 1 vector whose i-th element is 1 and the 
remaining ones are 0, and H � D ⊗ Iq+p . Here, D is a 12n(n− 1)× n matrix and H is a 
1
2n(n− 1)(q + p)× n(q + p) matrix.

Given 
(
ω(t), η(t), v(t),u(t)

)
 , to obtain the solution of (4.1), denote X = (X1, . . . ,Xn) 

and Z = (Z1, . . . ,Zn) as the q × n and p× n matrices, respectively. Define vec(·) as the 
vectorization of matrices. Then, the updates for 

(
β(t+1), γ (t+1)

)
 are

L(β , γ ,ω, η, v,u) =L0(β , γ ,ω, η)

+
∑

(j,m)∈A

vTjm

(
β j − βm − ωjm

)
+

ϑ

2

∑

(j,m)∈A

∥∥∥β j − βm − ωjm

∥∥∥
2

2

+
∑

(j,m)∈A

uT
jm

(
γ j − γm − ηjm

)
+

ϑ

2

∑

(j,m)∈A

∥∥∥γ j − γm − ηjm

∥∥∥
2

2
,

(4.1)
(
β(t+1), γ (t+1)

)
= arg min

β∈M1,γ∈M2

L

(
β , γ ,ω(t), η(t), v(t),u(t)

)
,

(4.2)
(
ω(t+1), η(t+1)

)
= arg min

ω,η
L

(
β(t+1), γ (t+1),ω, η, v(t),u(t)

)
,

(4.3)
v
(t+1)
jm = v

(t)
jm + ϑ

(
β
(t+1)
j − β(t+1)

m − ω
(t+1)
jm

)
,

u
(t+1)
jm = u

(t)
jm + ϑ

(
γ
(t+1)
j − γ (t+1)

m − η
(t+1)
jm

)
.
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In particular, by some linear algebra techniques, we avoid calculating the inverse of a 
K (q + p)× K (q + p) matrix in the iterations, namely, JTJ + ϑJTHTHJ  . Instead, we 
calculate the inverse of a K × K  matrix LTL+ ϑLTDTDL , which significantly reduces 
computation time. It is also noted that K is smaller than sample size n to some extent 
depending on the prior information. Especially, K = n in the case of no prior informa-
tion is also included in above formula, leading to a analytical inverse of a n× n matrix 
In + ϑDTD . The detailed deviation of (4.4) is available in Additional file 1.

Given 
(
β(t+1), γ (t+1), v(t),u(t)

)
 , to obtain the solution of (4.2), let ω∗(t)

jm = β
(t+1)
j − β(t+1)

m

+ϑ−1v
(t)
jm and η∗(t)jm = γ

(t+1)
j − γ

(t+1)
m + ϑ−1u

(t)
jm . Denote ω∗(t) =

{
ω
∗(t)
jm ,

(
j,m

)
∈ A

}
 and 

η∗(t) =
{
η
∗(t)
jm ,

(
j,m

)
∈ A

}
 . Then, the updates for 

(
ω
(t+1)
jm , η

(t+1)
jm

)
 are

where S
(
ω
∗(t)
jm , η

∗(t)
jm

)
 is hierarchical groupwise thresholding operator provided in Addi-

tional file 1. Given 
(
β(t+1), γ (t+1),ω(t+1), η(t+1), v(t),u(t)

)
 , the updates 

(
v(t+1),u(t+1)

)
 fol-

low (4.3). These updates are repeated until convergence.
We select the tuning parameters by minimizing the modified Bayesian information 

criterion (BIC). In this paper, similar that of [31], but in order to focus on the results of 
clustering, (�1, �2) are chosen by minimizing the following modified BIC-type criterion 
via a grid search,

where Cn is a positive value depending on n. In our implementation, we choose 
Cn = log

(
log(n)

)
 , and note that Cn = 1 (original BIC) and Cn = log(n) are also 

applicable.

Simulation studies
In this section, we mainly consider two different scenarios in our simulation studies, 
Gaussian clusters and half-moon clusters, both of which demonstrate the superior per-
formance of our proposed method to alternatives. Consider n independent data obser-
vations with (q + p)-dimensional features, which belong to K1 rough clusters and K2 
refined clusters. The refined clusters label Yi of the i-th subject is uniformly sampled 
from {1, . . . ,K2} , and the K2 refined clusters are nested in K1 rough clusters as the 

(4.4)

vec

((
β(t+1)T, γ (t+1)T

)T)

=Jvec

({(
XT,ZT

)T
+

(
ϑω(t)T − v(t)T,ϑη(t)T − u(t)T

)T
D

}

L

(
LTL+ ϑLTDTDL

)−1
)

(4.5)
(
ω
(t+1)
jm , η

(t+1)
jm

)
= S

(
ω
∗(t)
jm , η

∗(t)
jm

)
,

BIC(�1, �2) = log

{
1

n

n∑

i=1

(∥∥∥X i − β̂ i(�1, �2)
∥∥∥
2

2
+

∥∥Zi − γ̂ i(�1, �2)
∥∥2
2

)}

+ Cn
log(n)

n

(
K̂1(�1, �2)+ K̂2(�1, �2)

)
,
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discussion above. Under the refined clustering structure 
{
T ∗
1 , . . . , T

∗
K2

}
 , there are 

N0 =
1
2

∑K2
k2=1

∣∣∣T ∗
k2

∣∣∣
(∣∣∣T ∗

k2

∣∣∣− 1
)
 true pairwise subject indexes which indicate all pairwise 

subjects belonging in corresponding same clusters. We randomly select [τN0] pairwise 
indexes of true pairwise subject indexes to generate prior information Ap , where τ con-
trols how many pairwise relationships we select as known prior information for analysis, 
and [τN0] is the greatest integer that is less than or equal to τN0 . In our simulation, we 
set n = 120 , q = 6 , p = 30 . To gain a clear sight on how prior improves clustering on 
hierarchical heterogeneous data, we consider two levels of prior information with 
τ1 = 4% (Prior1) and τ2 = 8% (Prior2), and also adopt “no prior” case as a baseline.

To demonstrate the competitive performance of our proposed methods (denoted by 
PCH-NoPrior, PCH-Prior1, and PCH-Prior2), we consider some alternatives for com-
parison. To the best of our knowledge, there are no existing clustering methods produc-
ing a hierarchical structure in one step estimation. As mentioned before, we employ a 
two-step estimation method combing with convex clustering methods. In brief, we con-
duct a first convex clustering on all subjects with the first type of features and obtain the 
estimated rough clustering structure, and then apply the second convex clustering on 
subjects with the second type of features belonging to each rough cluster respectively. 
The convex clustering procedures of two steps can be directly implemented using R 
package cvxclustr, and two alternatives are (a) CvxClu-L1 , which is the above two-step 
convex clustering method with L1-penalty, and (b) CvxClu-L2 , which is the above two-
step convex clustering method with L2-penalty. The identification of estimated rough 
and refined clustering structure by our proposed methods is described in section “Hier-
archical penalties with prior information incorporated”, and the clustering results of 
alternatives are outputs by the two-step convex clustering procedure. With the above 
estimation, we adopt the following measures to assess performance. (1) Adjusted Rand 
Index (ARI) [38, 39], which is an indicator to compare the estimated rough and refined 
clustering structure with true situation. Denote TP/FP as the times of decision assign-
ing two subjects from same/different ground truth cluster to same estimated cluster, and 
TN/FN as the times of decision assigning two subjects from different/same ground truth 
clusters to different estimated clusters, then ARI is defined by

Note that ARI ∈ [−1, 1] . A higher value indicates better clustering performance, and a 
random clustering structure takes ARI close to 0. (2) Mean squared errors (MSEs) of β̂ 

and γ̂  , defined by 
(

1
nq

∑n
i=1

∥∥∥β̂ i − β∗
i

∥∥∥
2

2

) 1
2

 and 
(

1
np

∑n
i=1

∥∥γ̂ i − γ ∗
i

∥∥2
2

) 1
2 , respectively. In 

the rest of this section, we illustrate the details of simulation settings under different sce-
narios, and generate 100 replicates for each setting.

Gaussian clusters

Denote 1p as the p-dimensional vector with all elements being 1. Denote MVNp as the 
p-dimensional multivariate normal distribution. For the i-th subject, two types of fea-
tures are generated as follows, features X i ∼ MVNq

(
µX (Yi),�X

)
 and 

2(TP× TN − FP× FN)

(TP+ FP)(FP+ TN)+ (TP+ FN)(FN + TN)
.



Page 11 of 22Han et al. BMC Bioinformatics           (2024) 25:40  

Zi ∼ MVNp

(
µZ(Yi),�Z

)
 , where the mean µX (Yi) and µZ(Yi) are generated in Table 1. 

We consider µ1 = 1.2 and µ2 = 1.6 , which control the distance between cluster centers 
and bring different levels of difficulty to clustering on hierarchical data. In each simula-
tion, the covariance matrices �X = σ 2Iq and �Z =

(
σZjm

)
1�j,m�p

 is generated under 

three cases. Specifically, the diagonal case with σZjm = σ 2
I{j=m} , the auto-regressive 

(AR) case with σZjm = σ 2
I{j=m} + σ 2ρ|j−m|I{j �=m} , and the banded case with 

σZjm = σ 2
I{j=m} + σ 2ρI{|j−m|=1} , where we fix σ 2 = 1 and ρ = 0.3.

Our simulation results are summarized in Table 2 and Additional file 1: Tables S1–S3 
and S5, and also visualized in Fig. 1 and Additional file 1: Figures S1–S5. Throughout the 
whole simulations, our proposed method shows highly competitive performance. Addi-
tional file 1: Table S5 shows the mean of number of estimated clusters under all Gaussian 
clusters cases. It is observed that our proposed methods maintain a mean value close to 
the true value, validating high recovery of true number of clusters. Then take Simula-
tion 3 as an example. Table 2 displays the results for different levels of distance between 

Table 1 Three simulation settings under Gaussian clusters cases

(K1, K2) Hierarchical Structure µX (Yi) µZ (Yi)

Simulation 1 (2, 4) G∗
1 =

{
T ∗
1 ,T

∗
2

}
4
5
µ

(
−1

T
q
3

, 1Tq
3

, 1Tq
3

)T
, Yi ∈ {1, 2} µ

(
1
T
p
2

, 1Tp
2

)T
, Yi = 1

µ

(
−1

T
p
2

, 1Tp
2

)T
, Yi = 2

G∗
2 =

{
T ∗
3 ,T

∗
4

}
4
5
µ

(
1
T
q
3

, 1Tq
3

,−1
T
q
3

)T
, Yi ∈ {3, 4} µ

(
1
T
p
2

,−1
T
p
2

)T
, Yi = 3

µ

(
−1

T
p
2

,−1
T
p
2

)T
, Yi = 4

Simulation 2 (2, 6) G∗
1 =

{
T ∗
1 ,T

∗
2 ,T

∗
3

}
4
5
µ

(
−1

T
q
3

, 1Tq
3

, 1Tq
3

)T
, Yi ∈ {1, 2, 3} µ

(
−1

T
p
3

, 1Tp
3

, 1Tp
3

)T
, Yi = 1

µ

(
1
T
p
3

,−1
T
p
3

, 1Tp
3

)T
, Yi = 2

µ

(
1
T
p
3

, 1Tp
3

,−1
T
p
3

)T
, Yi = 3

G∗
2 =

{
T ∗
4 ,T

∗
5 ,T

∗
6

}
4
5
µ

(
1
T
q
3

, 1Tq
3

,−1
T
q
3

)T
, Yi ∈ {4, 5, 6} µ

(
1
T
p
3

,−1
T
p
3

,−1
T
p
3

)T
, Yi = 4

µ

(
−1

T
p
3

, 1Tp
3

,−1
T
p
3

)T
, Yi = 5

µ

(
−1

T
p
3

,−1
T
p
3

, 1Tp
3

)T
, Yi = 6

Simulation 3 (3, 6) G∗
1 =

{
T ∗
1 ,T

∗
2

}
4
5
µ

(
−1

T
q
3

, 1Tq
3

, 1Tq
3

)T
, Yi ∈ {1, 2} µ

(
−1

T
p
3

, 1Tp
3

, 1Tp
3

)T
, Yi = 1

µ

(
1
T
p
3

,−1
T
p
3

,−1
T
p
3

)T
, Yi = 2

G∗
2 =

{
T ∗
3 ,T

∗
4

}
4
5
µ

(
1
T
q
3

,−1
T
q
3

, 1Tq
3

)T
, Yi ∈ {3, 4} µ

(
1
T
p
3

,−1
T
p
3

, 1Tp
3

)T
, Yi = 3

µ

(
−1

T
p
3

, 1Tp
3

,−1
T
p
3

)T
, Yi = 4

G∗
3 =

{
T ∗
5 ,T

∗
6

}
4
5
µ

(
1
T
q
3

, 1Tq
3

,−1
T
q
3

)T
, Yi ∈ {5, 6} µ

(
1
T
p
3

, 1Tp
3

,−1
T
p
3

)T
, Yi = 5

µ

(
−1

T
p
3

,−1
T
p
3

, 1Tp
3

)T
, Yi = 6
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Fig. 1 Simulation results with Simulation 3 and µ1 = 1.2 . In each subfigure, horizontal axis displays our 
proposed methods and alternatives with three different covariance matrices, and longitudinal axis displays 
the mean of corresponding measurement values under 100 simulated replicates. The top-left subfigure 
displays 1− ARI of rough clustering structure, the top-right subfigure displays 1− ARI of refined clustering 
structure, the bottom-left subfigure displays MSE of β̂ , and the bottom-right subfigure displays MSE of γ̂

Table 2 Simulation results with (K1, K2) = (3, 6) and AR covariance structure in Gaussian clusters 
case. Simulation results include the mean and standard deviation (SD) of RI of rough and refined 
clustering structure, MSE of β̂ , and MSE of γ̂ under 100 simulated replicates with µ1 = 1.2 and µ2 = 1.6

Rough structure Refined structure

ARI MSE of β̂ ARI MSE of γ̂

Methods Mean SD Mean SD Mean SD Mean SD

µ1 = 1.2 CvxClu-L1 0.0167 0.0945 0.9052 0.0147 0.6312 0.1845 0.6794 0.1828

CvxClu-L2 0.0223 0.1089 0.9014 0.0337 0.6986 0.1455 0.5923 0.1350

PCH-NoPrior 0.8390 0.0650 0.7736 0.5258 0.8716 0.0505 0.3854 0.0547

PCH-Prior1 0.8998 0.0587 0.6436 0.4541 0.9209 0.0439 0.3321 0.0518

PCH-Prior2 0.9549 0.0697 0.5963 0.5105 0.9691 0.0358 0.2803 0.0517

µ2 = 1.6 CvxClu-L1 0.7697 0.2923 0.7092 0.3111 0.9032 0.0360 0.3416 0.0446

CvxClu-L2 0.8952 0.1742 0.5116 0.2348 0.8632 0.0455 0.3929 0.0498

PCH-NoPrior 0.9660 0.0357 0.8460 0.8235 0.9728 0.0292 0.2833 0.0534

PCH-Prior1 0.9760 0.0437 0.8073 0.8379 0.9835 0.0198 0.2562 0.0413

PCH-Prior2 0.9915 0.0144 0.7837 0.8417 0.9930 0.0114 0.2386 0.0289
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cluster centers with Simulation 3 and AR covariance structure. Compare to the alterna-
tives, our proposed method without any prior has higher ARIs of both rough and refined 
clustering structure, and lower MSEs, demonstrating our superior accuracy on cluster-
ing and parameter estimation despite the absence of prior information. In addition, with 
the assistance of valuable prior information, our proposed method achieves further sig-
nificant improvement, and is progressively strengthened with more prior information 
incorporation. Although all methods seems to perform well when the distance between 
cluster centers µ2 = 1.6 , the differences in various methods become apparent when the 
smaller distance between cluster centers makes clustering more difficult. Specifically, as 
shown in Table  2, in the level of µ1 = 1.2 , the mean of ARIs of the estimated refined 
clustering structure are 0.6312 (CvxClu-L1 ), 0.6986 (CvxClu-L2 ), 0.8716 (PCH-NoPrior), 
0.9209 (PCH-Prior1), and 0.9691 (PCH-Prior2), and even the alternatives fail in deter-
mining rough clustering structure. Fig. 1 further displays the results for different settings 
of covariance structures with Simulation 3 and µ1 = 1.2 . The results on diagonal and 
banded structure are observed to follow a similar trend as those on AR structure. In a 
whole, under the Gaussian clusters case, our proposed method has shown remarkable 
performance on recovery of hierarchical clustering structure and estimation of cluster 
centers, particularly when combining with the limited but beneficial prior information.

Half‑moon clusters

We consider a non-spherical case with two half-moon clusters. For each subject in the 
first rough cluster, the first two dimension features of X are generated by a half-moon 
cluster with radius 4 and centers (−ν, 0.2) , and the last q − 2 dimension features of X are 

generated by MVNq−2

(
4
5µ(−1,−1, 1, 1)T, Iq−2

)
 . For each subject in the second rough 

cluster, the first two dimension features of X are generated by a half-moon cluster with 
radius 4 and centers (ν,−0.2) , and the last q − 2 dimension features of X are generated 

by MVNq−2

(
4
5µ(1, 1,−1,−1)T, Iq−2

)
 . We add Gaussian random noise with mean zero 

and standard deviation 0.1 to each subject for the first two dimension feature of X . For 
the i-th subject, features Zi ∼ MVNp

(
µZ(Yi),�Z

)
 . We consider another two simulation 

settings under the case with two half-moon clusters. Simulations 4 and 5 consider that 
all settings are the same as Simulations 1 and 2 in Table 1 except feature X , respectively. 
Let �Z = Ip as the diagonal covariance structure and µ = 1 . In each simulation, we con-
sider the near and far centers of two half-moon clusters with ν1 = 2 and ν2 = 3.

Our simulation results are summarized in Table 3 and Additional file 1: Tables S4–S5, 
and also visualized in Fig. 2 and Additional file 1: Figures S6. Here, we omit the MSE of 
β̂ since the first two dimension features of X do not satisfy spherical structure. From 
Additional file 1: Table S5, it is observed that our proposed methods still maintain high 
recovery of true number of clusters. Table 3 and Fig. 2 demonstrate the results for dif-
ferent half-moon cluster centers with Simulation 4. It is evident that whether the half-
moon centers are near or far, there is no essential difference in outcomes. Under such 
non-spherical case, our proposed method still holds advantages over the alternatives 
and achieves outstandingly precise estimation, which are further enhanced with addi-
tional prior information. This can be observed by the mean of ARIs of the estimated 
rough clustering structure with near centers in Table 3, which are 0.7309 (CvxClu-L1 ), 
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0.7176 (CvxClu-L2 ), 0.7862 (PCH-NoPrior), 0.9383 (PCH-Prior1), and 0.9637 (PCH-
Prior2). This validates that our proposed method can perform effectively under diverse 
data distribution patterns.

Additional exploration

As described in section “Introduction”, combining analysis of hierarchical data may fur-
ther improve the understanding of cancer and other complex diseases. Although hierar-
chy driven by data is biologically sensible and methodologically feasible, it is still 
interesting and insightful to explore how well the proposed methods and the alternatives 
perform under a scenario violating hierarchy. As the Additional file  1: Figure S8 

Fig. 2 Simulation results with Simulation 4 in two half-moon clusters case. In each subfigure, horizontal axis 
displays our proposed methods and alternatives with near and far centers, and longitudinal axis displays 
the mean of corresponding measurement values under 100 simulated replicates. The left subfigure displays 
1− ARI of rough clustering structure, the middle subfigure displays 1− ARI of refined clustering structure, and 
the right subfigure displays MSE of γ̂

Table 3 Simulation results with (K1, K2) = (2, 4) in two half-moon clusters case. Simulation results 
include the mean and standard deviation (SD) of RI of rough and refined clustering structure, and 
MSE of γ̂ under 100 simulated replicates with near and far centers

Rough structure Refined structure

ARI ARI MSE of γ̂

Methods Mean SD Mean SD Mean SD

Near centers CvxClu-L1 0.7309 0.1689 0.7024 0.1596 0.3886 0.0907

CvxClu-L2 0.7176 0.1755 0.6696 0.1662 0.4303 0.0838

PCH-NoPrior 0.7862 0.1623 0.8483 0.1299 0.3092 0.0949

PCH-Prior1 0.9383 0.1412 0.9691 0.0336 0.2343 0.0787

PCH-Prior2 0.9637 0.1431 0.9890 0.0195 0.2174 0.0774

Far centers CvxClu-L1 0.7438 0.1709 0.7108 0.1621 0.3714 0.0856

CvxClu-L2 0.7272 0.1694 0.6717 0.1653 0.4176 0.0827

PCH-NoPrior 0.8981 0.1053 0.9300 0.0813 0.2639 0.0539

PCH-Prior1 0.9514 0.1043 0.9730 0.0295 0.2208 0.0409

PCH-Prior2 0.9872 0.0397 0.9903 0.0167 0.1969 0.0240
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suggests, we combine previous 3-rd and 4-th refined clusters to one refined cluster while 
retaining same rough clusters, thus generate 2 rough clusters and 5 refined clusters 
which violates hierarchy. The rough cluster centers are 4

5µ

(
−1

T
q
3
, 1Tq

3
, 1Tq

3

)T
 and 

4
5µ

(
1
T
q
3
, 1Tq

3
,−1

T
q
3

)T
 , while the refined cluster centers are µ

(
1
T
p
2
, 1Tp

2

)T
 , µ

(
−1
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p
2
, 1Tp

2

)T
,0p , 

µ

(
1
T
p
2
,−1

T
p
2

)T
 , and µ

(
−1

T
p
2
,−1

T
p
2

)T
 . Other settings are the same as those described 

above. The results are summarized in Additional file 1: Table S6. As expected, through-
out all simulation settings, the clustering performance is still acceptable. Under banded 
covariance structure and µ2 = 1.6 which makes clustering easier, the mean of ARIs of 
estimated rough/refined clusters are 0.8151/0.7337 (CvxClu-L1 ), 0.9648/0.6938 (Cvx-
Clu-L2 ), 0.9804/0.7397 (PCH-NoPrior), 0.9856/0.7407 (PCH-Prior1), and 0.9930/0.7445 
(PCH-Prior2), showing that our proposed methods perform well and clustering perfor-
mance is superior to alternatives. Under banded covariance structure and µ1 = 1.2 
which makes clustering difficult, our proposed methods are still acceptable while alter-
natives all fail in ARI.

We also note that prior information is not fully corrected all the times, and the influ-
ences on clustering results with partly wrong prior pairwise relationships deserve 
exploration. Therefore, we conduct additional simulations to find out how sensi-
tive mis-specified prior on the final clustering results. Recall Simulation 3 in Table  1, 
in each simulated data, we add mis-specified information into the previous generated 
prior, denoted by PCH-misPrior1 and PCH-misPrior2. Specifically, with prior cluster-
ing structure {F1, . . . ,FK } transformed by previous prior pairwise relationships Ap , we 
combine the first ten prior clusters with the largest sample size and ten prior clusters 
with the smallest sample size, respectively, which accounts for lots of wrong pairwise 
relationships. The results are summarized in Additional file  1: Table  S7. Take banded 
covariance structure and µ1 = 1.2 as an example, the mean of ARIs of estimated 
rough/refined clustering structure are 0.0217/0.7209 (CvxClu-L1), 0.0243/0.7439 (Cvx-
Clu-L2), 0.8388/0.8726 (PCH-NoPrior), 0.8984/0.9230 (PCH-Prior1), 0.9538/0.9657 
(PCH-Prior2), 0.7079/0.7669 (PCH-misPrior1), and 0.7889/0.8227 (PCH-misPrior2). 
Compared to fully correct information, mis-specified information does have impact 
on the clustering performance to some extent, but the ARIs (all larger than 0.7) are still 
acceptable. Our proposed methods are not too sensitive with incorrect prior and still 
superior to alternatives with higher ARIs.

Our proposed methods can be also directly applied to high dimensional scenarios. We 
adjust parameters as p = 120 , where p is equal to n, and other settings are the same 
as those described above. All results with µ1 = 1.2 are summarized in Additional file 1: 
Table S8. It can be clearly seen that our proposed methods still have competitive estima-
tion performance, even if alternatives may identify a random rough clustering structure. 
But in high dimensional settings, the computational expenses will increase significantly, 
presented by Additional file 1: Table S9. Roughly speaking, for analyzing one replicate by 
proposed framework, it takes about 5 min on a laptop with regular configurations. But in 
high dimensional setting with p = 120 , the computational time of our proposed frame-
work costs double as those with p = 30 , while the computational time of alternatives 
costs about ten times as those with p = 30 . In addition, we should particularly point 
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out that sparsity often coincides with high dimensional scenarios, hence the feature 
selection is needed when p is large. We recognize that our framework is not currently 
applicable to this scenario with sparsity, since we focus on hierarchical heterogeneous 
structure and prior pairwise relationships. Inspired by sparse clustering framework [11, 
34], our proposed methods can be modified with an additional spare group penalty to 
adapt high dimensional scenarios, and we will conduct further research in this area.

Real data analysis
The Cancer Genome Atlas (TCGA), organized by the National Cancer Institute (NCI) 
and the National Human Genome Research Institute (NHGRI), is a comprehensive 
resource that provides a wealth of genomic and clinical data on various cancer types. 
Researchers use TCGA data due to its exceptional quality, user-friendly accessibility, and 
profound scientific influence. One of the extensively studied cancer types within TCGA 
is lung adenocarcinoma (LUAD), which is a heterogeneous subtype of non-small cell 
lung cancer and accounts for a significant portion of lung cancer cases. In this section, 
we analyze the clinical imaging data and the omics data on LUAD, and all analyzed data 
are publicly available at the TCGA data portal (https:// portal. gdc. cancer. gov/ proje cts/ 
TCGA- LUAD). Note that recent studies have thoroughly conduct lung cancer heteroge-
neity using imaging data, yielding novel insights into disease biology and prognosis [40]. 
Similarly, heterogeneity analyses on omics data have also led to impactful biomedical 
discoveries, furthermore, it is evident that omics data-based analyses often complement 
rather than replace clinical imaging and other data [26].

In this study, the pipeline for extracting imaging features has been implemented in 
recent studies and briefly summarized in Additional file 1: Figure S9. One can refer to 
[41] and [42] for more detailed information on each step of process and quality con-
trol. For omics data, we focus our attention on mRNA gene expressions (over 20,000 
gene features). Considering the limitation of sample size and burden of estimation effi-
ciency, we adopt some dimension reduction techniques to enhance estimation reliability 
although the method is applicable to high-dimensional data. Specifically, we firstly use 
prescreening technique to remove meaningless genes, then concentrate on genes within 
the non-small cell lung cancer pathway (entry hsa05223 in KEGG). Then we use princi-
pal component analysis (PCA) to extract principal components, the first 20 components 
contributing majority of the variance are included for further analysis. We obtain clini-
cal imaging features and gene expression features measured for 355 patients, and only 
a small amount of them have additional helpful biomarkers sourced from the extensive 
and powerful TCGA project. The four collected biological indicators (FEV1 pre bron-
chodilator, FEV1 post bronchodilator, FEV1/FVC pre bronchodilator, and FEV1/FVC 
post bronchodilator) are crucial pulmonary function measurements in the clinical man-
agement of LUAD, important for assessing lung function, and vital tools in both diag-
nosis and treatment evaluation [43]. Since these measurements are shown to be helpful 
for clinically staging, we use traditional convex clustering method to extract useful prior 
clustering structure based on only a small amount of patients who have records on such 
four biomarkers. Then 123 prior pairwise relationships of 51 patients are transformed 
by the above prior clustering structure. Overall, the final analyzed data contains 6 
extracted clinical imaging features and 20 principal component features based on omics 

https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
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data measured for 355 patients, and 51 patients among them have 123 pairwise subject 
indexes as prior information.

We use the proposed method to conduct LUAD data analysis. The initial values gen-
eration and tuning parameters criterion are consistent with those in section  “Compu-
tational algorithm”. In our analysis, two rough clusters are identified, with sizes 203 and 
152, respectively. Moreover, four distinct refined clusters are identified, with sizes 158, 
45, 118, and 34, respectively, indicating that the two rough clusters are both split into 
two refined clusters. Detailed clustering information and the cluster centers estimation 
are available in Additional file 1: Table S10, suggesting that our proposed method is well-
applicable and the clustering analysis is rational. It is observed that the four clusters have 
significantly different centers, which also validates the necessity to perform refined hier-
archical analysis for subjects. We also apply the convex clustering methods to analyze 
LUAD data, which group lots of subjects into individual clusters respectively.

To further explore the clustering results and the biological significance of their hierar-
chical structure, we compare two extra clinical characteristics of the patients across the 
different clusters. We adopt disease free months (DFM) since initial treatment and over-
all survival in months (OSM) since initial diagnosis, sourced from TCGA project. These 
two metrics offer insights into treatment effectiveness and potential recurrence, and pro-
vide a comprehensive assessment of patients’ prognoses and the impact of treatments on 
their survival. ANOVA is employed to assess variations in the two metrics across esti-
mated patient clusters. For DFM, the suggested P-values are 0.0558 across rough clus-
ters and 0.0077 across refined clusters, respectively. For OSM, the suggested P-values are 
0.0169 across rough clusters and 0.0044 across refined clusters, respectively. All P-values 
suggest significant difference among the estimated clustering structure. Notably, P-val-
ues ( < 0.01 ) across refined clusters are remarkably smaller than those across rough clus-
ters, validating that refined clustering produces a more precise outcome with enhanced 
difference among clusters. It is especially noted that DFM and OSM are not included in 
the aforementioned heterogeneity analyses, as a result, there is no concern about over-
fitting. In brief, this analysis contributes to the validity of the estimated hierarchical het-
erogeneous structure.

Since unsupervised learning lacks real response variables and sample labels, we can-
not have a uniform criterion to measure the estimated clustering results against the real 
clustering structure. To further make comparison across different methods, we intro-
duce some new definitions. For a clustering structure containing n subjects, we define 
a function � which maps each subject to its corresponding clustering label, and then 
define the similarity measure between two clustering mapping �1 and �2 as

For an indirect evaluation, we examine the clustering stability, which shares the simi-
lar spirit of the stability selection in [44]. The concept underlying clustering stability is 
that an good clustering method should generate clustering structure that remains stable 
when subjected to slight perturbations across the whole samples. Specifically, we ran-
domly remove m subjects of the whole 304 subjects with no respect to any prior infor-
mation, and then analyzing the remaining 355−m subjects using our proposed method 

SI(�1,�2) =
2

n(n− 1)

∑

1�j<m�n
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and alternatives. We set m = 5, 10, 15 , and repeat this procedure R = 100 times. For 
the r-th replicate, denote the �1r and �2r as the new rough and refined clustering map-
pings, respectively, and denote �∗

1r and �∗
2r as the original analyzed rough and refined 

clustering mapping on remaining subjects, respectively. We calculate SI
(
�1r,�

∗
1r

)
 and 

SI
(
�2r,�

∗
2r

)
 for r = 1, . . . , 100 , the means of which demonstrate clustering stability of 

each method. Table 4 and Fig. 3 show the comparison between our proposed method 
and alternatives. Our proposed method exhibits significantly higher stability compared 
to the alternatives regardless of the number of randomly removed subjects. This sug-
gests that our method has a great advantage on resisting sampling perturbations in data 
distribution and yields a more stable clustering structure. Take the case with m = 5 sub-
jects removed as an example. As shown in Table 4, the reported mean similarity meas-
ure values for rough clustering are 0.7322 (CvxClu-L1 ), 0.6223 (CvxClu-L2 ), and 0.9159 

Table 4 Analysis of LUAD data. The results of mean and standard deviation (SD) of rough and 
refined clustering similarities by different methods under 100 replicates with m = 5, 10, 15 subjects 
removed

Rough Structure Similarity Refined Structure 
Similarity

Methods Mean SD Mean SD

5 subjects removed CvxClu-L1 0.7322 0.0332 0.6427 0.0288

CvxClu-L2 0.6223 0.0136 0.6631 0.0075

PCH 0.9159 0.0748 0.8005 0.0641

10 subjects removed CvxClu-L1 0.7159 0.0562 0.6335 0.0621

CvxClu-L2 0.6262 0.0214 0.6628 0.0099

PCH 0.8878 0.0788 0.7776 0.0714

15 subjects removed CvxClu-L1 0.7115 0.0553 0.6320 0.0592

CvxClu-L2 0.6376 0.0295 0.6647 0.0137

PCH 0.9382 0.0457 0.8025 0.0398

Fig. 3 Analysis of LUAD data. In each subfigure, horizontal axis displays alternatives and our proposed 
method, and boxplot displays clustering similarity values of 100 replicates. From the left to the right, the case 
with m = 5, 10, 15 for rough clustering structure, m = 5, 10, 15 for refined clustering structure are orderly 
displayed
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(PCH), the reported mean similarity measure values for refined clustering are 0.6427 
(CvxClu-L1 ), 0.6631 (CvxClu-L2 ), and 0.8005 (PCH). In addition, we also notice that the 
stability of the rough clustering surpasses that of the refined clustering, which is rea-
sonable since the number of rough clusters is smaller. Nonetheless, the refined cluster-
ing structure maintains excellent stability with a mean similarity value exceeding 0.75 
across all instances. Overall, these high stability values indirectly provide the validity of 
our proposed method.

Discussion
Clustering is often the first step done for data analysis of cancer and other complex dis-
eases. The identified subtypes can be used as an evidence for further therapies and other 
following analysis. Thus, it is important to develop efficient clustering method for com-
plex data structure of cancer. In this paper, a prior-incorporated clustering framework 
with hierarchical penalties is proposed to integrate two types of features and produce 
biologically meaningful hierarchical structure. Theoretically, we establish statistical 
consistency properties on identification of clusters and estimation of center param-
eters, providing a solid ground for our method. Since we model hierarchical penalties, 
our theoretical contributions differ from the existing literature, and present significant 
complexity and challenge. A new efficient algorithm based on ADMM is developed for 
implementing our method. Simulation studies have shown highly competitive perfor-
mance, exactly achieving progressive improvements with the assistance of prior infor-
mation. Additionally, simulation results also indicate that our method is better suited 
for non-Gaussian clusters data, achieving higher clustering accuracy in various scenarios 
compared to alternatives. The analysis of LUAD data, combing with clinical imaging 
data and omics data, demonstrates the practical value in cancer biology. Specifically, we 
have indeed achieved hierarchical structure, and there are significant differences on clin-
ical measurements among rough and refined clusters. Observed by P-values, the refined 
clustering structure provides a more significant difference among clusters, which implies 
that considering multi-level layers is necessary for a deeper exploration of the clustering 
nature behind biological data. Moreover, our method has maintained a remarkable sta-
bility compared to alternatives.

Despite the great achievements of our proposed method, there are still some poten-
tial problems. In our theoretical analysis, Theorem  1 is established under n ≫ q + p , 
the ultra high-dimensional setting is intractable but worth studying. Moreover, due to 
dimensional limitation, we use PCA for pre-processing in our real data analysis, but 
confirmed with drawbacks in some studies [45, 46]. Hence, to handle high-dimensional 
problems in future research, we aim to extend our framework to feature selection task 
with additional sparse group penalty. In our computational implementation, we adopt 
BIC-type criterion, which is a common tuning technique in heterogeneity analysis [30, 
31]. Some other tuning procedure is also suggested, such as cross validation and boot-
strapping on clustering stability [44, 47], which may lead to different analysis results. 
Difference between clustering results leading by tuning also deserves further study. 
Note that the ADMM used in our computational algorithm can be also replaced by 
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the alternating minimization algorithm (AMA; [48]). The efficiency and computational 
expenses of these algorithms deserve further investigation.

Furthermore, this work can serve as an inspiration for future research. The novel 
hierarchical penalties are not only applicable to imaging data and omics data, but also 
directly applied to any types of data with hierarchy, such as clinical and SNP data. The 
concept of clustering on hierarchical heterogeneous data can be also adopted in other 
clustering framework. Motivated by the innovative framework for fully utilizing prior 
pairwise relationships, one can extract and incorporate different kinds of prior infor-
mation in multiple ways, such as integrating information between different datasets 
studying the same cancer, sharing the similar information patterns between differ-
ent clustering methods. Additionally, the prior information can be extended to various 
types, such as certain samples not being expected to be assigned into the same cluster. 
Last but not the least, by minor modification on hierarchical penalties, our proposed 
method can be also extended to more intricate hierarchies with multiple layers.
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