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Abstract 

Background: Microbial communities play a crucial role in ecosystem function 
through metabolic interactions. Genome-scale modeling is a promising method 
to understand these interactions and identify strategies to optimize the community. 
Flux balance analysis (FBA) is most often used to predict the flux through all reactions 
in a genome-scale model; however, the fluxes predicted by FBA depend on a user-
defined cellular objective. Flux sampling is an alternative to FBA, as it provides 
the range of fluxes possible within a microbial community. Furthermore, flux sampling 
can capture additional heterogeneity across a population, especially when cells exhibit 
sub-maximal growth rates.

Results: In this study, we simulate the metabolism of microbial communities 
and compare the metabolic characteristics found with FBA and flux sampling. 
With sampling, we find significant differences in the predicted metabolism, includ-
ing an increase in cooperative interactions and pathway-specific changes in predicted 
flux.

Conclusions: Our results suggest the importance of sampling-based approaches 
to evaluate metabolic interactions. Furthermore, we emphasize the utility of flux sam-
pling in quantitatively studying interactions between cells and organisms.

Keywords: Genome-scale metabolic modeling, Microbial communities, Flux sampling, 
Cell metabolism

Background
Microbes are essential components of all living ecosystems, and the metabolic inter-
actions between them significantly contribute to the function of these ecosystems. 
Microbe-microbe metabolic interactions affect nutrient cycling, energy production, and 
the maintenance of microbial diversity [1–3]. Though our understanding of those micro-
bial communities is aided by metagenomics and in vitro analyses, we lack a quantitative, 
mechanistic understanding of the interactions between members of microbial consortia 
[4, 5].

Genome-scale modeling has emerged as a promising method by which we can probe 
an organism’s metabolic states, behaviors, and capabilities, either alone or within a com-
munity [6–12]. Genome-scale metabolic modeling is a mathematical approach that uses 
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the known biochemical reactions of a species to reconstruct a genome-scale metabolic 
network. Genome-scale models (GEMs) provide a holistic view of an organism’s metab-
olism and can be applied to gain insight into the metabolic physiological processes. 
A GEM consists of a stoichiometric matrix that characterizes the interconversion of 
metabolites by the set of metabolic reactions, linked with a set of Boolean expressions 
describing the gene-protein-reaction relationships [13].

As a mathematical representation of an organism’s metabolic network, GEMs can be 
analyzed to predict the flux through all reactions in the network. Furthermore, given 
the ubiquity of microbial activity in biology, there is substantial value in using metabolic 
modeling to understand the emergent behaviors and abilities  of microbial communi-
ties. For example, GEMs have been applied to understand the metabolic interactions of 
a microbial community in various contexts, including the human gut microbiota and in 
environmental bioremediation [14–19].

Most metabolic modeling of microbial interactions is performed in one of three 
ways [20, 21] (Fig. 1): (1) compartmentalized model, wherein two metabolic models are 
merged into a single stoichiometric matrix with a shared compartment representing the 
extracellular space [22], (2) lumped model (also called “enzyme soup”) approach [23–25], 
where all metabolites and reactions are pooled into a single model in proportion to the 
community makeup, and (3) costless secretion, where models are separately simulated 
while dynamically and iteratively updating the simulated environment by adjusting the 
models’ exchange reactions and available nutrients based on metabolites that can be 
secreted without decreasing growth ("costless" metabolites) [26, 27].

Each of these approaches has shown promise, and selection of which approach to use 
heavily depends on what data and models are available, and on the intended goal of the 
analysis. As currently implemented, each method uses traditional flux balance analysis 

Fig. 1 Approaches for genome-scale metabolic modeling of communities. Metabolic modeling of microbial 
communities is largely performed by selecting metabolic models of the human gut microbiome from 
AGORA, generating community models using A Compartmentalized model: a single stoichiometric matrix 
representing the two models joined by a lumen compartment wherein metabolites can be freely exchanged; 
B Lumped model: a single stoichiometric matrix representing the union of each individual model’s reactions, 
thereby ignoring all separation between cells; and C Costless secretion: individual stoichiometric networks for 
each model, whose exchange reactions are constrained to reflect the shared extracellular media
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(FBA), a linear programming technique that predicts the flow of material through the 
metabolic network [28–30]. FBA depends on the maximization of an objective function, 
and maximizing biomass production is most commonly used. Optimizing for biomass 
assumes species are entirely oriented towards maximal growth, ignoring the multiplic-
ity of achievable sub-optimal phenotypes [31]. When simulating the metabolism of a 
community, this assumption can disregard the variety of metabolic interactions that the 
microbes may carry out that do not lead to optimal growth. Furthermore, the selection 
and definition of the best objective function substantially affect model predictive power 
and generated results [32–35].

Flux sampling has been used as an alternative to FBA to predict flux distributions. 
Excitingly, flux sampling may provide a more holistic and accurate description of the 
cell’s flux distribution [36–40]. This is done by randomly generating many flux values 
for each reaction in a genome-scale metabolic model, while still adhering to defined 
constraints, such as mass or energy balance and thermodynamic restrictions. Flux sam-
pling employs Markov chain Monte Carlo methods to estimate cellular flux and generate 
many feasible metabolic flux distributions. Flux sampling estimates the most probable 
network flux values, enabling statistical comparisons of the flux distributions. Nota-
bly, the approach does not require the user to specify a cellular objective, thus reducing 
user-introduced bias on model predictions and exploring the entire constrained solution 
space. Flux sampling therefore enables studies of phenotypic heterogeneity, as a single 
constrained model can generate a range of flux predictions. However, this approach has 
not been widely employed in analyses of microbial communities. Furthermore, com-
parisons between FBA-based and sampling-based analyses of communities are currently 
lacking.

In this work, we apply flux sampling to existing analyses of microbial metabolic inter-
actions, showing the range of potential consortia-wide flux distributions achievable with 
genome-scale modeling. We find significant differences in model predictions between 
FBA and flux sampling, with substantial heterogeneity across sampled simulations. 
We see emergent patterns at sub-maximal growth rates, such as increased cooperation 
between microbes in anaerobic conditions compared to oxygen-rich environments. In 
total, we systematically evaluate the impact of flux sampling and emphasize the utility of 
this approach to study metabolic interactions.

Methods
GEMs

Magnúsdóttir et al. generated the AGORA dataset, a collection of 773 (and later, 7206 
in AGORA2) genome-scale metabolic models comprising the human gut microbiome. 
These models were simulated to understand their metabolic behavior when grown in 
pairwise combinations, using the approach developed by Kiltgord and Segre [17, 41, 
42]. Notably, the analysis constrained the models with distinct in silico diets and aerobic 
states, in the presence or absence of oxygen.

We selected 75 of the AGORA models, analyzed all unique pairwise combinations 
(2775 in total), and implemented three distinct approaches to study metabolic interac-
tions between microbes. In this way, we demonstrate the utility of each approach, com-
pared to flux sampling, while balancing the required computational resources.
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Flux sampling

We use the constrained Riemannian Hamiltonian Monte Carlo (RHMC), which has 
recently been shown to be substantially more efficient than prior sampling algorithms 
[43]. Our implementation of the algorithm was accomplished with the COBRA toolbox 
v3.0 using the Gurobi solver. We used 200 steps per point, 1000 samples per run, paral-
lelized with four workers. The code was simulated in MATLAB, on a 2018 iMac running 
the MacOS 12 operating system. All uptake rates and media components were left con-
sistent with the original manuscripts, and the sampling approach was maintained with 
all three techniques.

When generating FBA optimization solutions with which to compare the sampling, 
we again kept the simulated media (maximum uptake rates) described in the original 
papers. We note that those prior publications only analyzed a single optimal FBA solu-
tion. Therefore, to be more complete, we expanded their baseline analyses by generating 
an ensemble of equally optimal growth rates with the COBRA Toolbox’s “enumerateOp-
timalSolutions” function.

Compartmentalized Modeling

The pairwise interaction approach used by Magnúsdóttir and coworkers is as follows 
[17]:

Step 1. Select two models.
Step 2. Introduce the lumen compartment, which joins the two models into a merged 
model such that the two microbes can secrete and uptake metabolites.
Step 3. Constrain the model by adjusting exchange reaction bounds to reflect the 
chosen diet and extracellular conditions.
Step 4. Simulate monoculture by “shutting off” one of the two models by inactivating 
all its reactions (setting the reaction flux upper and lower bounds to 0). Then simu-
late the active individual model by optimizing for growth.
Step 5. Shut off the second individual model by inactivating all its reactions. Then 
simulate the active individual model by optimizing for growth.
Step 6. Restore the activity of both individuals in the merged model and optimize 
each model’s growth separately. This predicts growth while allowing the exchange of 
metabolites across the lumen, simulating co-culture.
Step 7. Compare paired growth with the individual growth simulations of steps 4 and 
5. If paired growth was 10% higher or lower than individual growth, the model was 
considered to grow faster or slower, respectively, in co-culture than alone.

We replaced the FBA optimization in steps 4, 5, and 6 with flux sampling as an alter-
native way to predict cellular flux. Additionally, we added a basal growth rate for each 
model, defined as 10% of the model’s individual growth rate achieved by FBA optimiza-
tion. This ensured a minimum amount of growth and excludes the possibility that one 
species has no growth at all. We then used the RHMC algorithm and generated 1000 flux 
distribution samples at each step. We therefore had a range of reaction fluxes (including 
growth rates) for both microbes, in mono- and co-culture, with and without oxygen, and 
with two different simulated diets (Western and High Fiber).
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Lumped model

Blasco et  al. extended the AGORA set of metabolic models by adding degradation 
pathways that allow for the simulation of the effect of many human diets on the activ-
ity of the gut flora [25]. After adding those metabolic reactions involved in degradation, 
they merged all individual microbe models into a supra-organism model. By pooling all 
GEMs, they made a single lumped model comprising all metabolic reactions and metab-
olites in the population.

This method is often called a "mixed-bag" or "bag-of-genes" approach. It is the simplest 
form of genome-scale modeling of bacterial communities, as it does not assume any 
separation between the species’ metabolic pathways and involves the consolidation of 
ubiquitous metabolic reactions [44]–47]. By doing so, the community can be viewed as a 
single entity, and thus be analyzed with approaches normally applied to single microbial 
models. Despite its simplicity, the approach has been effective at predicting the meta-
bolic behavior of consortia while minimizing computation time and reducing model 
size.

The authors used flux variability analysis (FVA) to identify and correct blocked or 
low-confidence reactions and identify the microbial metabolic byproducts produced by 
the microbiota’s fermentation of lentils. However, the model was not simulated to pre-
dict species growth within the community. We therefore used their lumped model and 
applied the flux sampling method to predict consortia behavior.

With the mixed-bag approach, it is common to merge all individual model biomass 
reactions into a supra-organism growth equation. Alternatively, one can maintain each 
model’s biomass reaction within the pooled network, as Blasco et  al. did. Doing so 
allows for the prediction of each microbe’s growth, in the context of the larger commu-
nity. Thus, we kept the individual biomass reactions for each species in the model for 
our analyses and did not create a new lumped biomass representing total community 
growth.

We generated flux samples of the lumped model and compared them to the case 
where each species’ biomass reaction is optimized alone and to the case where the pop-
ulation’s overall growth is maximized. We calculated the “optimal community growth 
rate” by finding the maximal growth rate that was possible for all models to achieve 
simultaneously and setting the lower bound of the biomass reaction in each model to 
that flux value. Thus, the “optimal community growth rate” can be viewed as the indi-
vidual biomass reactions’ flux predictions with lower bound shared across all biomass 
reactions. Unfortunately, current computing power and existing algorithms do not allow 
for optimizing 531 reactions simultaneously (the number of biomass equations in the 
Blasco lumped model). Therefore, this alternative is the best feasible method to obtain 
an approximation for optimal community growth.

Costless secretion

Pacheco et al. showed that the secretion of "costless" metabolites (species that are freely 
secreted as the byproduct of a cell’s metabolism, without inhibiting fitness) are critical 
drivers of the metabolic interactions between cells [48]. The approach is a quasi-dynamic 
method, as it maintains the modeling assumption that the system is at a steady state 
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but successively updates the environment shared by the two simulated cells. The method 
calculates the growth of each model at each simulation iteration, finds the secreted 
metabolites, then updates the simulated media until the media is stable.

The costless growth approach is as follows:

Setup. Select a simulated minimal media (i.e., DMEM, M9, SSM, etc.), and define the 
metabolites that comprise that medium. Select N models to be simulated (i.e., two 
models for pairwise interactions, 3 models to simulate a community of 3 microbes, 
etc.) Select M metabolites to be provided alone or in addition to the minimal media 
(list the carbon sources to be provided, and choose m to be given at a time). Define 
whether the model will be simulated in an aerobic or anaerobic environment.
Step 1. Simulate a minimal media condition by setting the upper bound of all 
exchange reactions to 0 unless the reaction exchanges metabolites that are contained 
in the media.
Step 2. Provide carbon source(s) m by setting the upper bound(s) of exchange 
reaction(s) for the corresponding metabolite(s) to be unconstrained. We used the 
same settings used in the costless secretion paper. Namely, growth-limiting carbon 
sources were set with a max of 10mmol x  gDW-1 x  h-1, in order to maintain bounded 
and feasible growth rates.
Step 3. Simulate the models by optimizing for growth.
Step 4. Record the resulting flux values for the models’ transport reactions; if a 
metabolite is predicted to be exported into the media, then explicitly add that metab-
olite to the simulated media (again, by adjusting the models’ upper bound for that 
metabolite’s import reaction).
Step 5. Repeat steps 3-4 until no additional metabolites are secreted, arriving at the 
simulation’s final predicted growth rates.
Steps 1-5 can be repeated for a different carbon source (or combination of carbon 
sources) added to the simulated media.

We adjusted step 3, replacing FBA optimization with flux sampling using the RHMC 
algorithm, simulating pairwise growth with a single metabolite source. Because the cost-
less secretion approach repeats the model simulation steps until media convergence, we 
introduced a thresholding term to consolidate the results from each simulation round. 
In particular, we define the set of secreted metabolites (and thus update the extracellular 
media) based on whether all, most, or any of the sampled flux distributions show that 
a metabolite is secreted. For example, if metabolite m was secreted in 200 of the 1000 
generated flux distributions, it would only be added to the extracellular media in the 
“any” cutoff simulation for the next round. If secreted in 750 of the 1000 distributions, 
it would be added to the “any” and “most” analyses. For the “all” cutoff, that metabolite 
would only be added to the media for the following iteration if all 1000 flux distributions 
showed that metabolite being secreted.

Thresholding is currently required because of the computational time needed for 
flux sampling. Without thresholding at each simulation, the number of sampled points 
needed will increase exponentially with each round of expansions. We use each cutoff to 
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demonstrate and assess the introduced variability, allowing us to compare the outputs 
with each set threshold.

We extended the analysis of Pacheco et al. by comparing our sampling approach with 
an ensemble of FBA solutions, as FBA can provide multiple alternative optimal solu-
tions. With the ensemble of optimal FBA solutions, we performed a similar thresholding 
for adding a metabolite to the next round of simulation.

Characterizing microbial interactions

After estimating the reaction fluxes with the three methods described above (with FBA 
or flux sampling), we categorized all possible combinations of sampled growth rates. 
Here, we followed the classes previously described: parasitism, commensalism, neutral-
ism, amensalism, competition, or mutualism [17]. The established interaction types com-
pare the individual growth rates of each model with their corresponding growth rates 
when simulated together. We describe the possible types of interactions below. If both 
models grew more in co-culture than alone, the interaction was classified as mutualism. 
If both models grew less in coculture than monoculture, the interaction was classified as 
competition. If neither model’s growth rate changed when introduced to coculture, the 
interaction was classified as neutralism. If the first model grows less in co-culture than 
alone, and the second grew more in co-culture than alone, then the interaction was clas-
sified as parasitism. If the first model grows more in co-culture than alone, and the sec-
ond’s growth was unchanged, then the interaction was classified as commensalism. If the 
first model grows less in co-culture than alone, and the second’s growth was unchanged, 
then the interaction was classified as amensalism. The range of possible outcomes are 
also shown in the figure legend of Fig. 2A.

Additionally, we ordered the sampled growth rates to identify distinct interaction 
regimes between two microbes. That is, we found the range of different interaction types 
as a function of the different growth rates. We note that the interaction regimes pre-
dicted here are different than the Pareto analysis performed by Magnúsdóttir et al., as 
calculation of the Pareto front relies on biomass optimization with FBA while iteratively 
updating and fixing growth rates for each model [17].

Results
Compartmentalized modeling

Magnúsdóttir et  al. developed AGORA and AGORA2 as resources for semi-auto-
mated generation of genome-scale metabolic models [17, 41]. They applied the set of 
models to predict the pairwise interactions between microbes, showing how the indi-
viduals’ metabolic potential drives emergent behavior of the pair. However, their pre-
dictions of metabolic activity assume that each microbe is oriented towards achieving 
maximal growth. We introduced flux sampling to the pairwise simulation frame-
work, thus permitting any feasible flux distribution from the confined flux space to be 
included in the assessment of metabolic interactions. We randomly selected 75 indi-
vidual models. We then manually augmented the subset of selected models to ensure 
that the list of 75 models spanned the range of microbial taxa in the AGORA dataset. 
We considered all possible pairwise combinations of the 75 models, generating 2775 
unique pairs. Each set of paired models was sampled 1000 times, with and without 
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metabolite exchange between the microbes being allowed. As described in the Meth-
ods, the interaction type was calculated for the anaerobic and aerobic states with two 
unique simulated diets.

For all combinations of models, we calculated the total percentage of each interac-
tion type, shown in Fig. 2A. As expected, differences exist between the optimization and 
sampling-based analyses. Namely, antagonistic interactions (competition, amensalism, 
and parasitism) tend to make up a smaller percentage of the entire set with sampling 
instead of optimization (61% compared to 74%). There is an increase of 11% in posi-
tive and net-neutral interactions (commensalism, neutralism, and mutualism) with sam-
pling compared to optimization-based analysis. Cases of neutralism increased from 6 
to 18%, and frequency of mutualism increased from 7 to 13%. The higher frequency of 
cooperation is particularly prevalent with anaerobic analyses, where cooperative interac-
tions increased from 30 to 44%. Previous work has highlighted that anaerobic conditions 
induce mutualism; this effect is notably amplified with sampling compared to simula-
tions maximizing biomass [22]. When sampling the possible fluxes of anaerobic condi-
tions, there is a higher frequency of non-inhibitory relationships. In particular, there is a 
substantial reduction in parasitism with a nearly equivalent increase in neutralism.

Furthermore, we see an increase in symmetrical interactions (mutualism, neutralism, 
and competition; from 25 to 47%). This result suggests that without orienting all metab-
olism towards optimal growth, a community of microbial species may be more inclined 
towards population stability. This is because abundances tend to remain steady when 
primarily exhibiting those three interaction motifs [49, 50]. Importantly, the trends of 
increased anaerobic cooperation and increased symmetrical interactions are found irre-
spective of diet constraints. This suggests that the submaximal predicted growth rate 
that is allowed with sampling, and not the models themselves or extrinsic factors (such 

Fig. 2 Pairwise analyses of the AGORA/AGORA2 set of models. A We simulated 2775 pairs of metabolic 
models, on two simulated diets, with and without the presence of oxygen, and calculated the expected 
interaction type. Interactions are defined and colored according to the labels on the far right. Expected 
interaction type when pairing Enterococcus faecalis and Prevotella disiens B and Bacteriodes celiilosilyticus and 
Pseudomonas montelli C and sampling a range of growth rates. D The community growth rate for all pairs 
considered in (A), across all four growth conditions, relative to the pair’s summed growth rate achieved via 
FBA. Because the requisite basal growth rate for sampling was 10% of the FBA optimal solution, the percent 
fold change ranged from 10 to 100%
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as the nutrients provided), is driving the observed outcomes. In order to ensure that 
the emergence of the predicted microbial interaction motifs was due to the sampling 
approach and not to selection of low growth rate pairings or competition that drove one 
of the species to die off, we calculated the summed growth rates of each model pair con-
sidered, and across all four growth conditions. We compared this “community growth 
rate” for each pair obtained from sampling to that predicted by FBA (Fig. 2D). On aver-
age, the summed growth rates predicted with sampling were below that obtained with 
optimization. However, there were some cases where the results from the sampling 
approach matched the FBA-derived maximal growth rate.

Because flux sampling gives a distribution of growth rates and the corresponding flux 
distributions enabling that growth, it is possible to calculate the expected pairwise inter-
actions likely for each combination of individual growth rates. We ranked the sampled 
growth rates for each microbe and calculated the most commonly predicted paired 
growth rate, thus giving interaction types for each growth rate. The sampling-based 
approach highlights the variety of interactions possible between two microbes, espe-
cially given variation in simulated conditions. Figure 2 shows this analysis for two sets of 
paired microbes, represented similar to chemical phase diagrams. The x- and y-axes rep-
resent the individual sampled growth rates, and their intersection is colored according 
to the most likely expected metabolic interaction motif. Figure 2B shows the pairwise 
interactions of Enterococcus faecalis TX2134, a gram positive nonmotile microbe, and 
Prevotella disiens JCM 6632, a gram negative bacilii-shaped bacterium. Figure 2B shows 
the interactions of Bacteriodes celiilosilyticus and Pseudomonas montelli, two gram-neg-
ative and rod-shaped microbes. We show these calculations for four distinct extracellu-
lar conditions: Western and high fiber diets, with and without oxygen.

When simulating the interactions of the Enterococcus and Prevotella strains in Fig. 2B, 
five distinct types of interactions are possible, depending on the simulated environment 
and each species’ growth rate. Anaerobic states (columns 1 and 2) show a predominance 
of commensalism or mutualism, though parasitism and amensalism are expected when 
Prevotella is rapidly proliferating. In the presence of oxygen (columns 3 and 4), there 
are several diet-independent trends: low growth of both microbes causes commensal-
ism; high Enterococcus and low Prevotella growth rates cause parasitism; low Enterococ-
cus and high Prevotella growth rates cause amensalism; and high growth of both causes 
competition. At intermediate growth rates, the effect of diet is more apparent, as West-
ern diet constraints drive amensalism and high fiber constraints push the interaction 
toward commensalism, parasitism, or amensalism.

Similar insights can be gained when analyzing the interactions between Bacteroides 
and Pseudomonas. For example, the anaerobic high fiber condition is relatively invari-
ant, as the two microbes show parasitism at nearly all individual growth rates. Alterna-
tively, there is a large set of potential outcomes when simulating an anaerobic state with 
a Western diet; the individual microbe growth rates can elicit widely distinct interaction 
motifs. It is possible to see a single microbe "dominate" or drive the observed interaction: 
in the oxygen-rich simulations, changes in Pseudomononas growth determine the out-
come, largely independent of the Bacteriodes growth rate. Similar analyses can be per-
formed for all combinations of models.
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Finally, we propose that this approach can be used to probe the effects of a pheno-
typically heterogeneous population of genotypically identical microbes. We selected the 
Enterococcus faecalis model and paired it with itself in an anoxic and Western diet-fed 
environment. This simulates a “clonal population”, and the results are shown in Addi-
tional file 1: Fig. S1. The addition of a second copy of the same model generally led to a 
mutualistic benefit, with the exception of combinations of highly divergent individual 
growth rates (i.e., near the borders of the plot).

In summary, the sampling-based approach highlights the wide range of  predicted 
interactions possible between two microbes, especially given variety in the simulated 
conditions.

Lumped model

By pooling metabolic reactions, it is possible to generate a single GEM that represents 
community metabolic activity. The lumped GEM can then be analyzed using the same 
constraint-based approaches typically utilized for single-species models. Though the 
technique removes all separation between microbes, it can be a useful approach for 
assessing the activity and potential of the community. However, all analyses of such "bag 
of genes" or "enzyme soup" approaches have explicitly assumed through the assigning of 
an objective function, that the community aims to maximize growth. No studies have 
assessed the effect of flux sampling on the community metabolic state. We selected to 
study the impact of flux sampling using the AGREDA pooled model, which combined 
538 AGORA models into a single metabolic network. We analyzed the lumped model 
with three distinct approaches: (1) iteratively setting each individual’s biomass reac-
tion as the objective and then solving the FBA problem (optimization), (2) performing 
flux sampling on the network’s flux solution space (flux sampling), and (3) finding the 
maximal rate at which all microbes can simultaneously grow, then sampling the solution 
space when that value is set as the lower bound for each microbe’s growth rate (termed 
an “optimal community”). These analyses allowed us to compare the flux distributions 
achieved through FBA, flux sampling, and flux sampling of the “best growth state” of the 
microbial community.

When comparing flux sampling of the network with FBA, we first assessed the vari-
ation in pathway fluxes to identify large-scale metabolic shifts. Interestingly, flux sam-
pling was not equally influential across all pathways but disproportionately affected 
particular subsystems. Figure 3A shows the median normalized flux value through each 
pathway predicted by sampling (y-axis) and the median flux value through the pathway 
when individually optimizing each of the 531 biomass reactions in the model (x-axis). 
That elucidates parts of the network that may be more influential and impactful in com-
munity activity when separated from the requirement of maximizing cellular growth. 
Notably, the thiamine metabolism, terpenoid backbone synthesis, tannin degradation, 
pyrimidine synthesis, and NAD metabolism pathways had substantially higher fluxes 
in the sampling approach comp. A similar plot comparing the community-constrained 
sampling with the FBA approach is shown in Additional file 1: Fig. S2. As an illustra-
tive example, we plot the individual fluxes through the NAD metabolism subsystem 
obtained by the three techniques used to predict reaction flux (Fig.  3B). Maximiza-
tion of biomass causes consistently low pathway flux, while unconstrained or optimal 
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community-constrained sampling predicts a wider range of flux values that are higher 
compared to the fluxes predicted when biomass production is maximized. The case with 
optimal community-constrained sampling produces slightly elevated pathway flux com-
pared to unconstrained sampling.

At the reaction level, differences emerge between the three community analysis meth-
ods. We compared the flux distributions for each reaction, calculating the bi-directional 
KL divergence values [51] (Fig. 3C). We classified the difference in the median fluxes for 
each reaction for two analysis methods as low, medium, and high divergence. This cal-
culation revealed that very few (76 of the 5499 reactions; black points) show close align-
ment between unconstrained flux sampling and optimization of biomass [38, 40]. The 
predicted flux through a majority of reactions (86%; orange points) is “widely divergent”, 
between the two approaches. This indicates substantial differences between the optimal 
growth state and the total solution space. Interestingly, a metabolite-centric view based 
on median metabolite flux-sum analysis shows similar turnover rates for the metabolites 
across the two analysis methods (Fig. 3D). We identify a small number of metabolites 
whose turnover varies widely between the two conditions, including NADP, NADPH, 
coenzyme A, UDP, and UDP-glucose (higher with optimization) and water (higher with 
sampling). However, overall, our analyses indicate that while pathway fluxes are higher, 
the net production or consumption of individual metabolites is approximately the same 
between FBA- and sampling-based approaches.

Fig. 3 Pooled Model Analyses. A Median pathway flux values predicted by unconstrained flux sampling 
compared to optimization of biomass. Subsystems that have significantly different median fluxes are labeled. 
B Reaction fluxes for the NAD metabolism pathway predicted with each technique. C KL divergence between 
the distribution of fluxes achieved via optimization and sampling. D Comparison of the flux-sum value for 
each metabolite for unconstrained flux sampling and optimization of biomass
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Costless secretion

Pacheco et al. argued that the secretion of "costless" metabolites (byproducts of the cell’s 
metabolism that are secreted without causing a loss of fitness) might be a primary driver 
of interspecies interactions within a microbial community [48]. In order to study this 
metabolic cross-feeding, they developed a pipeline where two GEMs are constrained to 
a minimal media condition, then iteratively simulated, while updating the media with 
the costless metabolites until convergence. By using FBA, the method assumes that cells 
grow maximally and that all metabolites secreted enable maximum growth. It is pos-
sible that costless metabolites predicted to be secreted depend on the feasible growth 
rate. Therefore, while the FBA-based is valuable, it may not fully describe the simulated 
system. By allowing submaximal growth rates and alternative maxima through sampling, 
we demonstrate increased metabolic latitude for microbial communities.

A primary output from the costless secretion analysis is the number of iterations of 
model simulation until media convergence. We simulated 648 cases: pairwise combina-
tions of 3 microbes, with and without oxygen, with 108 distinct fuel sources provided to 
supplement the minimal media. We assessed the number of iterations required to reach 
a steady media. Interestingly, for both the aerobic and anaerobic conditions, we see an 
increase in the number of rounds of model simulation with sampling compared to the 
base analysis with FBA. This makes sense, as a loosened restriction of growth rate allows 
for heterogeneous simulation results, which include a greater possible set of metabolites 
to be secreted and successive changes in the simulated media. That trend of more itera-
tions with sampling remains even when we implement different cutoffs for whether a 
secreted metabolites is present in all, most, or at least one of the sets of sampled meta-
bolic flux distributions (Fig. 4A). Interestingly, the cutoff selected has much less of an 
effect than whether FBA (leftmost column) or flux sampling (right three columns) is 
chosen. We predict a much higher number of iterations in the anaerobic condition, with 
up to 11 iterations of media change, compared to at most 3 rounds in the aerobic state.

We see an increase in the number of metabolites secreted by the microbe pairs with 
flux sampling compared to FBA, as shown in Fig. 4B. There is an apparent increase in the 
number of predicted costless metabolites when the threshold is progressively loosened 
(from all to most to any). That is reasonable, as there are outliers or secreted metabo-
lites that are particular to one or only few sampled flux distributions. We again predict 
an increase in secreted metabolites when simulating oxygen-free environments. Specifi-
cally, for anerobic conditions, more unique metabolites are secreted as part of the cells’ 
metabolic flux patterns than in the oxygen-rich environments for the two most stringent 
cutoffs (all and most).

Pacheco established distinct interaction types, categorized based on the secretion and 
uptake rates of metabolites, using the following naming convention. The first letter rep-
resents the type of interaction: non-interaction (N), where no used media metabolites 
come from either model; commensalism (C), characterized by unidirectional exchange; 
and mutualism (M), where metabolites are interchanged between the two models. Fol-
lowing this letter designation, a numerical value is used to represent the number of car-
bon sources added to the environment. Finally, the letters a or b are used to specify the 
absence and presence of competition, respectively. As an example, N1a would describe a 
simulation where a metabolite is taken up by only one cell in the presence of one carbon 
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source. We used the same naming convention to classify our simulations (Fig.  4C). 
Firstly, with flux sampling, we notice substantially fewer instances of simulations where 
neither microbe achieved growth (204 compared to 114 of the 324 aerobic simulations 
and 246 compared to 114 of the 324 anaerobic simulations). At first glance, this is a 
counterintuitive result, as one might expect that it is more likely to achieve some growth 
without optimizing for it, rather than when attempting to maximize biomass. However, 
the result highlights the benefit of flux sampling. That is, due to the metabolic flexibil-
ity simulated with sampling, it is more likely that a microbe would secrete a metabolite 
beneficial for the other and thus enable the other cell to grow. In contrast, when each 
microbe is oriented towards maximizing its own growth, possibly at the expense of all 
other cellular goals (via FBA), that emergent interactive behavior is less likely. We also 
note differences between the aerobic and anaerobic conditions, with the aerobic sam-
pling simulations producing more instances of cooperative mutualism (M1a: 90 with 
aerobic sampling vs 5 with anaerobic sampling), and the anaerobic simulations resulting 
in more non-competitive non-interaction (N1a: 91 with anaerobic sampling vs 0 with 
aerobic sampling).

Discussion
Phenotypic metabolic heterogeneity, even in the monoculture of a genotypically uniform 
population, is known to have a substantial effect on observed community outcomes. 
However, the effects of this heterogeneity have been understudied, despite the rapid and 
substantial increases in modeling efforts at the genome-scale. In addition, microbes have 
been shown to exhibit sub-maximal growth, but this has not been widely studied using 
GEMs. While phenotypic heterogeneity and sub-maximal growth dynamics have been 
studied in individual GEMs of microbial activity, these two phenomena have not been 

Fig. 4 Costless secretion analysis. A Number of iterations required to achieve a stable media, for the aerobic 
(left) and anaerobic (right) states for optimization of biomass or different cutoffs for flux sampling (all, most, 
any), plotted as a percentage of all simulations. B Number of metabolites secreted for optimization of 
biomass or with distinct cutoffs for flux sampling (all, most, any) for anaerobic and aerobic conditions. C Each 
simulation was categorized into one of 7 cases (the six shown in the left panel and the case where no growth 
was achieved) for the aerobic or anaerobic condition
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analyzed for models of microbial interactions [31, 52–58]. In this work, we demonstrate 
how pairing disparate existing approaches of flux sampling and modeling of microbial 
communities advances the field of metabolic modeling. We systematically evaluate the 
impact of replacing FBA and its central assumption of maximal growth with a flux sam-
pling approach.

We assess the effects of exploring the entire flux solution space with three distinct 
approaches of microbial community modeling: the compartmentalized approach, the 
lumped model or "enzyme soup" approach, and the costless secretion approach. With 
each approach, flux sampling replicates the major conclusions achieved with optimiza-
tion of biomass using FBA. For example, we predict higher frequency of cooperation 
between microbes under anaerobic conditions. Furthermore, applying flux sampling 
expands our understanding of the systems-level heterogeneity that gives rise to observed 
community activity. For the compartmentalized approach, we show increased tendency 
toward stable consortia and provide an ability to identify distinct growth rate-dependent 
interaction regimes. For the lumped modeling approach, we predict large differences 
in the predicted flux for certain pathways and reactions and in the turnover of specific 
metabolites, when comparing FBA to flux sampling. When implementing flux sampling 
with the costless secretion approach, we predict a substantially wider range of metabo-
lites secreted, enabling growth on substrates that had not been predicted when optimiz-
ing biomass using FBA.

As previously found, most observable metabolic heterogeneity across a population 
has two primary sources: variation in network structure and variation in network usage 
(divergence in form and functional utilization, respectively) [59]. Ensemble modeling 
of GEMs, accounting for variation in the structure of the metabolic network, has been 
shown to lead to increased accuracy and is of particular focus to the field with the emer-
gence of novel tools; however, an equivalent effort has not been put towards understand-
ing heterogeneous states achieved with a consistent network, despite the existence of 
flux sampling of GEMs as a tool for the past 20 years [60, 61]. To our knowledge, one 
paper has used sampling to study cell–cell metabolic interactions [62]. This gap has been 
identified by other researchers, and our work motivates future studies to more earnestly 
utilize and leverage the technique [63].

We recognize some limitations of our work. A particular weakness of genome-scale 
modeling is the difficulty in assigning constraints for the reaction fluxes. Without appro-
priate bounds on metabolic reaction rates, flux sampling may explore biologically unrea-
sonable metabolic states. We have not directly compared the predicted growth rates 
to experimentally measured values. Rather, we consider the full range of flux distribu-
tions, given the stoichiometric and flux constraints. The emergence of novel experimen-
tal tools holds promises in addressing this limitation. For example, -omics technologies 
enable in  vitro and in  vivo measurements of growth rates, metabolite secretion, and 
impact of enzymatic knockouts. Such data can be used to provide biologically reason-
able constraints on reaction fluxes. In addition, for the costless secretion approach, we 
used thresholding to keep the analyses computationally feasible. However, this poten-
tially limits our results. Improvements in computational ability, both advances in com-
puting speed and algorithm development, will enable us to investigate the full range of 
biological outcomes possible with flux sampling without imposing artificial thresholds. 
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Additionally, we specifically compared traditional FBA with the flux sampling, but there 
are alternative approaches for analyzing microbial metabolic interactions. For exam-
ple, parsimonious FBA (pFBA), flux variability analysis (FVA), hybridFBA (which uses 
nonparametric constraints), and unsteady-state FBA could all yield interesting insights 
into interactions between GEMs. Future work can apply such analyses to improve our 
understanding of microbial communities. Finally, by using flux sampling, we evaluated 
microbial fitness and interspecies relationships based on growth rate, while eliminat-
ing the necessity of maximizing biomass. Future work can explore alternative metrics to 
assess cellular behavior. This is especially important because genome-scale modeling is 
increasingly used for eukaryotic (principally, human) cells, where growth rate as a proxy 
for cell health is less supported [64–69]. For example, rather than focusing on growth, 
we could instead study flux through a specific reaction or pathway known to mediate the 
behavior of a particular cell type.

Conclusion
In this work, we evaluate the effect of flux sampling on three standard approaches for 
modeling the interactions between microbes at the genome scale. Our results clearly dis-
tinguish between optimization-based and sampling-based characterizations of the meta-
bolic interactions within a community. We demonstrate the utility of flux sampling in 
quantitatively studying metabolic interactions in microbial communities.
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