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Abstract 

Breast cancer remains a major public health challenge worldwide. The identifica-
tion of accurate biomarkers is critical for the early detection and effective treat-
ment of breast cancer. This study utilizes an integrative machine learning approach 
to analyze breast cancer gene expression data for superior biomarker and drug 
target discovery. Gene expression datasets, obtained from the GEO database, were 
merged post-preprocessing. From the merged dataset, differential expression analy-
sis between breast cancer and normal samples revealed 164 differentially expressed 
genes. Meanwhile, a separate gene expression dataset revealed 350 differentially 
expressed genes. Additionally, the BGWO_SA_Ens algorithm, integrating binary grey 
wolf optimization and simulated annealing with an ensemble classifier, was employed 
on gene expression datasets to identify predictive genes including TOP2A, AKR1C3, 
EZH2, MMP1, EDNRB, S100B, and SPP1. From over 10,000 genes, BGWO_SA_Ens identi-
fied 1404 in the merged dataset (F1 score: 0.981, PR-AUC: 0.998, ROC-AUC: 0.995) 
and 1710 in the GSE45827 dataset (F1 score: 0.965, PR-AUC: 0.986, ROC-AUC: 0.972). The 
intersection of DEGs and BGWO_SA_Ens selected genes revealed 35 superior genes 
that were consistently significant across methods. Enrichment analyses uncovered 
the involvement of these superior genes in key pathways such as AMPK, Adipocy-
tokine, and PPAR signaling. Protein-protein interaction network analysis highlighted 
subnetworks and central nodes. Finally, a drug-gene interaction investigation revealed 
connections between superior genes and anticancer drugs. Collectively, the machine 
learning workflow identified a robust gene signature for breast cancer, illuminated their 
biological roles, interactions and therapeutic associations, and underscored the poten-
tial of computational approaches in biomarker discovery and precision oncology.
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Introduction
Breast cancer remains one of the foremost health challenges globally, consistently 
accounting for a significant fraction of cancer diagnoses and mortalities among 
women. The World Health Organization (WHO) statistics underscore the escalating 
prevalence of breast cancer (BC) cases and the associated mortalities [1]. The pivotal 
role of early detection cannot be overstated: it not only dramatically improves the 
prognosis but also potentially reduces mortality rates [2]. In this light, crafting pre-
cise and accurate predictive models for BC detection is of paramount importance, 
bridging the gap between early diagnosis and effective therapeutic interventions.

Despite technological advancements, the field of BC research grapples with numer-
ous challenges, primarily in the identification of accurate biomarkers [3]. The high 
rate of false positives in BC detection is a considerable impediment, necessitat-
ing more reliable predictive models [4]. Another significant barrier is the scarcity of 
comprehensive datasets. To ameliorate this issue, integrating existing datasets can be 
invaluable [5]. Machine learning (ML) offers a transformative solution to these chal-
lenges by facilitating the use of combined gene expression datasets to enhance the 
accuracy and reliability of BC prediction.

Embarking on an interdisciplinary approach, this study melds ML and optimization 
algorithms with systems biology to identify genes intrinsically linked to BC. Through 
an exhaustive meta-analysis of the Gene Expression Omnibus (GEO) datasets, we 
harnessed techniques to tease out genes that starkly demarcate BC from normal sam-
ples. The curated gene signatures were then juxtaposed with differentially expressed 
genes and subjected to rigorous Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses. This culminated in the formula-
tion of a state-of-the-art feature selection (FS) algorithm, enhancing the efficiency 
and accuracy of biomarker identification. This interdisciplinary effort extends beyond 
mere prediction, delving into the identification of superior genes that offer promising 
insights into the mechanisms of the disease and potential therapeutic targets.

The primary aim of this paper is to develop and validate a novel predictive model for 
BC detection that surpasses current methods’ limitations. This research, to the best 
of our knowledge, is the first to apply a unique combination of hybrid metaheuristic 
algorithms and ensemble models to gene expression datasets, targeting the discovery 
of biomarkers with unparalleled precision. The successful identification of key genes 
in this study marks a significant advancement in comprehending BC, opening up new 
possibilities for drug-gene interaction analysis and the development of personalized 
medicine strategies.

The organization of this paper is meticulously structured to guide the reader 
through the intricate processes and findings of the study. Following this introduction, 
in section “Literature review” conducts a critical review of the pertinent literature. In 
section “Materials and methods” delineates the materials and methods, encapsulat-
ing data procurement, FS protocols, ensemble method formulation, and drug-gene 
interaction analysis. In section “Results” unveils the empirical results, including dif-
ferential gene expression analysis and the identification of superior genes. In section 



Page 3 of 32Rakhshaninejad et al. BMC Bioinformatics           (2024) 25:33  

“Discussion” interprets these findings within the broader context of biomarker dis-
covery and precision oncology. The paper reaches its culmination in section “Conclu-
sion”, where the implications of the study for the future of BC detection and treatment 
are synthesized.

Literature review
Breast cancer is a multifaceted disease with a genomic footprint that can be deciphered 
for early detection and treatment strategies. In the quest for precision medicine, ML 
algorithms have become indispensable tools in analyzing complex biomedical data, such 
as gene expression profiles, to identify potential biomarkers for diseases such as BC [6].

Unlike imaging or clinical data, gene expression data offer a dynamic picture of the 
cellular mechanisms at play during oncogenesis [7]. High-throughput technologies such 
as microarrays and RNA sequencing facilitate a holistic view of gene activity across 
the genome [8]. The GEO and ArrayExpress databases exemplify resources that have 
democratized access to such data, enabling extensive research into gene function and 
regulation [9].

The discovery of gene expression biomarkers is paramount for diagnostic and prog-
nostic advancements in BC [10]. Differential gene expression analysis serves as a corner-
stone methodology, distinguishing between normal and diseased states by identifying 
genes with significantly altered expression [11].

As the volume and complexity of gene expression data burgeon, ML offers a suite of 
algorithms capable of deciphering intricate patterns within the data [12]. Studies have 
utilized various ML approaches, such as decision trees (DT) [13], neural networks (NN) 
[14], support vector machines (SVM) [15], logistic regression (LR) [16], and random 
forests (RF) [17], alongside more recent innovations in deep learning (DL) [18, 19] and 
ensemble learning [20, 21] methods such as extreme gradient boosting (XGBoost) [5] 
and adaptive boosting (AdaBoost) [22], to identify significant biomarkers in BC.

The preprocessing of gene expression data, including normalization [23] and FS [24], 
is vital to ensure the reliability of subsequent analyses. The Robust Multiarray Average 
(RMA) is often employed for its robustness in normalization and expression calculation 
[25]. Feature selection is a critical step to highlight relevant genes and can be addressed 
through various methods, including filter, wrapper, embedded, and dimensionality 
reduction techniques [26].

Merging and combining gene expression datasets enhance the power and scope of 
analysis, enabling a comprehensive view across varied conditions, treatments, and pop-
ulations, thus improving the generalizability and robustness of the findings [27]. Such 
integration is essential to address batch effects through normalization, which is crucial 
when datasets from different sources are combined [5]. Moreover, a larger dataset pro-
vides a more substantial basis for FS methods to uncover informative genes, leading to 
more accurate models of gene expression [28]. This process not only corroborates the 
findings across different studies, strengthening the reproducibility of research but also 
significantly advances the field of personalized medicine and our understanding of com-
plex diseases.
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The combinatorial challenge of FS has been approached with metaheuristic algo-
rithms, which offer powerful solutions to NP-Hard problems through intelligent 
search strategies [29]. Algorithms such as genetic algorithms (GA) [30], simulated 
annealing (SA) [31], whale optimization algorithm (WOA) [32], grey wolf optimi-
zation (GWO) [33], and particle swarm optimization (PSO) [20] have been utilized 
across various high-dimensional datasets, demonstrating their efficacy in identifying 
relevant features.

Recent advancements in FS have seen a growing interest in hybrid methods that 
combine the strengths of different metaheuristic algorithms. These hybrid approaches 
aim to overcome the limitations of individual algorithms by integrating their unique 
search mechanisms. For instance, the fusion of GA with artificial bee colony (ABC) 
has shown promising results in navigating complex search spaces more effectively 
[34]. Another notable hybrid method involves combining the spotted hyena optimizer 
(MOSHO) with the salp swarm algorithm (SSA), which enhances the ability of FS in 
high-dimensional datasets [35]. A novel framework, introducing CS-GA and ABC-
CS, combines the cuckoo search (CS) algorithm with ABC and GA to enhance both 
exploitation and exploration, thus achieving a balanced search process [36]. These 
hybrid methods are not only capable of handling the high dimensionality of datasets 
but also exhibit improved performance in terms of accuracy and computational effi-
ciency in FS tasks.

In the realm of FS, the convergence of hybrid optimization techniques with 
advanced ML methodologies is forging innovative pathways. Notably, in these hybrid 
models, the use of ensemble learning frameworks [20] as objective functions for 
metaheuristic algorithms is an emerging and novel approach. This method adeptly 
refines the search strategy of metaheuristic algorithms to focus on enhancing the 
predictive accuracy and generalization of ensemble models [37], which are particu-
larly effective in addressing the challenges of imbalanced and high-dimensional data. 
The result is a more refined FS that is inherently aligned with the core strengths and 
requirements of the ensemble methods [38].

Following the identification of biomarkers, their functional interpretation is enabled 
through enrichment analyses, utilizing resources such as GO [39] and KEGG [40]. 
These tools provide insights into gene functions and pathways, allowing for a deeper 
understanding of the biological significance behind the differential gene expression 
observed.

Upon analyzing biomarkers, the investigation of protein-protein interactions sheds 
light on cellular pathways integral to disease pathophysiology, guiding the creation 
of targeted therapies [41]. Moreover, comprehending drug-gene interactions becomes 
essential in formulating personalized medicine approaches, especially in the context 
of BC treatment [42].

While gene expression data offer tremendous potential in advancing BC research, 
several challenges persist that can affect the integrity and applicability of the results. 
Inconsistencies in data preprocessing, such as normalization and FS, can lead to 



Page 5 of 32Rakhshaninejad et al. BMC Bioinformatics           (2024) 25:33  

variable and sometimes unreliable outcomes. These issues underscore the need for 
rigorous and standardized methodologies in handling gene expression data [43]. 
Additionally, ML models, pivotal in analyzing these complex data, face their own set 
of challenges. Overfitting remains a primary concern, where models may perform 
excellently on training data but fail to generalize to new data [5]. This is further com-
pounded by the often intricate nature of these models, leading to issues with inter-
pretability and understanding of the underlying biological mechanisms. Furthermore, 
the effectiveness of these models is frequently contingent on the availability of large, 
high-quality training datasets, which are not always accessible or feasible to obtain 
[44]. These challenges highlight the need for ongoing refinement of ML techniques 
and data processing methods to enhance the reliability and applicability of gene 
expression analysis in BC research.

In addressing the complexities and challenges of gene expression data analysis in BC 
research, our study adopts a holistic and innovative approach. We merged two gene 
expression datasets to create a robust and diverse data foundation, which is essential for 
overcoming the limitations of data quality and quantity. This merged dataset is then rig-
orously processed using standardized methodologies for normalization and FS, ensuring 
reliable and consistent analysis. Recognizing that reliance on a single, merged dataset 
might not be fully representative, we have also prepared an additional gene expression 
dataset, named GSE45827, to test and validate the developed method. To specifically 
counter issues such as overfitting and to improve model interpretability, our research 
introduces a novel ensemble learning model, incorporating a specialized weighted 
voting method. This model is adeptly designed to evaluate the outputs from a hybrid 
metaheuristic algorithm that synergizes Binary Grey Wolf Optimization (BGWO) and 
SA. By combining these advanced techniques, our study not only enhances predictive 
accuracy and FS efficacy but also fills a critical gap in the realm of BC biomarker discov-
ery, paving the way for more precise diagnostic and therapeutic advancements.

Materials and methods
Download datasets and preprocessing

The datasets pivotal to this study, specifically GSE10810 and GSE42568, were combined 
to form a merged dataset. Additionally, the separate dataset GSE45827 was sourced from 
the NCBI GEO database, all of which are available at www. ncbi. nlm. nih. gov/ geo. Corre-
sponding clinical data for these distinct GEO datasets were procured in tandem with 
the gene expression profiles. The merged dataset comprises a collective total of 179 BC 
samples and 44 samples earmarked as normal, combining the GSE10810 dataset, which 
spans 58 samples (31 BC and 27 normal), with the GSE42568 dataset, encompassing 121 
samples (104 BC and 17 normal). Separately, the GSE45827 dataset includes 155 sam-
ples, segregated into 144 BC samples and a subset of 11 normal samples.

Data preprocessing is pivotal in the realm of microarray data mining. Proper preproc-
essing not only refines the raw data but also ensures that the resulting data serve as a 

http://www.ncbi.nlm.nih.gov/geo
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valid and optimal input for subsequent modeling. Raw datasets were sourced from the 
GEO repository using the ‘GEOquery‘ package. Subsequent preprocessing, including 
background correction, normalization, and gene expression calculation, was undertaken 
using the RMA algorithm.

Furthermore, given that not all probes manifest across all samples, those unexpressed 
across the entirety of samples were excised. Initial identification was conducted using 
probe IDs, and gene symbols were subsequently appended based on these IDs. It was 
noted that certain probe IDs could not be mapped to any gene symbol, warning of their 
removal. Conversely, instances were observed where multiple probe IDs corresponded 
to a singular gene symbol. In such situations, to maintain a unified gene expression 
value, the mean of the expression values of probe IDs sharing the same gene symbol was 
computed and deemed the final expression value.

All datasets exceed the sample size of 50, ensuring substantial data for rigorous analy-
sis. A consistent platform, GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array), 
was selected for all three datasets to minimize discrepancies from different platforms 
and maintain uniformity in gene set examination. Data ingestion was performed using 
the ReadAffy function from the affy package, followed by normalization using the 
RMA technique.

Merge datasets

Merging gene expression datasets, especially when they originate from different sources, 
presents challenges due to the introduction of nonbiological variations, often referred to 
as batch effects. In this study, the integration of the two datasets was accomplished using 
the cbind function in R. However, merging inherently brings forth the aforementioned 
batch effects.

Adjustments were carried out using the empirical Bayes algorithm to address and rec-
tify these batch effects. This algorithm has been proficiently implemented in the Com-
Bat function, which is part of the SVA package in R. The efficacy of the batch-effect 
correction achieved by the ComBat transformation was ascertained through Principal 
Component Analysis (PCA). Specifically, the prcomp function in R was employed to 
conduct the PCA, which endeavors to encapsulate high-dimensional data into its first 
two principal components. This dimensional reduction facilitates visualization, for 
which the ggbiplot package in R was utilized.

After the rigorous phases of preprocessing, batch-effect elimination, and validation, 
the culmination is a unified dataset. This merged dataset is composed of 179 sam-
ples and a comprehensive 10,629 features. Throughout the remainder of this research 
endeavor, this dataset will be referenced as the “merged dataset”.

Differential gene expression analysis

Differential Gene Expression (DGE) analysis was pivotal in identifying the differen-
tially expressed genes (DEGs) within the datasets. The analysis was carried out using 
the renowned limma package in R. The core principle behind the DGE analysis is to 
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pinpoint genes that manifest considerable alterations in their expression levels between 
contrasting groups, such as diseased versus healthy.

For the purpose of this research, the determination of DEGs was guided by rigorous 
statistical criteria. A gene was earmarked as differentially expressed if its log-fold change 
(logFC) exceeded 2, indicating significant upregulation or downregulation of its expres-
sion. Furthermore, the significance of this differential expression was validated with a 
stringent p-value threshold set at less than 0.05. Only genes satisfying both of these cri-
teria were classified as DEGs in both the merged and GSE45827 datasets.

Feature selection

As datasets grow in size and complexity, ensuring the relevance of features becomes 
crucial for the efficient application of ML algorithms [45]. Unnecessary features can not 
only slow down algorithms but can also compromise their accuracy [46]. Proper FS can 
significantly enhance algorithm speed and performance [24]. In this study, we focused 
on identifying a subset of genes from the merged and GSE45827 datasets that are most 
pertinent to BC prediction. The efficacy of our results hinges on the judicious selection 
of these genes.

To achieve this, we utilized a fusion of the GWO [47] and SA techniques, employ-
ing the BGWO_SA_Ens method. This method stands out due to its incorporation of 
an ensemble method in its objective function. Essentially, within the BGWO_SA_Ens 
framework, our goal is to determine a set of genes that maximize the classification accu-
racy of samples. Further insights into this method can be found in section “BGWO_
SA_Ens feature selection algorithm” We also experimented with BGWO_Ens, GA_Ens, 
LASSO, MCFS_IFS, and mRMR_IFS [48] feature selection methods to compare their 
results with BGWO_SA_Ens, as detailed in section “BGWO_Ens, GA_Ens, and LASSO 
feature selection algorithms”.

BGWO_SA_Ens feature selection algorithm

BGWO

The Grey Wolf Algorithm takes inspiration from how wolves hunt. There are four main 
types of grey wolves: alpha ( α ), beta ( β ), delta ( δ ), and omega ( ω ) wolves. Grey wolves 
live in packs and adhere to strict social rules that rank them in the wolf hierarchy. Alpha 
wolves lead the pack and make decisions. Betas provide assistance to the alphas in mak-
ing decisions. While deltas obey alphas and betas, they dominate omega wolves. In an 
effort to reach their prey, wolves attempt to update their position by following the top 
three wolves. The wolf tries to reach the prey position in the most efficient way possible 
using this algorithm.

In this algorithm, the location of prey represents the optimal solution, while the loca-
tion of each wolf represents a candidate solution. In terms of grey wolf solutions, α is the 
best, β is the second best, δ is the third best, and ω represents the rest. After the wolves 
are positioned randomly, their fitness values are calculated. Then, all wolves must update 
their position relative to those of the top three wolves. Next, the algorithm repeatedly 
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updates the positions of the wolves. This is done by considering the top three perform-
ing wolves at each step. During this updating process, the best-performing wolf ’s posi-
tion and its performance score, termed the fitness value, are recorded in every cycle. The 
main goal of this algorithm is, by the end, to pinpoint the best position that is closest to 
the prey.

At iteration t, 
−→
Xα , 

−→
Xβ , and 

−→
Xδ are the three best solutions. Equation (1) defines 

−→
A1 , 

−→
A2 , 

and 
−→
A3 as coefficient vectors.

In Eq. (1), vector −→r1  is generated by random numbers between 0 and 1. The distance con-
trol factor a is used to balance the tradeoff between exploration and exploitation, begin-
ning at a high value equal to 2 and decreasing linearly until it reaches 0. The factor a is 
calculated using Eq. (2), where t represents the current iteration and tmax represents the 
total number of optimization iterations.

Equations (3), (4), and (5) determine 
−→
Dα , 

−→
Dβ , and 

−→
Dδ as the distance vectors between α , 

β , δ and i.

Equation (6) defines 
−→
C1 , 

−→
C2 , and 

−→
C3 as coefficient vectors, where vector −→r2  is generated by 

random numbers between 0 and 1.

The GWO locates wolves’ positions in continuous space, whereas the BGWO locates 
them in a hypercube search space with 0 or 1. We have to set some equations to update 
the positions of the wolves to move them closer or further away from the hypercube.

We can compute sd1 , sd2 , and sd3 as the continuous step size values using Sigmoid func-
tion by Eqs. (7), (8), and (9). Here, d is the dimension of the search space.

(1)−→
A = 2a×−→r1 − a

(2)a = 2− t ×
2

tmax

(3)
−→
Dα =

−→
C1 ×

−→
Xα −−→

Xi

(4)
−→
Dβ =

∣

∣

∣

−→
C2 ×

−→
Xβ −−→

Xi

∣

∣

∣

(5)
−→
Dδ =

∣

∣

∣

−→
C3 ×

−→
Xδ −

−→
Xi

∣

∣

∣

(6)−→
C = 2×−→r2

(7)sd1 =
1

1+ exp(−10(Ad × Dd
α − 0.5))
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A binary step is represented by Eqs. (10), (11), and (12), where r3 is a random number 
between 0 and 1.

The distances that i will move relative to α , β , and δ are known as bstep1 , bstep2 , and 
bstep3 . X1 , X2 , and X3 , which are calculated in Eqs. (13), (14), and (15), are binary vectors 
affected by the movement of α , β and δ wolves, respectively.

After obtaining Xd
1  , Xd

2  , and Xd
3  , the position of Xi in the next iteration ( t + 1 ) is updated 

using a simple stochastic crossover as Eq. (16). Where r4 represents a random number 
chosen from the uniform distribution ∈ [0, 1]

 

(8)sd2 =
1

1+ exp(−10(Ad × Dd
β − 0.5))

(9)sd3 =
1

1+ exp(−10(Ad × Dd
δ − 0.5))

(10)bstepd1 =
{

1 if sd1 ≥ r3
0 else

(11)bstepd2 =
{

1 if sd2 ≥ r3
0 else

(12)bstepd3 =
{

1 if sd3 ≥ r3
0 else

(13)Xd
1 =

{

1 if Xd
α + bstepd1 ≥ 1

0 else

(14)Xd
2 =

{

1 if Xd
β + bstepd2 ≥ 1

0 else

(15)Xd
3 =

{

1 if Xd
δ + bstepd3 ≥ 1

0 else

(16)Xd
i (t + 1) =







Xd
1 if r4 < 1

3

Xd
2 elseif 1

3 ≤ r4 < 2
3

Xd
3 else
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Algorithm 1 Discrete Grey Wolf Optimizer (BGWO)

SA

SA is an optimization algorithm based on annealing that mimics how the material is 
heated and slowly cooled to achieve a uniform structure [49]. The algorithm generates 
an initial random solution. Then, in subsequent iterations, a new neighborhood solu-
tion is generated and evaluated using the fitness function. Whenever a new solution is 
better, it is accepted, whereas when it is the worst, it is accepted based on a Boltzmann 
probability.

In Eq. (17), �f  represents the difference between the previous and new solutions’ fitness 
values, and T represents the temperature parameter.

At the end of each iteration of the grey wolf algorithm, we enter the value of Xα as the ini-
tial value into the SA algorithm and select a neighborhood solution using the roulette wheel 
strategy. To generate the neighborhood solution, the roulette wheel operator chooses one 

(17)P = exp

(

−�f

T

)
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of the Swap, Insertion, Inversion, R2L (Rotate to Left), or R2R (Rotate to Right) operators. 
After a neighborhood is created, its fitness value is measured and compared with the fit-
ness value of the input Xα . If we conclude that the neighbor solution is accepted due to the 
higher fitness value or by using the Boltzmann probability, we will replace it with the initial 
value. Otherwise, we will create another neighborhood until we reach the predetermined 
temperature. Therefore, we go to the next step of the grey wolf and use the new value of Xα . 
This process is shown in pseudocode 1.

Objective function

Our methodology incorporates an ensemble learning approach, utilizing four distinct ML 
algorithms, XGBoost ( clf1 ), SVM ( clf2 ), RF ( clf3 ), and DT ( clf4 ), to determine the fitness of 
potential solutions.

We commence by partitioning our merged dataset into three subsets: 60% for training, 
20% for validation, and the remaining 20% for testing. The process initiates with selecting 
the features present in the potential solution, followed by training the ensemble using 60% 
of the samples from the training set. We implemented Synthetic Minority Over-sampling 
Technique (SMOTE) on the training set to address class imbalance, while the validation 
and test sets were kept in their original, untouched state.

Posttraining, we employ the validation set to assess the performance of the base classi-
fiers. This evaluation paves the way for the computation of their respective weights, fol-
lowed by a weighted voting procedure to derive the results of the ensemble strategy. This 
entire workflow is meticulously repeated as necessary to compute the fitness value for vary-
ing solutions, as guided by Eqs. (18) and (19). In addition, the final 20% of the dataset, des-
ignated as the testing set, is utilized for gauging the model’s performance and facilitating 
comparative analyses.

In the above equations, the fitness value of a solution, denoted as Fit(Sol), is computed 
by averaging the evaluation metrics of the Ensemble classifier (Eclf), with ϕ = 0.8 rep-
resenting the significance attached to the number of selected features. Here, NF is the 
number of selected features, and AF is the total number of features in the dataset.

The symbols Ac, Pr, Re, F1, and F2 represent the evaluation metrics: Accuracy, Precision, 
Recall, F1 score, and F2 score, respectively. These metrics are detailed in Eqs. (20), (21), (22), 
(23), and (24).

(18)AvgEclf =
AcEclf + PrEclf + ReEclf + F1Eclf + F2Eclf

5

(19)Fit(Sol) =(ϕ × AvgEclf )+
(

(1− ϕ)×
NF

AF

)

(20)Ac =
TP + TN

TP + FP + FN + TN

(21)Pr =
TP

TP + FP
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Given that cancer samples are considered positive and normal samples are considered 
negative, the values of TP, TN, FP, and FN in the above equations are defined as follows:

• True Positive (TP) Correctly predicted cancer instances.
• True Negative (TN) Correctly predicted normal instances.
• False Positive (FP) Normal instances wrongly predicted as cancer.
• False Negative (FN) Cancer instances wrongly predicted as normal.

To implement weighted voting, we calculate a weight for each base classifier post-train-
ing, utilizing the validation set, as depicted in Eq. 25.

In the weighted voting procedure, we amalgamate the results from each base classifier 
employing their respective weights, fwclfi , which ensures that classifiers demonstrating 
superior performance on the validation set exercise a more substantial influence on the 
ensemble’s final prediction.

The ensemble classifier’s prediction for each sample can be expressed as:

In Eq. (26), PredEclf (x) is the class predicted for sample x by the ensemble classifier, C is 
the set of possible class labels, and Predclfi(x) is the class predicted for sample x by base 
classifier clfi.

The performance metrics AcEclf  , PrEclf  , ReEclf  , F1Eclf  , and F2Eclf  of the ensemble 
classifier are then computed using the predictions from the ensemble classifier Eclf, as 
defined in Eqs. (20), (21), (22), (23), and (24).

Importantly, the ensemble’s performance typically surpasses the performance of its 
individual components, especially when the base classifiers are diverse. This is because 
the ensemble leverages each classifier’s strengths while mitigating their weaknesses.

BGWO_Ens, GA_Ens, and LASSO feature selection algorithms

BGWO_Ens

BGWO_Ens is akin to BGWO_SA_Ens, with the primary distinction being the absence 
of the SA process. It harnesses the BGWO algorithm, which is a variant of the GWO 
tailored for binary-encoded problems, making it suitable for FS. After determining the 

(22)Re =
TP

TP + FN

(23)F1 =2×
(

Pr × Re

Pr + Re

)

(24)F2 =
5× Pr × Re

(4 × Pr)+ Re

(25)fwclfi =
Acclfi × Prclfi × Reclfi × F1clfi × F2clfi

∑4
k=1(Acclfk × Prclfk × Reclfk × F1clfk × F2clfk )

(26)PredEclf (x) = arg max
c∈C

4
∑

i=1

fwclfi × Predclfi(x)
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optimal subset of features using BGWO, these selected features are fed into an ensemble 
of classifiers, structured similarly to the ensemble method delineated in section “Objec-
tive function”. By integrating the search capabilities of BGWO with the predictive power 
of ensemble models, this method aims to achieve high predictive accuracy while mini-
mizing overfitting, particularly in high-dimensional datasets.

GA_Ens

The GA_Ens method synergizes GA with ensemble learning. Genetic Algorithms are 
heuristic search algorithms inspired by natural selection. Potential feature subsets are 
encoded as chromosomes, which evolve over generations to identify the most effective 
subsets. Once the optimal features are selected using GA, they are then used to train an 
ensemble of ML models, following the ensemble structure detailed in section “Objec-
tive function”. The melding of GA’s evolutionary search with ensemble modeling offers a 
robust method that adeptly handles FS and prediction tasks.

LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) is a regression-based 
method incorporating L1 regularization. This regularization can push some feature coef-
ficients to be precisely zero, allowing LASSO to inherently perform FS by excluding fea-
tures with zero coefficients. Unlike BGWO_Ens and GA_Ens, LASSO does not naturally 
integrate an ensemble approach. However, its prowess lies in its ability to manage mul-
ticollinearity, select a feature subset while concurrently performing regression, and offer 
ease of interpretation.

To remove the repeated information and streamline the content in the two sections, 
here is a revised version:

MCFS‑IFS

In this study, the Monte Carlo Feature Selection (MCFS) method [48] was employed for 
feature selection from gene expression datasets. The datasets were prepared and divided 
into training and test sets, with the training set balanced using the SMOTE. The MCFS 
process, conducted over 100 iterations, involved selecting and evaluating a random 
subset of 5000 features from the training dataset in each iteration. These features were 
assessed using a RF Classifier and a 10-fold cross-validation approach. The key aspect 
was scoring each feature based on its presence in high-performing subsets, thereby 
determining its importance in predicting the target variable. Post-iteration, the top 5000 
features were ranked according to their scores for further analysis.

Incremental Feature Selection (IFS) [50] was then applied to refine this feature set, 
involving iterative evaluation of feature subsets, beginning with the top 5 features and 
increasing in size by 5 features at each step. A range of classifiers, including DT, KNN, 
RF, SVM, and NN, were used to assess the performance of each subset using 10-fold 
cross-validation. Various metrics such as F1 score, PR-AUC, ROC-AUC, Mathews cor-
relation coeffcient (MCC), and Balanced Accuracy (BAc) where MCC and BAc can be 
computed by Eqs. (27) and (28) were employed for a comprehensive assessment. The 
subset that achieved the highest F1 score was identified as the optimal feature set and 
was further tested on a separate test set to validate its generalizability and effectiveness.
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mRMR‑IFS

Similarly, the mRMR (Minimum redundancy maximum relevance) feature selection 
method [51]was integrated with IFS to enhance the robustness and accuracy of our gene 
expression data analysis in BC research. Using the ‘pymrmr‘ Python library, the mRMR 
algorithm selected the top 5000 features from over 10,000 potential genes based on their 
mutual information quotient with the target variable. This selection ensured that each 
feature contributed uniquely to the predictive model.

The subsequent IFS process evaluated these mRMR-selected features in smaller sub-
sets to determine the most impactful set for predictive modeling. Starting with the top 
5 features and incrementally increasing by 5 in each iteration, the process assessed fea-
ture subsets up to the top 5000. Performance evaluation through a 10-fold cross-valida-
tion with classifiers like DT, KNN, RF, and SVM, along with metrics including F1 score, 
ROC-AUC, PR-AUC, MCC, and BAc, helped identify the best feature set. This rigorous 
approach pinpointed the most influential genes for breast cancer detection and diagno-
sis, significantly contributing to the advancement of breast cancer biomarker discovery.

Superior genes selection

In the intricate landscape of genomics, different analytical methods can yield varying 
gene sets of interest. Our approach involved conducting Differential Expression (DE) 
analysis and the BGWO_SA_Ens feature selection method as two independent pro-
cesses across two distinct datasets. While DE analysis identifies genes that manifest a 
significant change in expression levels between conditions, the BGWO_SA_Ens feature 
selection is applied to assess that the genes are also impactful in predictive modeling. As 
a result, the intersection of these methods (two sets from DE analysis and two sets from 
BGWO_SA_Ens across the datasets) provides us with a set of “superior genes” that are 
both differentially expressed and integral in ML predictions. This dual analysis approach 
allows for a comprehensive and unbiased identification of key genes, ensuring a robust 
selection of candidates for further biological investigation.

To further elucidate the roles and implications of these superior genes, three advanced 
analyses were undertaken. First, an enrichment analysis was performed to uncover the 
underlying biological pathways and processes in which these genes are predominantly 
involved, providing insights into their functional significance. Subsequently, network 
analysis furnished a clearer picture of the interrelations and interactions among these 
genes, offering a systems biology perspective on their collective behavior and poten-
tial regulatory patterns. Last, by investigating potential drug interactions, we probed 
the therapeutic avenues and implications these genes might open up, potentially pav-
ing the way for targeted treatments or pharmacological interventions. Collectively, these 

(27)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(28)BAc =
1

2

(

TP

TP + FN
+

TN

TN + FP

)
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analyses not only amplify our understanding of the identified superior genes but also 
fortify their relevance in both research and therapeutic contexts.

Enrichment analysis of superior genes

Enrichment analysis deciphers the functional roles of superior genes highlighted through 
DE analysis and ML. By statistically assessing the association between these genes and 
specific diseases, the analysis furnishes gene-set profiles. This finding sheds light on the 
involvement of these genes in cancer progression. KEGG pathway enrichment analy-
sis and GO [52, 53] further enhance this understanding, offering classifications such as 
molecular functions (MF), biological processes (BP), and cellular components (CC).

PPI network analysis

Analyzing protein-protein interactions (PPI) bridges the knowledge gap between 
superior genes and cellular functionality [54]. Utilizing the STRING database [55], we 
mapped interactions with a confidence threshold of 0.4, visualized through Cytoscape 
3.9.1. Key regions in this PPI network were pinpointed using the MCODE plugin, 
while the cytoHubba plugin highlighted influential genes within the network. This 
holistic approach unravels the intricacies of gene interactions, potentially directing us 
towards novel therapeutic avenues.

Exploration of drug interactions with superior genes

Understanding drug-gene dynamics is pivotal for crafting effective BC treatments. 
Researchers can sculpt more individualized, effective therapeutic strategies by study-
ing the interplay between drugs and disease-related genes. The DGIdb database [56] 
served as a resource for unearthing drugs that potentially interact with our superior 
genes. Visual representations, crafted using Cytoscape, further clarify these interac-
tions, propelling insights into disease biology and therapeutic innovation.
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Fig. 1 PCA visualization of the merged dataset a before and b after batch effect removal using the ComBat 
function
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Results
Data preprocessing and merging

Following the meticulous preprocessing of the GSE10810, GSE42568, and GSE45827 
datasets, refined gene expression matrices were obtained for each of these datasets. 
This processing consisted of 179 samples in the merged dataset and 155 samples in 
the GSE45827 dataset, encompassing 135 BC samples and 44 normal samples in the 
merged dataset, and 144 BC samples with 11 normal samples in the GSE45827 data-
set. The preprocessing steps resulted in a comprehensive set of 10,629 genes for anal-
ysis in the merged dataset, and 11,731 genes in the GSE45827 dataset.

After the preprocessing phase, a PCA plot was generated to visualize the batch 
effects inherent in the merged dataset. The evident clustering of samples from differ-
ent datasets illustrated the presence of these batch effects as shown in Fig. 1a. How-
ever, after applying the empirical Bayes algorithm through the ComBat function, a 
subsequent PCA plot showcased the mitigation of these batch effects. The samples 
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Table 1 Quantitative distribution of differentially expressed genes, upregulated and downregulated 
entities

Dataset Total genes DEGs Upregulated Downregulated

Merged Dataset 10629 164 34 130

GSE 45827 11731 350 208 142
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were no longer clustered based on their source dataset, as shown in Fig.  1b, which 
indicated the successful removal of the batch effects.

Additionally, PCA plots elucidating the clustering of samples were constructed as 
displayed in Fig.  2. BC samples distinctly grouped together, apart from the normal 
samples, revealing the inherent differences in their gene expression patterns. This 
demarcation in the PCA space affirms the significance of the gene expression features 
in distinguishing between BC and normal samples in both the merged dataset 2a and 
the GSE45827 dataset 2b.

Differentially expressed genes identification

From the comprehensive analysis of the 10,629 genes in the merged dataset, 164 genes 
were discerned as differentially expressed. These were delineated based on the fol-
lowing criteria: Adjusted p-value < 0.05 and |log2 foldchange(FC)| > 2 . Consequently, 
from the identified DEGs, 34 genes exhibited upregulation while 130 genes were 
found to be downregulated. Additionally, analysis of the GSE45827 dataset revealed 
350 DEGs among 11731 genes, with 208 upregulated and 142 downregulated genes. 
Table 1 summarizes the count of genes after DEG analysis for both datasets.
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Fig. 4 Clustering heatmap for the merged dataset distinguishing BC from normal profiles
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Fig. 5 Clustering heatmap for the GSE45827 dataset distinguishing BC from normal profiles
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These identified DEGs significantly contributed to the statistical demarcation between 
the BC and normal samples within the merged dataset, as well as the GSE 45827 data-
set. Figure  3 illustrates the volcano plot of these DEGs. The plot’s X-axis signifies the 
fold change, while the Y-axis represents the log10 transformed Adjusted p-value for every 
gene. The DEGs are prominently marked in red and annotated accordingly.

Furthermore, heatmaps were generated to provide a visual representation of the dis-
tinction between samples based on their group classification as illustrated in Figs. 4 and 
5. The hierarchical clustering depicted in each heatmap efficiently segregated the BC 
samples from the normal samples, emphasizing the effectiveness of the selected gene 

Table 2 Performance metrics for each feature set obtained using BGWO_SA_Ens in Merged Dataset 
and GSE45827

1 Fitness Value
2 Best performing feature set for the dataset

Fset Dataset NF FV 1 F1 PR-AUC ROC-AUC 

Fset1 Merged Dataset 1610 0.059 0.942 0.984 0.953

Fset2 Merged Dataset 2027 0.063 0.936 0.981 0.946

Fset3 Merged Dataset 1864 0.059 0.931 0.964 0.873

Fset4 Merged Dataset 3055 0.072 0.791 0.981 0.955

Fset5 Merged Dataset 1900 0.058 0.931 0.963 0.872

Fset6 Merged Dataset 3108 0.064 0.794 0.978 0.938

Fset7 2 Merged Dataset 1404 0.044 0.981 0.998 0.995

Fset8 Merged Dataset 3255 0.061 0.791 0.967 0.879

Fset9 Merged Dataset 1763 0.051 0.769 0.958 0.857

Fset10 Merged Dataset 3134 0.061 0.791 0.980 0.948

Fset1 GSE45827 3018 0.059 0.910 0.978 0.956

Fset2 2 GSE45827 1710 0.046 0.965 0.986 0.972

Fset3 GSE45827 2100 0.061 0.914 0.968 0.939

Fset4 GSE45827 3914 0.063 0.879 0.969 0.954

Fset5 GSE45827 1636 0.051 0.901 0.976 0.959

Fset6 GSE45827 2126 0.047 0.931 0.977 0.956

Fset7 GSE45827 3222 0.061 0.910 0.973 0.948

Fset8 GSE45827 2219 0.047 0.936 0.978 0.956

Fset9 GSE45827 2670 0.049 0.958 0.977 0.955

Fset10 GSE45827 3899 0.060 0.892 0.973 0.947

Fig. 6 Comparative Analysis of Feature Selection Convergence: a Merged Dataset and b GSE45827 Dataset 
using BGWO_SA_Ens Method
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expression features in discriminating between the two groups. Notably, the gradient in 
the heatmaps, marked by distinct color patterns for BC and normal samples, underlines 
the pronounced differences in their gene expression profiles for both the merged dataset 
and the GSE45827 dataset.

Feature selection results

BGWO_SA_Ens performance

We executed the BGWO_SA_Ens method ten times, yielding ten different feature sets, 
designated Fset1 through Fset10, for each dataset. Each of these feature sets was then 
used to test six base classifiers, XGBoost, DT, RF, SVM, KNN, and NN, using a test set 
that only contained features selected by BGWO_SA_Ens. This was carried out for all 
ten selected feature sets for each dataset. Subsequently, we computed the F1, PR-AUC, 
and ROC-AUC evaluation metrics to assess the performance of the selected features. 
The results, reflecting the mean values derived from the six base classifier methods, are 
presented below.

From Table 2, it is evident that Fset7 exhibited superior performance compared to the 
other sets in the Merged Dataset, and Fset2 was the best performer in the GSE45827 
dataset, as indicated by the rows in bold text. These feature sets encompassed a 
selection of 1404 genes for the merged dataset and 1710 genes for the GSE45827 
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dataset. Figures  6a and 6b display the optimization plots for the merged dataset and 
the GSE45827 dataset, respectively. In Fig. 6a, it is demonstrated that Fset7 attained a 
better fitness value (FV) than other feature sets at iteration 100 for the merged dataset. 
Similarly, Fig.  6b shows that Fset2 outperformed other feature sets at iteration 100 in 
the GSE45827 dataset. Additionally, Figures  7 and 8 illustrate the PR-AUC and ROC-
AUC performance of Fset7 in the merged dataset and Fset2 in the GSE45827 dataset, 
respectively.

Comparison to other methods (BGWO_Ens, GA_Ens, LASSO, MCFS‑IFS, mRMR‑IFS)

In our comprehensive analysis, we conducted a comparative evaluation of various FS 
techniques, including BGWO_Ens, GA_Ens, LASSO, MCFS-IFS, mRMR-IFS,applied to 
both the merged dataset and the GSE45827 dataset for breast cancer biomarker identifi-
cation. These FS methods yielded significantly different sets of genes, with BGWO_Ens 
identifying 1941 in the merged dataset and 2114 in the GSE45827 dataset, GA_Ens 2557 
in the merged dataset and 2488 in the GSE45827 dataset, LASSO 10 in the merged data-
set and 8 in the GSE45827 dataset, MCFS-IFS 1850 in the merged dataset and 475 in the 
GSE45827 dataset, and mRMR-IFS 355 in the merged dataset and 1660 in the GSE45827 
dataset, indicating a wide variance in feature selection granularity.

To assess the performance and effectiveness of these FS strategies, we incorporated the 
selected features within our test dataset. We proceeded to employ six distinct base clas-
sifiers, XGBoost, DT, RF, SVM, KNN, and NN, to evaluate the predictive power of the 
features identified by each FS method. Classifiers were rigorously tested using 10-fold 
cross-validation to ensure stability and reliability in the feature evaluation process. The 
final feature set was determined for each FS technique, comparable to the best feature 
set (Fset) identified by our BGWO_SA_Ens method.

The results are meticulously summarized in Table 3, presenting a side-by-side com-
parison of the most effective outcomes derived from the five FS techniques. In this table, 
the bold text highlights the best performing algorithm that most accurately predict 

Table 3 Comparison of the performance metrics of different feature selection methods

Algorithm Dataset NF F1 PR-AUC ROC-AUC MCC BAc

All Features Merged Dataset 10629 0.862 0.870 0.858 0.814 0.905

GSE45827 11731 0.873 .978 0.961 0.895 0.795

BGWO_SA_Ens Merged Dataset 1404 0.984 0.986 0.977 0.967 0.977

GSE45827 1710 0.965 0.986 0.972 0.953 0.965

BGWO_Ens Merged Dataset 1941 0.898 0.972 0.965 0.839 0.916

GSE45827 2114 0.865 0.965 0.931 0.829 0.914

GA_Ens Merged Dataset 2557 0.954 0.986 0.977 0.943 0.965

GSE45827 2488 0.908 0.986 0.972 0.894 0.947

LASSO Merged Dataset 10 0.885 0.874 0.852 0.831 0.913

GSE45827 8 0.729 0.904 0.872 0.571 0.772

MCFS-IFS Merged Dataset 1850 0.940 0.979 0.973 0.945 0.898

GSE45827 475 0.951 0.975 0.963 0.930 0.866

mRMR-IFS Merged Dataset 355 0.945 0.971 0.954 0.916 0.953

GSE45827 1660 0.926 0.940 0.964 0.897 0.934
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BC, as evidenced by the metrics given. This comparative analysis extends to the results 
obtained from the features selected by BGWO_SA_Ens and contrasts them against the 
performance when the full spectrum of features is employed. Notably, the ROC and Pre-
cision-Recall curves, as illustrated in the Figs. 7 and 8, provide a visual and quantitative 
representation of the classifiers’ performance, with AUC scores serving as a benchmark 
for comparison.

The Random Forest classifier, for instance, achieved AUC scores of 0.995 in ROC and 
0.998 in Precision-Recall metrics for the merged dataset, and similarly, 0.995 in ROC 
and 0.998 in Precision-Recall metrics for the GSE45827 dataset. These results indicate 
exceptional classification accuracy. Such consistency across different datasets highlights 
the potential of our hybrid BGWO_SA_Ens approach in identifying the most predictive 
biomarkers for BC, potentially paving the way for more targeted and effective therapeu-
tic strategies.

Superior genes identification

In our analysisacross two distinct datasets, we identified different sets of differentially 
expressed genes (DEGs) and selected genes using the BGWO_SA_Ens algorithm. For the 
merged dataset, a total of 164 genes were identified as DEGs, and the BGWO_SA_Ens 
algorithm selected 1404 genes. In contrast, for the GSE45827 dataset, 350 genes were 
identified as DEGs, with the BGWO_SA_Ens algorithm selecting 1710 genes. An inter-
section of these four sets (DEGs and BGWO_SA_Ens selected genes from both datasets) 
revealed a commonality of 35 genes. These overlapping genes, which are present in both 
the DEGs and the BGWO_SA_Ens selected genes from each dataset, are referred to as 
the “superior genes.” This subset represents genes that are consistently significant across 
different analytical methods and datasets, highlighting their potential importance in the 
context of breast cancer.

The relationship and overlap between the DEGs and the genes selected through the 
BGWO_SA_Ens algorithm across both datasets are schematically represented in Fig. 9, 

6

Fig. 9 Venn diagram illustrating the intersection of DEGs and BGWO_SA_Ens selected genes. The 
overlapping region denotes the identified superior genes. Venn diagram illustrating the intersection of 
DEGs and BGWO_SA_Ens selected genes from the merged and GSE45827 datasets. The overlapping region 
denotes the identified superior genes
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a Venn diagram. This visualization emphasizes the significance of the identified superior 
genes and provides a clear depiction of their derivation from the intersection of the two 
methodologies and datasets.

Enrichment analysis results

The comprehensive enrichment analysis was segmented into two pivotal sections, focus-
ing on GO enrichment and KEGG pathway enrichment respectively.

GO enrichment

Using GO analysis, the molecular characteristics of the 35 superior genes were deline-
ated across three ontological categories. In terms of MF, the most significant function-
alities identified were sulfur compound binding, RAGE receptor binding, and heparin 
binding, each possessing a noteworthy enrichment score. Within the BP category, pro-
cesses such as positive regulation of lipid localization, regulation of lipid localization, 
and regulation of lipid storage were prominently enriched. In the context of CCs, the 
key enriched components comprised collagen containing extracellular matrix, endo-
plasmic reticulum lumen, and collagen trimer. The significance of these functionalities, 
processes, and components is underscored by their respective Enrichment Scores, high-
lighting their potential pivotal roles in the physiological manifestations observed. The 
comprehensive visual representation of these GO enrichments is illustrated in Fig. 10.
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Fig. 10 GO enrichment analysis results categorized into MF, BP, and CC. The EnrichmentScore demonstrates 
the importance of each category in relation to the 35 superior genes. Distinct color codings for MF, BP, and CC 
allow for easy differentiation and visualization of the results
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KEGG pathway enrichment

The KEGG analysis spotlighted several pathways potentially intertwined with the bio-
logical activities of the superior genes. Preeminent among these pathways were the 
AMPK signaling pathway, Adipocytokine signaling pathway, and PPAR signaling path-
way. The AMPK signaling pathway, with the highest EnrichmentScore, is particularly 
pivotal, suggesting a potentially significant involvement in the processes under inves-
tigation. Other pathways such as Alcoholic liver disease and Pyruvate metabolism 
also exhibited consequential EnrichmentScores, indicative of their importance in the 
broader molecular schema. A comprehensive visual overview of the KEGG pathway 
enrichments is presented in Fig. 11.

Analysis of protein-protein interaction networks

Within this section, we probe the nuanced realm of protein-protein interactions (PPI) 
pertaining to our designated cohort of superior genes. Our objective is to elucidate 
the concealed links and underscores pivotal subnetworks that might elucidate BC at a 
molecular level.

Relaxin signaling pathway

Fatty acid biosynthesis

Insulin resistance

ECM−receptor interaction

Cholesterol metabolism

Pyruvate metabolism

Alcoholic liver disease

PPAR signaling pathway

Adipocytokine signaling pathway

AMPK signaling pathway

2 3 4
EnrichmentScore (−log10(pvalue))

Count

1

2

3

4

5

0.01

0.02

0.03

0.04

pvalue

Pathway Analysis

Fig. 11 KEGG pathway analysis displaying the enrichment score of various pathways related to the 35 
superior genes. The pathways shown are ranked based on their significance and relevance. A higher 
EnrichmentScore indicates greater significance. The count and p-value further provide insight into the 
number of genes involved and the statistical significance of each pathway, respectively
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As illustrated in Fig. 12, the PPI network manifests as a complex matrix of interac-
tions encompassing the delineated superior genes. Individual nodes in this construct 
signify the superior genes, and the connecting edges depict the probable affiliations 
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Fig. 12 Integrated Protein-Protein Interaction (PPI) network schematic of 28 superior genes, representing a 
subset of the total 35 identified superior genes with known interactions. The thickness of the lines between 
nodes corresponds to their combined score
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Fig. 13 Principal subnetworks: a MCODE metric of 7 b MCODE metric of 6. The thickness of the lines 
between nodes corresponds to their combined score
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and mutual interactions between them. This all-encompassing illustration provides a 
succinct perspective on the molecular dynamics inherent to BC.

Embedded within this multifaceted PPI network, the MCODE tool has identified 
regions with high connectivity, illustrated as subnetworks in Figure  13. Such subnet-
works typically signify proteins that synergistically partake in analogous biological func-
tionalities or pathways. They possess the capability to unveil seminal insights into BC’s 
molecular mechanics.

The inaugural subnetwork, depicted in Fig. 13a, is conferred an MCODE metric of 7, 
insinuating elevated interconnectivity among its constituent proteins. This conglomer-
ate potentially typifies a cadre of proteins synergistically operating within a distinct cel-
lular trajectory, thereby hinting at their implications in BC molecular dynamics.

The sequential subnetwork, represented in Fig.  13b, while being less expansive and 
having diminished connectivity in comparison to the former, remain of paramount rel-
evance. The second registers an MCODE metric of 6, insinuating its representation of 
separate functional assemblies within BC’s multifarious molecular puzzle.

To discern the paramount nodes within these subnetworks, our approach was aug-
mented by the cytoHubba tool. Nodes characterized by elevated centrality metrics 
occupy cardinal positions within the construct, potentially modulating its overarch-
ing framework and operational dynamics. Such quintessential proteins might exert 
pivotal functions in the pathogenesis, rendering them prospective foci for therapeutic 
endeavors.

These revelations furnish profound insights into the intricate molecular orchestration 
linked to BC. By emphasizing these superior genes and their interrelationships, poten-
tial avenues for therapeutic strategies may surface. Further experimental verification of 
these networks and their pivotal nodes will strengthen their relevance in BC and could 
accelerate the development of innovative therapeutic approaches.
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Fig. 14 Graphical elucidation of drug-gene dynamics, highlighting the multifaceted therapeutic frontier
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Investigation of drug-gene interactions in oncology

Delineating the nuanced interactions between pharmacological agents and genetic ele-
ments in BC is crucial for the evolution of therapeutic modalities. The discernment 
and systematic study of these drug-gene interactions pave the way for the formulation 
of targeted therapeutic regimens, enhancement of treatment precision, reduction of 
adverse reactions, and the optimization of patient prognosis. The prominence of genes 
in oncogenic predisposition and disease trajectory emphasizes the imperative of com-
prehending the molecular dynamics between drugs and the specific genes implicated in 
oncogenesis.

For this study, we leveraged the DGIdb (v4.2.0) database, an exhaustive repository 
encompassing drug-gene associations and potential drug target genes. This database 
integrates data spanning diverse origins, including peer-reviewed literature, solidifying 
its authority on drug-gene synergies.

To decipher and represent the aforementioned drug-gene associations, we employed 
Cytoscape, a sophisticated tool dedicated to network synthesis and visualization. Fig-
ure 14 showcases the derived network, with pharmacological agents delineated as blue 
nodes and genetic entities as pink nodes. This graphical abstraction elucidates the dense 
meshwork of interactions between pivotal genes and their corresponding pharmacologi-
cal modulators. Importantly, this networked representation imparts a nuanced view of 
associations that might remain obscured in a mere tabulated format.

To encapsulate, the drug-gene interconnection illustrated in Fig. 14 provides invalu-
able insight into the labyrinthine domain of drug-gene dynamics. Such a perspective 
augments our comprehension of prospective therapeutic trajectories and propels the 
formulation of bespoke therapeutic solutions for BC, epitomizing the potential of preci-
sion medicine within the realm of oncology.

Discussion
The genetic intricacies of BC call for advanced methods in biomarker discovery. Con-
fronting the high-dimensionality of gene expression data, our BGWO_SA_Ens algorithm 
effectively discerns crucial biomarkers indicative of BC. We addressed the constraints of 
sample size by merging datasets, thus broadening the scope of our meta-analysis.

The incorporation of ensemble learning, which leverages multiple classifiers, is piv-
otal to the BGWO_SA_Ens algorithm’s success in honing gene subset selection. The 
adeptness of ensemble learning in managing complex data bolsters the feature selection 
strength of BGWO_SA_Ens. It results in more accurate predictions and versatile model 
applications. Moreover, the combination of BGWO and SA’s FS capabilities ensures 
robust and reliable results.

While BGWO_SA_Ens, BGWO_Ens, and GA_Ens represent advanced metaheuris-
tic algorithms that leverage the strengths of ML to find optimal solutions, their 
comparison with methods like LASSO, MCFS-IFS, and mRMR-IFS offers a broader 
perspective on FS approaches. LASSO, known for its simplicity and effectiveness in 
feature reduction, tends to select a smaller set of features but may oversimplify com-
plex biological data, as indicated by its lower performance metrics in our study. On 
the other hand, MCFS-IFS and mRMR-IFS, while offering more comprehensive fea-
ture selection, may not always provide the optimal balance between feature reduction 
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and predictive accuracy. In contrast, BGWO_SA_Ens excels in identifying a moderate 
yet highly effective gene set, balancing feature reduction with high predictive perfor-
mance. This underscores the advantage of BGWO_SA_Ens in handling high-dimen-
sional, complex datasets typical in biological research. However, it’s worth noting that 
the increased complexity and computational demand of BGWO_SA_Ens could be 
seen as a drawback compared to more straightforward methods like LASSO. Over-
all, our findings suggest that while simpler methods have their merits, especially in 
less complex datasets, the sophisticated nature of BGWO_SA_Ens offers significant 
advantages in navigating the intricacies of genomic data for breast cancer research.

In the comparative analysis of different FS methods, the BGWO_SA_Ens algorithm 
demonstrated superior performance in terms of F1, PR-AUC, ROC-AUC, MCC, 
and BAc compared to BGWO_Ens, GA_Ens, LASSO, MCFS-IFS, and mRMR-IFS. 
BGWO_Ens and GA_Ens, despite selecting larger sets of features, did not match 
the performance of BGWO_SA_Ens. Additionally, the inclusion of MCFS-IFS and 
mRMR-IFS in the evaluation also provided a broader comparison basis. Notably, 
BGWO_SA_Ens excelled with an F1 score of 0.984, PR-AUC of 0.986, ROC-AUC of 
0.977, MCC of 0.967, and BAc of 0.977 for the merged dataset, and similar high scores 
for GSE45827, as shown in Table 3. In contrast, LASSO’s performance was the lowest, 
and while MCFS-IFS and mRMR-IFS had varying results, they did not outperform 
BGWO_SA_Ens. This comparison underscores BGWO_SA_Ens’s ability to select a 
gene set that is not only moderate in size but also highly effective, as shown by the 
robust performance metrics across both datasets.

In our study, through meticulous methodology, the BGWO_SA_Ens algorithm 
selected a set of 1404 genes from the merged dataset and 1710 from the GSE45827 
dataset. In parallel, we identified 164 differentially expressed genes (DEGs) from 
the merged dataset and 350 from the GSE45827 dataset. Crucially, the intersec-
tion of these four feature sets yielded 35 genes that were common to both datasets, 
which we designated as superior genes. This subset represents a highly significant 
group, as these genes are validated both through differential expression analysis and 
the advanced FS capabilities of the BGWO_SA_Ens algorithm. This intersection 
reinforces the validity of the selected genes and underscores the robustness of our 
approach in identifying key biomarkers for BC.

Additionally, our exploration of GO and KEGG enrichment analyses has revealed 
significant insights into the biological relevance of genes identified by our FS method. 
In the realm of biological processes, the enrichment results highlighted several key 
areas, with the “positive regulation of lipid localization” pathway being particularly 
notable. This pathway includes CD36, ADIPOQ, ACACB, CIDEA, LPL, and SPP1 
genes, underscoring their potential role in BC biology. Similarly, in cellular compo-
nents, the “collagen-containing extracellular matrix” component was identified as 
significant. This component features COL10A1, ITIH5, ADIPOQ, ADAMTS5, GPC3, 
SFRP1, and RARRES2 genes, pointing to their involvement in cancer-related cellu-
lar structures. In Molecular Functions, “sulfur compound binding” was determined as 
significant which implicating PCOLCE2, ADAMTS5, ACACB, SFRP1, and LPL genes.

Our KEGG pathway analysis further illuminated the importance of the “AMPK sign-
aling pathway” in BC, with a notable association of genes such as CD36, ADIPOQ, 
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ACACB, CIDEA, and LEP. This pathway is critical in regulating metabolic processes 
, including lipid metabolism and energy homeostasis, and has been linked to cancer 
development and progression [40]. The association of these genes with the AMPK 
signaling pathway emphasizes their potential role in modulating tumor growth, 
metabolism, and response to therapy in breast cancer biology.

In our comprehensive analysis, we identified several key genes that are potentially 
pivotal in the pathogenesis and progression of BC. Among them, CIDEA (Cell Death-
Inducing DFFA-Like Effector A) is downregulated in breast tumors, suggesting its sig-
nificant role in lipid metabolism and energy balance with implications for cancer cell 
survival and proliferation [57]. LEP (Leptin), identified as a superior downregulated gene 
in differential expression analysis, is recognized for its influence on energy regulation 
and a notable role in tumorigenesis, especially in BC. It contributes to cell proliferation 
and angiogenesis, key factors in cancer progression [58].

Another significant gene, acetyl-CoA carboxylase beta (ACACB), which is crucial for 
fatty acid oxidation and is downregulated in BC, is associated with increased survival 
and reduced drug resistance, highlighting its potential as a target for inhibiting tumor 
cell proliferation and metabolic reprogramming [59]. The Lipoprotein Lipase (LPL) gene 
stands out for its role in lipid metabolism and its potential involvement in providing 
fatty acids to cancer cells, thereby supporting their growth and survival [60]. ADIPOQ 
(Adiponectin), primarily known for its role in glucose regulation and fatty acid break-
down, has been observed to have anti-proliferative effects on BC cells, suggesting a pro-
tective role [61].

Our research has unveiled a range of additional genes with promising roles in BC, 
as determined through GO and KEGG enrichment analyses. These include RARRES2 
(Retinoic Acid Receptor Responder 2) [62], AKR1C3 (Aldo-Keto Reductase Family 1 
Member C3) [57], SPP1 (Secreted Phosphoprotein 1) [63], CIDEC (Cell Death-Induc-
ing DFFA-Like Effector C) [64], CD36 (Cluster of Differentiation 36) [59], and MMP1 
(Matrix Metallopeptidase 1) [65]. These genes contribute to the intricate molecu-
lar framework of BC, offering new avenues for exploration and potential therapeutic 
intervention.

Our findings underscore the crucial role of lipid metabolism disruptions in BC, par-
ticularly through the AMPK signaling pathway, indicating their importance in BC’s 
development and progression. The genes involved in these processes offer insights into 
BC’s mechanisms and pave the way for new therapeutic and biomarker development 
strategies. The comprehensive integration of GO and KEGG enrichment analyses with 
gene functions highlights BC’s complexity, advocating for a holistic understanding and 
targeted approach to this disease.

The detailed PPI network analysis has revealed key genes and functional modules, 
enhancing our understanding of BC’s intricate molecular interactions. This analysis, 
illustrated in figures like 12 and subnetworks in 13, identifies genes involved in lipid 
metabolism, cell cycle regulation, and EMT. These findings not only uncover underly-
ing protein interactions but also suggest potential biomarkers and therapeutic targets, 
forming a foundation for future research in unraveling BC’s molecular complexities and 
advancing precision medicine.
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Our study’s focus on drug-gene interactions has shed light on potential BC treat-
ments, particularly highlighting topoisomerase II alpha (TOP2A) [66] inhibitors and 
their role in BC’s development and progression. Drugs such as vincristine, teniposide, 
mitoxantrone, etoposide, epirubicin, idarubicin, daunorubicin, amsacrine, paclitaxel, 
dexrazoxane, doxorubicin, and fluorouracil all target TOP2A, indicating its crucial 
role in either the development or progression of BC. This examination reveals complex 
interplays between genes and drugs, suggesting pathways for therapeutic exploitation 
and strategies to hinder cancer progression. It points towards a personalized treat-
ment approach in BC, targeting specific genes with multiple drugs to tailor treatments. 
Overall, this study demonstrates the effectiveness of computational techniques in iden-
tifying significant BC biomarkers, emphasizing the need for further experimental valida-
tion and the potential to extend these methods to other cancers for precision medicine 
advancements.

Conclusion
In conclusion, this study demonstrates the efficacy of an innovative ML workflow 
in identifying robust biomarkers and therapeutic targets for BC. By synergizing 
metaheuristic optimization, ensemble learning, differential expression analysis, and 
network biology, a panel of 35 superior genes was revealed. These genes were not only 
differentially expressed in BC but also integral to predictive modeling, affirming their 
significance.

Collectively, this multipronged informatics approach overcomes key challenges in bio-
marker discovery. It enhances model accuracy, generalizability, and biological relevance 
compared to prevailing techniques. The findings propel novel possibilities for diagnostic, 
prognostic and therapeutic innovation in BC. Moving forward, experimental validation 
of the identified genes and drug targets will further cement this study’s contributions to 
precision oncology.

The framework developed is widely applicable for mining biomarkers from multifac-
eted biomedical data. Furthermore, the proposed BGWO_SA_Ens algorithm sets a new 
standard for efficient FS in ML pipelines. By synergizing the strengths of optimization, 
ensembles, and differential expression, more refined and biologically insightful gene sig-
natures can be derived. This advances personalized medicine across diverse diseases. In 
summary, this research underscores the translational potential of informatics in aug-
menting biomarker discovery and augmenting our comprehension of complex diseases.
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