
Anchor Clustering for million‑scale immune
repertoire sequencing data
Haiyang Chang1, Daniel A. Ashlock1, Steffen P. Graether2 and Stefan M. Keller3*

Background
Adaptive immunity has evolved to recognize and combat a vast array of pathogens. A
key mechanism of this flexible immune response is to generate a broad repertoire of
highly polymorphic antigen receptors in lymphocytes by rearrangement of gene seg-
ments and the addition of random nucleotides. B cell receptors (BCRs), also known as
immunoglobulins or antibodies, mediate humoral immunity by recognizing soluble
antigens [1]. The possible number of unique human BCR sequences is estimated at 1012
[2] for the naive repertoire. This diversity is further amplified when activated B cells
undergo somatic hypermutation during affinity maturation, theoretically elevating the
diversity beyond 1014 [3].

Abstract

Background: The clustering of immune repertoire data is challenging due
to the computational cost associated with a very large number of pairwise sequence
comparisons. To overcome this limitation, we developed Anchor Clustering, an unsu-
pervised clustering method designed to identify similar sequences from millions
of antigen receptor gene sequences. First, a Point Packing algorithm is used to identify
a set of maximally spaced anchor sequences. Then, the genetic distance of the remain-
ing sequences to all anchor sequences is calculated and transformed into distance vec-
tors. Finally, distance vectors are clustered using unsupervised clustering. This process
is repeated iteratively until the resulting clusters are small enough so that pairwise
distance comparisons can be performed.

Results: Our results demonstrate that Anchor Clustering is faster than existing pair-
wise comparison clustering methods while providing similar clustering quality. With
its flexible, memory-saving strategy, Anchor Clustering is capable of clustering millions
of antigen receptor gene sequences in just a few minutes.

Conclusions: This method enables the meta-analysis of immune-repertoire data
from different studies and could contribute to a more comprehensive understanding
of the immune repertoire data space.

Keywords: Unsupervised clustering, Immune repertoire, Clonal relationship,
Lymphocyte antigen receptor

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Chang et al. BMC Bioinformatics (2024) 25:42
https://doi.org/10.1186/s12859‑024‑05659‑z

BMC Bioinformatics

*Correspondence:
smkeller@ucdavis.edu

1 Department of Mathematics
and Statistics, University
of Guelph, 50 Stone Rd E,
Guelph, ON N1G 2W1, Canada
2 Department of Molecular
and Cellular Biology, University
of Guelph, 50 Stone Rd E,
Guelph, ON N1G 2W1, Canada
3 Department of Pathology,
Microbiology and Immunology,
School of Veterinary Medicine,
University of California Davis,
One Shields Avenue, Davis, CA
95616, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05659-z&domain=pdf

Page 2 of 17Chang et al. BMC Bioinformatics (2024) 25:42

The complementarity determining region 3 (CDR3) is the most polymorphic part of the
B and T cell receptor and determines antigen specificity; the resulting lymphocytes can
recognize a wide range of distinct epitopes, and hence a diversified immune repertoire [4].
A challenge in understanding immune repertoires is the fact that different antigen recep-
tor sequences can bind to the same epitope [5–7], resulting in a many-to-one relation-
ship between the antigen receptor sequence and the cognate antigen. Antigen receptor
sequences that exhibit similar junctional regions in the same individual are considered to
have descended from a shared lymphocyte ancestor, indicating clonal relatedness [8, 9]. In
addition, identical or similar clonotypes can occur in different individuals, a phenomenon
termed "public clonotypes". To characterize clonal relatedness and identify public clono-
types, it is desirable to find an efficient method to cluster similar antigen receptor sequences
based on the presumed epitope specificity.

In recent years, several methods have been described for the clustering of immune reper-
toire data. In general, clustering methods differ based on whether they process nucleotide
[10–13] or amino acid sequences [14–18], and whether they target BCR or T cell recep-
tor (TCR) sequences. Typically, methods for TCR clustering use amino acid sequence data,
while methods for BCR data use nucleotide sequences. The reason is that the tracing of
clonal evolution during affinity maturation is relevant for BCR data only and requires a
nucleotide-level resolution to detect synonymous substitutions. Moreover, with the appear-
ance of the therapeutic structural antibody database, clustering BCR based on their amino
acid data would be meaningful in investigating the structural diversity of repertoires and
developing applications in immunodiagnostics and immunotherapeutics [19, 20].

To identify related antigen receptor sequences, distance-dependent similarity metrics
such as Hamming distance (HD) [12, 13] and Levenshtein distance [11, 21, 22] are com-
monly applied by pairwise sequence comparison of junctional sequences. Because the time
for calculating all-versus-all comparisons rises quadratically with the number of antigen
sequences (O(n2)), determining the genetic distance between all sequences using either
method is not feasible for millions of nucleotide sequences. Consequently, a clustering algo-
rithm that circumvents the need for an all-versus-all sequence comparison would signifi-
cantly improve clustering performance.

Here we present Anchor Clustering, a novel approach for clustering of BCR nucleotide
sequence data. Anchor Clustering incrementally partitions a dataset based on genetic
distance to maximally spaced anchor sequences until each cluster is small enough to be
amenable to pairwise sequence comparison. We show that Anchor Clustering can cluster
datasets up to 10 times faster than existing methods at comparable clustering quality. In
addition, Anchor clustering can cluster datasets with millions of sequences with minimal
hardware requirements. This enables the meta-analysis of immune-repertoire data from
different studies and could contribute to a more comprehensive understanding of the
immune repertoire data space.

Methods
Data

Simulated BCR data

Simulated immune repertoire data with known clonal relationships (previously
described in [12, 23]) were used in this work. These datasets were generated based on

Page 3 of 17Chang et al. BMC Bioinformatics (2024) 25:42

the identified lineage tree topologies of four individuals (M2, M3, M4 and M5) with
multiple sclerosis (MS) by picking a new germline sequence at random for each lineage
and stochastically reintroducing mutations throughout the lineage branches [24]. This
process was repeated 10 times for each individual, resulting in a total of 40 simulations
(dataset group ‘MS’). In addition, we created 15 composite datasets by merging all 40
simulated MS datasets, discarding ambiguous and duplicate sequences, and extracting
10 kilo (K), 50 K and 100 K sequences with junctional lengths of 48, 51, 54, 57, and 60
nucleotides, respectively (dataset group ‘MS-Mixed’). The details of each dataset and its
usage are further summarized in Additional file 1.

Experimental BCR data

Experimental BCR repertoire data were obtained from the iReceptor platform [25] and
are summarized in Additional file 1. To benchmark clustering speed, antigen receptor
gene sequences from COVID-19 positive individuals and healthy controls [26] were ran-
domly selected and combined into 12 datasets ranging from 10 to 300 K sequences with
ambiguous and duplicate sequences removed (dataset group ‘C19’). To test clustering
performance on million-scale datasets, sequences from four different datasets (hepatitis
B [27], chronic lymphocytic leukemia [28], systemic lupus erythematosus, and COVID-
19 [26, 29]) were randomly selected and combined at equal proportions to generate
datasets ranging from 1 million (M) to 4 M unique sequences (dataset group ‘4 Diseases
Mixed’).

Anchor Clustering workflow

Overview

Anchor Clustering integrates a Point Packing algorithm for anchor selection and unsu-
pervised learning for partitioning of sequences for rapid and accurate clustering (Fig. 1).
After stratifying junctional sequences by length, several maximally spaced sequences are
picked as anchor sequences using a Point Packing algorithm. Then, the HD to all anchor
sequences is calculated for each remaining sequence and distances are concatenated into
a distance vector. The dataset is then subdivided based on the distance vectors using
the BIRCH algorithm. This workflow is repeated iteratively for each generated subcluster
until every subcluster is smaller than a user-defined size threshold. Lastly, single link-
age hierarchical clustering is performed on each remaining subcluster, and the resulting
clusters are cut using a user-defined threshold.

Anchor selection

Anchor sequences were selected using a Point Packing algorithm as described previ-
ously [30–32]. In short, Conway’s Lexicode Algorithm (CLA) takes a subset of points
from a metric space, along with a specified minimum distance constraint, and produces
the output set that satisfies the minimum distance requirement. In this study, junc-
tional sequences represented points and the HD was used as a distance measure. Con-
way’s Variation Operator (CVO) takes two subsets of packings with minimum distance
constraints as the input and returns one set of packing as the output. Specifically, the
union of these two subsets is augmented with random points, which are shuffled and run

Page 4 of 17Chang et al. BMC Bioinformatics (2024) 25:42

through CLA to produce a new collection of points, still obeying the minimum distance
constraint. Details of the CLA and CVO algorithms can be found in Additional file 2.

The Point Packing algorithm requires three user-defined hyperparameters—popu-
lation size, random material rate and minimum distance. Population size refers to the
initial number of anchor sets. The random material rate is analogous to mutation and
controls the number of sequences to be introduced. Minimum distance refers to the
minimum HD between anchors and is dependent on the junctional length of sequences.
To normalize the minimum distance parameter with respect to junctional length, we
introduced a minimum distance ratio defined as minimum distance/junctional length.
The following parameters were tested: minimum distance ratios {0.5, 0.6, 0.7, 0.8 and
0.9}; population sizes {100, 250, 500, 750 and 1000}; random material rates {10, 25, 50, 75
and 100}. This resulted in a total of 125 parameter combinations (5 × 5 × 5), which were
applied to all 15 datasets of the dataset group ‘MS-Mixed’.

Partitioning into subclusters

After identifying anchor sequences, the distance of each remaining sequence to all anchor
sequences was determined and the distance results were concatenated into a distance vec-
tor for each sequence. The dataset was then partitioned based on distance vectors using the
BIRCH algorithm [33]. The BIRCH algorithm iteratively divides a single cluster into smaller
clusters and requires the specification of a cluster number parameter and a radius thresh-
old. The number of clusters was set to the number of anchor sequences selected during
Point Packing. The radius threshold determines whether a new sequence is merged into
an existing subcluster or becomes a new subcluster. To characterize the effect of the radius
parameter and anchor number on the clustering performance, the minimum distance ratios

Fig. 1 Anchor Clustering workflow. Sequences are grouped by junctional length and processed
independently. Anchor sequences are selected using a Point Packing algorithm, which ensures that the
Hamming distance (HD) between any two selected anchors satisfies a minimum distance requirement.
For every sequence, a distance vector is created by evaluating the HD of the sequence with every anchor.
Next, the dataset is partitioned into subclusters based on the HD vectors using the BIRCH algorithm. If any
of the resulting clusters is below a size threshold, sequences are clustered using single linkage hierarchical
clustering. If a subcluster is larger than the size threshold, the process is repeated until all subclusters meet
the size requirement

Page 5 of 17Chang et al. BMC Bioinformatics (2024) 25:42

{0.5, 0.6, 0.7, 0.8 and 0.9} and radius parameters {0.01, 0.05, 0.1 and 0.5} were tested on four
simulated MS datasets (M2-1, M3-1, M4-1 and M5-1).

Hierarchical clustering of subclusters

Anchor selection and data partitioning are repeated iteratively until the number of
sequences within a given subcluster falls below a user-defined size threshold. Sequences
are then clustered using single linkage-based hierarchical clustering with a user-define
normalized HD cut-off. To evaluate the effect of the subcluster size threshold on clus-
tering performance and speed, size thresholds {1000, 2000, 3000, 4000 and 5000} were
applied to the four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1) utilizing sev-
eral minimum distance ratios {0.5, 0.6, 0.7 and 0.8}. To determine an optimal normalized
HD threshold, we assessed clustering performance for different normalized HD values
ranging from 0.1 to 0.2 with increments of 0.01.

Clustering performance evaluation

Simulated BCR data

The clustering quality of Anchor Clustering was evaluated based on sensitivity, preci-
sion, and F-measure using the 40 simulated MS datasets. True positives (TP) were
defined as clonally related sequence pairs that were correctly clustered in the same clus-
ter. False Negatives (FN) were defined as clonally related sequence pairs that were falsely
separated into different clusters. False positives (FP) were defined as clonally unrelated
sequence pairs that were falsely clustered in the same cluster. Sensitivity (recall) and pre-
cision (positive predictive value) were calculated as follows:

The F measure (also known as the F score) was defined as the harmonic mean of sensi-
tivity and precision.

Experimental BCR data

Given that the clonal relationships in the experimental datasets are unknown, the evalu-
ation of clustering quality was carried out using retention and fraction metrics. A cluster
was considered ‘pure’ if all sequences in a given cluster had the same disease label. If a
cluster contained a single sequence only (i.e., a singleton), it was considered a pure clus-
ter. Singleton retention, i.e., the percentage of singletons in a dataset, was calculated by
dividing the number of singletons by the total number of sequences.

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

FM =
2 ∗ Sensitivity ∗ Precision

Sensitivity+ Precision

Singleton Retention =
Singletons

Total sequences

Page 6 of 17Chang et al. BMC Bioinformatics (2024) 25:42

Similarly, the singleton fraction was calculated as the percentage of singletons divided
by the total number of clusters, providing a measure of the proportion of clusters that
were represented by singleton sequences.

Non-singleton retention was defined as the percentage of junctional sequences that
appeared in all non-singleton pure clusters, divided by the total number of sequences.

Non-singleton fraction was calculated as the ratio of the number of non-singleton
pure clusters to the total number of generated clusters, expressed as a percentage.

Benchmarking Anchor Clustering

To benchmark its performance, we compared Anchor Clustering to three existing BCR
nucleotide sequence clustering tools: DefineClones [10], SCOPe [13] and an Align-
ment free method [34]. DefineClones uses a hierarchical-based clustering method
with a specified linkage method and forms clusters using a bimodal distribution-
determined threshold. SCOPe is a spectral-based clustering method with an adaptive
threshold to determine the local sequence neighborhood. The Alignment free method
is based on natural language processing methodology and uses k-mer representations
and re-weighting based on a numeric statistic reflecting the importance of k-mers in a
sequence. The following distance clustering thresholds were tested: DefineClones with
normalized HD {0.06, 0.08, 0.1, 0.12, 0.14 and 0.16}; SCOPe with upper-limit distance
{0.04, 0.06, 0.08, 0.1 and 0.12}; Alignment free with cosine similarity {0.16, 0.18, 0.2, 0.22,
0.24 and 0.26}. The distance clustering threshold that achieved maximum retention was
chosen as the optimal threshold for each method and was used for comparing pure and
non-pure clusters of classifying COVID-19 and Healthy labeled sequences in the data-
set ‘C19-K_Healthy_100K’. For parameters other than distance clustering thresholds, the
default settings were used.

Runtime comparisons were performed using all datasets of the ‘C19’ dataset group
and clustering performance (fraction and retention) was evaluated using the ‘C19- K_
Healthy_100K’ dataset. Benchmarking was performed on a MacBook Air computer
equipped with an Apple M2 chip and 16 GB memory.

To further optimize the speed and quality of Anchor Clustering on million-scale
datasets, we explored the benefit of grouping sequences based on variable (V) and join-
ing (J) gene usage before clustering (VJ grouping pre-clustering, shortened to VJ-Pre)
as opposed to the workflow of grouping based on VJ usage after clustering (VJ group-
ing post-clustering, shortened to VJ-Post). If a junctional sequence had multiple V or
J annotations, a cluster was greedily expanded if junctional sequences had at least one
shared gene segment. Two Anchor Clustering strategies with normalized HD clustering

Singleton Fraction =
Singletons

Total clusters

Non− singleton Retention =
Sequences in all non− singleton pure clusters

Total sequences

Non− singleton Fraction =
Pure non− singleton clusters

Total clusters

Page 7 of 17Chang et al. BMC Bioinformatics (2024) 25:42

thresholds from 0.08 to 0.16 with 0.02 increments were applied for achieving maxi-
mum non-singleton retention on the ‘C19-K_Healthy_100K’ dataset. To reduce memory
requirements of clustering million-scale datasets (dataset group ‘4 Diseases Mixed’), we
applied a 10% fraction of data levels to be trained in their BIRCH models.

Results
Parameter optimization

Point Packing parameter settings

First, we assessed the effect of junctional length on anchor number and runtime and
found that the junctional length had a minor influence on both anchor number and
runtime (Additional file 3: Fig. S1). This result was consistent across 15 composite data-
sets (dataset group ‘MS-Mixed’), regardless of dataset size. Given the negligible impact
of junctional length on the results of Point Packing, subsequent results were represented
as an average across all junctional lengths.

Next, we explored the effect of minimum distance ratio, population size and random
material rate on the number of generated anchors and runtime (Additional file 3: Fig.
S2). The minimum distance ratio had the most significant effect on both the number of
generated anchors and runtime. The smaller the distance ratio, the higher the number
of generated anchors and the longer the runtime. The random material rate had a minor
effect on the number of generated anchors but increased the runtime for the minimum
distance ratios between 0.7 and 0.9. Based on these findings, a population size of 1000
and a random material rate of 0.5 were utilized as the default Point Packing parame-
ters, because these settings provided a reasonable balance between anchor number and
runtime.

BIRCH parameter settings

After generating anchor sequences by Point Packing, Anchor Clustering partitions the
data into clusters using the BIRCH algorithm, which requires the definition of a cluster
number parameter and a radius threshold. Since the cluster number is defined by the
number of generated anchors, the radius threshold was the only parameter that required
optimization. A radius threshold of 0.5 yielded superior clustering performance com-
pared to lower radii (0.01, 0.05 and 0.1) (Fig. 2A). Of note, the poorer performance for
lower radius values was associated with lower minimum distance ratios. When using a
radius threshold of 0.5, a robust clustering performance with F-measure values consist-
ently exceeding 85% was observed across all four datasets, irrespective of the minimum
distance ratio (Fig. 2B). Minimum distance ratios of 0.5 and 0.6 resulted in higher anchor
numbers and F-measure values greater than 95% across all four datasets.

Cluster size threshold settings

Data partitioning by repeated cycles of anchor generation and BIRCH clustering contin-
ues until all resulting clusters fall below a specified cluster size threshold. To determine
an optimal cluster size threshold, we assessed the effect of cluster size on clustering
quality. Our results suggest that the optimal choice of a clustering threshold is depend-
ent on the minimum distance ratio during Point Packing (Fig. 3A). The use of smaller
minimum distance ratio thresholds (0.5 and 0.6) resulted in above 90% F-measures for

Page 8 of 17Chang et al. BMC Bioinformatics (2024) 25:42

all tested cluster size thresholds {1,000, 2000, 3000, 4000 and 5,000} on four simulated
MS datasets. In contrast, larger distance thresholds (0.7 and 0.8) resulted in F-measure
values between 80 and 90% for lower cluster size thresholds (1,000 and 2,000).

Next, we characterized the effect of cluster size threshold and minimum distance ratio
on total runtime (Fig. 3B). For a minimum distance ratio of 0.5, the total runtime was
markedly longer than for higher distance ratios. This was because multiple cycles of
Point Packing and BIRCH clustering were required while for minimum distance ratios
above 0.5, the total runtime essentially equaled the time for pairwise comparison. The
cluster size threshold was positively correlated with total runtime, which is reflective of
computational cost of pairwise sequence comparison. All effects were independent of
the dataset used. The fastest runtime was achieved using a minimum distance ratio of
0.6 with 1000 sequences as the size threshold in the four simulated MS datasets, and
such settings were set as default in Anchor Clustering.

Distance threshold for hierarchical clustering

Following pairwise sequence comparison, sequences are clustered based on normalized
HD using hierarchical clustering and a specified distance threshold. Relaxing the strin-
gency of clustering by increasing the normalized HD threshold resulted in a decrease
in clustering quality (Fig. 3C). This was especially obvious for the M2-1 dataset, which
showed poor F-measure and precision metrics for distance threshold values above 0.15.
Raising the cut-off resulted in more sequences that were clustered erroneously, yield-
ing a lower precision and a higher false positive rate. Conversely, lowering the cut-off
separated related sequences, resulting in a lower true positive rate and lower sensitivity.
The other three datasets did not demonstrate significant changes except for high cut-off

Fig. 2 A Clustering performance (F-measure) of four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1)
under four minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and BIRCH radii {0.01, 0.05, 0.1 and 0.5}. B Clustering
performance (F-measure) of four MS datasets (M2-1, M3-1, M4-1 and M5-1) under four minimum distance
ratios {0.5, 0.6, 0.7 and 0.8} with the same BIRCH radius 0.5

Page 9 of 17Chang et al. BMC Bioinformatics (2024) 25:42

values for the M4-1 and M5-1 datasets. For all four simulated MS datasets, a normalized
HD cut-off threshold of 0.12 yielded the best performance.

Data fractions for model fitting

To reduce memory usage, we explored the benefit of stochastically sampling a subset
of sequences for constructing the BIRCH model. When comparing the clustering per-
formance using 10%, 30%, 50% and 100% of the data to fit the BIRCH model, most
junctional lengths exhibited over 95% F-measures for all four fractions of data used for
model fitting (Fig. 4A). The average F-measures across all junctional lengths in 10 simu-
lated MS datasets were consistently above 95% when utilizing different fraction settings
in four groups (Fig. 4B) and a One-Way ANOVA did not yield significant differences in

Fig. 3 A Clustering performance (F-measure) of four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1)
under the parameter settings of minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and size thresholds {1000,
2000, 3000, 4000 and 5000}. B Runtime (in minutes) of four simulated MS datasets (M2-1, M3-1, M4-1 and
M5-1) under the parameter settings of four minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and size thresholds
{1000, 2000, 3000, 4000 and 5000}. C Clustering performance (F-measure, sensitivity, and precision) of four
simulated MS datasets (M2-1, M3-1, M4-1 and M5-1) with normalized HD cut-offs ranging from 0.1 to 0.2 with
0.01 unit increments

Page 10 of 17Chang et al. BMC Bioinformatics (2024) 25:42

clustering performance among the groups. These results suggest that a fraction of 10% of
the data is sufficient for fitting the BIRCH model.

Comparison with other methods

Benchmarking clustering speed

To benchmark the runtime of Anchor Clustering, we compared its performance
against three previously published BCR clustering methods (DefineClones, SCOPe and
Alignment free) using non-synthetic datasets from COVID-19 and healthy individu-
als (Fig. 5A). All methods performed similarly up to a dataset size of 100 K sequences.
However, a further increase in the dataset size resulted in an exponential, and ultimately
prohibitive, increase in runtime for all methods except Anchor Clustering. To further
characterize the performance of Anchor Clustering, we tested its runtime on data-
sets with up to 4 M sequences (Fig. 5B). By limiting the fraction of data used to fit the
BIRCH models to 10%, Anchor Clustering successfully clustered datasets from 1 to 4 M
sequences, and dataset ‘4_Diseases_Mix_4M’ in less than 30 min using a MacBook Air

Fig. 4 A The clustering performance of 40 simulated MS datasets (M2, M3, M4, and M5) was evaluated under
different fractions of data {10%, 30%, 50% and 100%} that were fitted into BIRCH models. B The average
clustering performance of each simulated MS dataset was evaluated across all junctional lengths for four
fractions {10%, 30%, 50% and 100%}

Page 11 of 17Chang et al. BMC Bioinformatics (2024) 25:42

Apple M2 chip with 16 GB Memory. Of note, one of the merged datasets (hepatitis B
[27]) contained a high number of sequences with multiple V gene segment labels, which
rendered the Anchor Clustering with VJ-Pre method less effective but still slightly faster
than VJ-Post.

Benchmarking clustering quality

When compared against DefineClones, Anchor Clustering exhibited a similar cluster-
ing performance on the 40 simulated datasets. For each simulated dataset, the cluster-
ing threshold for DefineClones was determined by the findThreshold function from the
SHazaM R package [10]. For Anchor Clustering, the default parameters were used. The
DefineClones method yielded higher F-measure and sensitivity values in 40 simulated
MS datasets, while Anchor Clustering had a higher precision (Additional file 3: Fig. S3).
Due to the lack of complete VDJ sequences in the 40 simulated datasets, the SCOPe and
Alignment free methods could not be applied. To further benchmark clustering qual-
ity, we compared Anchor Clustering with existing BCR clustering methodologies using
the ‘C19-K_Healthy_100K’ dataset that included COVID-19 (moderate and severe)
and Healthy control labels. We assessed singleton retention and non-singleton reten-
tion (Fig. 6A) and singleton fraction and non-singleton fraction (Fig. 6B) with different
distance clustering thresholds for each method. Both singleton metrics reflect the clus-
tering algorithm’s ability to retain relevant information and avoid the fragmentation of
relevant data points into separate clusters. The higher the fraction and retention values,
the better the performance of the clustering method. These metrics were utilized to eval-
uate the performance of the clustering methods in grouping similar sequences together,
while also accurately separating dissimilar sequences. The Alignment free methodol-
ogy with a cosine similarity threshold of 0.22 showed the highest percentage (55%) of
non-singleton retention. Anchor Clustering using VJ-Pre method with a normalized HD
threshold of 0.1 demonstrated the second-highest ratio (49%). SCOPe with an upper-
limit distance threshold of 0.06 demonstrated the third-highest ratio (47.9%). However,
the SCOPe method without a threshold was faster, but fewer sequences were correctly
clustered. DefineClones with a normalized HD threshold of 0.1 and Anchor Clustering
using VJ-Post with a threshold of 0.1 achieved ratios of 45.8% and 44.3%, respectively.

Fig. 5 A Runtime comparisons (in minutes) of different BCR clustering methods on the dataset group ‘C19’
(C19-K_Healthy_datasets) from 10 to 100 K with 10 K increments, 200 K, and 300 K. B Runtime (in minutes) of
Anchor Clustering on the dataset group ‘4 Diseases Mixed’ with dataset sizes of 1 M, 2 M, 3 M and 4 M (using
10% of the data for fitting the BIRCH models) with Python version 3.10, MacBook Air Apple M2 chip with
16 GB Memory

Page 12 of 17Chang et al. BMC Bioinformatics (2024) 25:42

As the clustering thresholds for each method decreased, the singleton retention ratio
increased gradually. On the other hand, DefineClones and Anchor Clustering VJ-Post
method showed the highest singleton fractions, accounting for approximately 80% of all
the clusters compared to other methods, while the Alignment free method with varied
thresholds presented the highest non-singleton fractions.

We then compared pure clusters that were generated by different methods (Fig. 6C)
using their best performing settings (highest ratio of sequences to be clustered into
pure clusters). Both Anchor Clustering and DefineClones showed very similar cluster-
ing results. The Alignment free approach yielded the largest pure cluster and the clus-
ter with the largest edit distance between sequences. This is likely because the method

Fig. 6 Comparisons of singleton retention and non-singleton retention ratios (A) and singleton fraction and
non-singleton fraction ratios (B) with different BCR clustering methods and varying clustering thresholds
on the ‘C19-K_Healthy_100K’ dataset. Comparisons of generated pure clusters (C) and non-pure clusters (D)
with benchmarking methods on the ‘C19-K_Healthy_100K’ dataset with their optimal clustering thresholds.
Comparison of singleton retention and non-singleton retention ratios (E) and singleton fraction and
non-singleton fraction ratios (F) with Anchor Clustering using VJ-Pre and VJ-Post methods on the dataset
group ‘4 Diseases Mixed’ with dataset size of 1 M, 2 M, 3 M and 4 M

Page 13 of 17Chang et al. BMC Bioinformatics (2024) 25:42

defines clusters based on the re-weights of k-mer similarity without requiring an identi-
cal junctional length of sequences. Both, the SCOPe and Alignment free methods failed
to identify the second and third largest pure ‘COVID-19 severe’ clusters, unlike the
Anchor Clustering and DefineClones methods. Furthermore, Anchor Clustering with
VJ-Pre was able to identify the fourth largest pure ‘COVID-19 moderate’ cluster, while
Anchor Clustering with VJ-Post and the DefineClones method did not.

We also observed differences in the clustering results for non-pure clusters (Fig. 6D).
The SCOPe method generated 4 large impure clusters with sizes greater than 300
sequences, which contained sequences from all three labels. Similarly, the Alignment
free method also generated one large impure cluster with more than 300 sequences.
Among clusters with less than 100 sequences, the Alignment free method showed higher
ratios of impure clusters with three labels compared to the SCOPe method. In contrast,
both Anchor Clustering and DefineClones methods demonstrated 4 intermediate sizes
of ‘COVID-19 severe’ dominant clusters and fewer ratios of non-pure clusters with three
different labels.

With respect to grouping sequences based on VJ usage before clustering (VJ-Pre) as
opposed to the default workflow of grouping sequences after clustering (VJ-Post), we
found that the clustering quality was similar for both methods across all 4 million-scale
datasets (Fig. 6E and F). Anchor Clustering with VJ-Pre generally exhibited higher ratios
of non-singleton retention and non-singleton fraction than VJ-Post clustering across
four datasets. Despite these differences in performance, the ratio of impure clusters
among the four datasets remained relatively consistent, with no more than 2% of all the
generated clusters using both methods.

Discussion
The widespread application of high-throughput sequencing for immune repertoire
analyses is generating vast amounts of data, which represents a challenge with respect
to data analysis. Clustering methods to identify clonally related sequences commonly
rely on pairwise comparison of nucleotide sequences or k-mers, which is computation-
ally intensive and potentially prohibitive for large datasets. Instead of determining the
genetic distance between all sequences of a given dataset directly, Anchor Clustering
partitions sequences before performing pairwise distance analyses. This is achieved by
selecting a set of maximally spaced sequences as anchors and triangulating the relative
position of each remaining sequence with respect to the anchor reference points. The
resulting distance vectors are then clustered using unsupervised machine learning. This
strategy significantly reduces the number of pairwise comparisons resulting in faster
runtime and reduced memory requirements compared to existing methods.

A key consideration for determining the optimal parameter settings for Point Pack-
ing was to minimize runtime while ensuring a high quality of clustering. The mini-
mum distance ratio, which defines the minimum distance between anchor sequences,
had a significant impact on these performance metrics. A complicating factor in
optimizing this parameter was that the number of generated anchors, is depend-
ent on the size of a given dataset and the relatedness of its sequences. More closely
related sequences require a lower minimum distance ratio than more distantly related
sequences to obtain a given number of anchors. Increasing the minimum distance

Page 14 of 17Chang et al. BMC Bioinformatics (2024) 25:42

ratio between anchors resulted in fewer anchors and hence fewer sequence-to-anchor
comparisons, which reduced total runtime. However, this also resulted in larger sub-
clusters, which increased the number of partitioning cycles required to split a dataset
into sufficiently small clusters for pairwise sequence comparison. In addition, for the
smallest dataset M3-1, no anchors were obtained using a distance ratio of 0.9, sug-
gesting that the use of high distance ratios may render the algorithm inapplicable for
datasets of limited size or closely related sequences. Consequently, optimization of
parameter settings for Point Packing requires the consideration of the entire work-
flow and reflects a balance between optimizing anchor selection by Point Packing and
sequence partitioning by unsupervised clustering.

Following anchor selection, each nucleotide sequence is converted into a distance
vector that reflects its genetic distance to all anchor sequences. In this study, we
chose Hamming distance as a distance metric, which is straightforward to compute
but requires prior partitioning of sequences based on junctional length. While the lat-
ter allowed us to improve speed by multi-processing, this approach precludes detec-
tion of similar sequences with differing length. This contrasts with methods such as
the Alignment free method, which is based on k-mer frequencies and hence capable
of clustering similar sequences with differing length. Using a different distance metric
such as the Levenshtein distance could potentially alleviate this shortfall but was not
explored in this study.

After conversion into a distance vector, the BIRCH algorithm was used to parti-
tion the dataset into subclusters. The choice of this clustering method was based its
superior performance compared to other unsupervised clustering methods in initial
trials. However, it is possible that other clustering methods could result in an even
better performance if parameters are further optimized. An adaptation that signifi-
cantly boosted performance was to only use a fraction of the data to construct the
BIRCH tree model.

In addition to grouping sequences based on VJ usage after clustering, we assessed
the effect of grouping sequences based on VJ usage before clustering. The potential
advantage of sequence grouping pre-clustering is that the data is split into smaller
subsets that are more amenable to pairwise comparison. Interestingly, this strat-
egy yielded small but insignificant improvements in runtime with similar clustering
quality.

The most significant advantage of Anchor Clustering over existing methods is that
it facilitates the clustering of millions of sequences with minor hardware and software
requirements. The fact that datasets with more than one million sequences using
existing methods could not be clustered with the computational means used in this
study may be due to the limited computational power used in this study but illus-
trates the potential of Anchor Clustering for large datasets. It might provide a tool to
explore the immune repertoire space across a large number of individuals or species.

There are several limitations to this study. First, Anchor Clustering requires the
definition of various hyperparameters that might affect performance. While we
attempted to characterize a broad range of settings using synthetic and biological
datasets, it is unlikely that our findings are universally applicable and individual data-
sets might require further refinement of hyperparameters. Second, the final step of

Page 15 of 17Chang et al. BMC Bioinformatics (2024) 25:42

Anchor Clustering still relies on pairwise comparison of nucleotide sequences, which
could hamper the analysis of very large datasets. Third, Anchor clustering has only
been tested on BCR nucleotide sequences. The use of Anchor Clustering on amino
acid data will likely require modifications, such as the consideration of physicochemi-
cal features of amino acids.

Conclusions
In summary, we present a novel clustering algorithm that can process million-scale
datasets than possible with existing methods, yet still obtain similar clustering quality.
Anchor Clustering could facilitate meta-analyses of immune repertoire datasets and help
characterize the immune repertoire sequence space in a more comprehensive manner.

Abbreviations
BCR B cell receptor
BIRCH Balanced iterative reducing and clustering using hierarchies
CDR3 Complementarity determining region 3
CLA Conway’s lexicode algorithm
CVO Conway’s variation operator
FN False negative
FP False positive
HD Hamming distance
J Joining
K Kilo
M Million
MS Multiple sclerosis
TCR T cell receptor
TP True positive
V Variable
VJ-Pre VJ grouping pre-clustering
VJ-Post VJ grouping post-clustering

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05659-z.

Additional file 1. Dataset sources and usage details in the analyses as well as a list of the parameters used in the
Anchor Clustering.

Additional file 2. Details about the CLA, CVO and Point Packing algorithms.

Additional file 3. Supplementary figures including the impact of junctional length on anchor number and runtime
(Figure S1), the effect of minimum distance ratio, population size and random material rate on the number of gener-
ated anchors and runtime (Figure S2) and the comparison of clustering performance between Anchor Clustering
and DefineClones using 40 simulated MS datasets (Figure S3).

Acknowledgements
We would like to dedicate this work to Daniel Ashlock, who passed away during the completion of this manuscript.
Dan was a prolific figure in evolutionary computation, bioinformatics, and mathematical biology. He used advanced
computational techniques to solve real-world problems. Dan served as a role model for us and made a difference in our
lives, for which we are grateful. We acknowledge the University of Guelph for supporting HC with International Graduate
Tuition Scholarships.

Author contributions
Conceptualization: SK, DA and HC; C++ core Point Packing algorithm: DA; Anchor Clustering Python code and bench-
mark analysis: HC; writing the original draft: HC; writing, review, and editing: SK and SPG; funding and resources: SK
and DA. All authors have agreed to submit the manuscript for publication. DA passed away during completion of the
manuscript. All living authors have read and approved the final manuscript.

Funding
Not Applicable.

Availability of data and materials
The source code and the data supporting of this work are available on https:// github. com/ skyle rchang/ Anchor_ Clust
ering_ Nt.

https://doi.org/10.1186/s12859-024-05659-z
https://github.com/skylerchang/Anchor_Clustering_Nt
https://github.com/skylerchang/Anchor_Clustering_Nt

Page 16 of 17Chang et al. BMC Bioinformatics (2024) 25:42

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 19 June 2023 Accepted: 16 January 2024

References
 1. Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol. 2018;34(6):441–57.
 2. Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the baseline human anti-

body repertoire. Nature. 2019;566(7744):393–7.
 3. Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med.

2015;7:1–14.
 4. Hou XL, et al. Current status and recent advances of next generation sequencing techniques in immunological

repertoire. Genes Immun. 2016;17(3):153–64.
 5. Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE, Egorov

ES, et al. Vdjdb: a curated database of t-cell receptor sequences with known antigen specificity. Nucl Acids Res.
2018;46(D1):419–27.

 6. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The immune epitope
database (iedb): 2018 update. Nucl Acids Res. 2019;47(D1):339–43.

 7. Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A, et al.
Epitope specific antibodies and t cell receptors in the immune epitope database. Front Immunol. 2018;9:2688.

 8. Hershberg U, Luning Prak ET. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos
Trans R Soc B Biol Sci. 2015;370(1676):20140239.

 9. Schattgen SA, et al. Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph
analysis (CoNGA). Nature Biotechnol. 2022;40(1):54–63.

 10. Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G, Kleinstein SH. Change-o: a toolkit for analyzing
large-scale b cell immunoglobulin repertoire sequencing data. Bioinformatics. 2015;31(20):3356–8.

 11. Briney B, Le K, Zhu J, Burton DR. Clonify: unseeded antibody lineage assignment from next-generation sequencing
data. Sci Rep. 2016;6(1):1–10.

 12. Gupta NT, Adams KD, Briggs AW, Timberlake SC, Vigneault F, Kleinstein SH. Hierarchical clustering can identify b cell
clones with high confidence in ig repertoire sequencing data. J Immunol. 2017;198(6):2489–99.

 13. Nouri N, Kleinstein SH. A spectral clustering-based method for identifying clones from high-throughput b cell
repertoire sequencing data. Bioinformatics. 2018;34(13):341–9.

 14. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen TH,
Kedzierska K, et al. Quantifiable predictive features define epitope-specific t cell receptor repertoires. Nature.
2017;547(7661):89–93.

 15. Zhang H, Liu L, Zhang J, Chen J, Ye J, Shukla S, Qiao J, Zhan X, Chen H, Wu CJ, et al. Investigation of antigen-specific
t-cell receptor clusters in human cancers. Clin Cancer Res. 2020;26(6):1359–71.

 16. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the mycobacterium tuberculosis immune response by
t-cell receptor clustering with gliph2 and genome-wide antigen screening. Nat Biotechnol. 2020;38(10):1194–202.

 17. Zhang H, Zhan X, Li B. Giana allows computationally-efficient tcr clustering and multi-disease repertoire classifica-
tion by isometric transformation. Nat Commun. 2021;12(1):1–11.

 18. Valkiers S, Van Houcke M, Laukens K, Meysman P. Clustcr: a python interface for rapid clustering of large sets of cdr3
sequences with unknown antigen specificity. Bioinformatics. 2021;37(24):4865.

 19. Raybould MIJ, et al. Thera-SAbDab: the therapeutic structural antibody database. Nucl Acids Res.
2020;48(D1):D383–8.

 20. Kovaltsuk A, et al. Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans
and mice. PLoS Comput Biol. 2020;16(2):e1007636.

 21. Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, Arnon T, Van Laethem F, Singer A, Lu J, et al. T
cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public cdr3
sequences. Elife. 2017;6:22057.

 22. Miho E, Roskar R, Greiff V, Reddy ST. Large-scale network analysis reveals the sequence space architecture of anti-
body repertoires. Nat Commun. 2019;10(1):1–11.

 23. Nouri N, Kleinstein SH. Optimized threshold inference for partitioning of clones from high-throughput b cell reper-
toire sequencing data. Front Immunol. 2018;9:1687.

 24. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, Huttner AJ, Laman JD, Nagra RM, Nylander
A, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med.
2014;6(248):248–107248107.

 25. Corrie BD, Marthandan N, Zimonja B, Jaglale J, Zhou Y, Barr E, Knoetze N, Breden FM, Christley S, Scott JK, et al.
ireceptor: a platform for querying and analyzing antibody/b-cell and t-cell receptor repertoire data across federated
repositories. Immunol Rev. 2018;284(1):24–41.

Page 17 of 17Chang et al. BMC Bioinformatics (2024) 25:42

 26. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CA, Weisman AR, Agyekum RS, Mathew D, Baxter AE,
Vella LA, et al. Comprehensive mapping of immune perturbations associated with severe covid-19. Sci Immunol.
2020;5(49):7114.

 27. Chang Y-H, Kuan H-C, Hsieh T, Ma K, Yang C-H, Hsu W-B, Tsai S-F, Chao A, Liu H-H. Network signatures of igg immune
repertoires in hepatitis b associated chronic infection and vaccination responses. Sci Rep. 2016;6(1):1–13.

 28. Vergani S, Korsunsky I, Mazzarello AN, Ferrer G, Chiorazzi N, Bagnara D. Novel method for high-throughput full-
length ighv-dj sequencing of the immune repertoire from bulk b-cells with single-cell resolution. Front Immunol.
2017;8:1157.

 29. Schultheiß C, Paschold L, Simnica D, Mohme M, Willscher E, von Wenserski L, Scholz R, Wieters I, Dahlke C, Tolosa E,
et al. Next-generation sequencing of t and b cell receptor repertoires from covid-19 patients showed signatures
associated with severity of disease. Immunity. 2020;53(2):442–55.

 30. Stoodley M, Ashlock D, Graether S. Data driven point packing for fast clustering. In: 2018 IEEE conference on compu-
tational intelligence in bioinformatics and computational biology (CIBCB). 2018;pp. 1–8. IEEE.

 31. Ashlock D, Chang H, Stoodley M. Odd distance anchors for rapid clustering. In: 2020 IEEE conference on computa-
tional intelligence in bioinformatics and computational biology (CIBCB). 2020;pp. 1–8. IEEE.

 32. Ashlock D, Graether S. Conway crossover to create hyperdimensional point packings, with applications. In: 2016 IEEE
congress on evolutionary computation (CEC). 2016;pp. 1570–1577. IEEE.

 33. Zhang T, Ramakrishnan R, Livny M. Birch: an efficient data clustering method for very large databases. ACM SIGMOD
Rec. 1996;25(2):103–14.

 34. Lindenbaum O, Nouri N, Kluger Y, Kleinstein SH. Alignment free identification of clones in b cell receptor repertoires.
Nucl Acids Res. 2021;49(4):21–21.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Anchor Clustering for million-scale immune repertoire sequencing data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Data
	Simulated BCR data
	Experimental BCR data

	Anchor Clustering workflow
	Overview
	Anchor selection
	Partitioning into subclusters
	Hierarchical clustering of subclusters

	Clustering performance evaluation
	Simulated BCR data
	Experimental BCR data
	Benchmarking Anchor Clustering

	Results
	Parameter optimization
	Point Packing parameter settings
	BIRCH parameter settings
	Cluster size threshold settings
	Distance threshold for hierarchical clustering
	Data fractions for model fitting

	Comparison with other methods
	Benchmarking clustering speed
	Benchmarking clustering quality

	Discussion
	Conclusions
	Acknowledgements
	References

