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Background
Adaptive immunity has evolved to recognize and combat a vast array of pathogens. A 
key mechanism of this flexible immune response is to generate a broad repertoire of 
highly polymorphic antigen receptors in lymphocytes by rearrangement of gene seg-
ments and the addition of random nucleotides. B cell receptors (BCRs), also known as 
immunoglobulins or antibodies, mediate humoral immunity by recognizing soluble 
antigens [1]. The possible number of unique human BCR sequences is estimated at  1012 
[2] for the naive repertoire. This diversity is further amplified when activated B cells 
undergo somatic hypermutation  during affinity maturation, theoretically elevating the 
diversity beyond  1014 [3].

Abstract 

Background: The clustering of immune repertoire data is challenging due 
to the computational cost associated with a very large number of pairwise sequence 
comparisons. To overcome this limitation, we developed Anchor Clustering, an unsu-
pervised clustering method designed to identify similar sequences from millions 
of antigen receptor gene sequences. First, a Point Packing algorithm is used to identify 
a set of maximally spaced anchor sequences. Then, the genetic distance of the remain-
ing sequences to all anchor sequences is calculated and transformed into distance vec-
tors. Finally, distance vectors are clustered using unsupervised clustering. This process 
is repeated iteratively until the resulting clusters are small enough so that pairwise 
distance comparisons can be performed.

Results: Our results demonstrate that Anchor Clustering is faster than existing pair-
wise comparison clustering methods while providing similar clustering quality. With 
its flexible, memory-saving strategy, Anchor Clustering is capable of clustering millions 
of antigen receptor gene sequences in just a few minutes.

Conclusions: This method enables the meta-analysis of immune-repertoire data 
from different studies and could contribute to a more comprehensive understanding 
of the immune repertoire data space.
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The complementarity determining region 3 (CDR3) is the most polymorphic part of the 
B and T cell receptor and determines antigen specificity; the resulting lymphocytes can 
recognize a wide range of distinct epitopes, and hence a diversified immune repertoire [4]. 
A challenge in understanding immune repertoires is the fact that different antigen recep-
tor sequences can bind to the same epitope [5–7], resulting in a many-to-one relation-
ship between the antigen receptor sequence and the cognate antigen. Antigen receptor 
sequences that exhibit similar junctional regions in the same individual are considered to 
have descended from a shared lymphocyte ancestor, indicating clonal relatedness [8, 9]. In 
addition, identical or similar clonotypes can occur in different individuals, a phenomenon 
termed "public clonotypes". To characterize clonal relatedness and identify public clono-
types, it is desirable to find an efficient method to cluster similar antigen receptor sequences 
based on the presumed epitope specificity.

In recent years, several methods have been described for the clustering of immune reper-
toire data. In general, clustering methods differ based on whether they process nucleotide 
[10–13] or amino acid sequences [14–18], and whether they target BCR or T cell recep-
tor (TCR) sequences. Typically, methods for TCR clustering use amino acid sequence data, 
while methods for BCR data use nucleotide sequences. The reason is that the tracing of 
clonal evolution during affinity maturation is relevant for BCR data only and requires a 
nucleotide-level resolution to detect synonymous substitutions. Moreover, with the appear-
ance of the therapeutic structural antibody database, clustering BCR based on their amino 
acid data would be meaningful in investigating the structural diversity of repertoires and 
developing applications in immunodiagnostics and immunotherapeutics [19, 20].

To identify related antigen receptor sequences, distance-dependent similarity metrics 
such as Hamming distance (HD) [12, 13] and Levenshtein distance [11, 21, 22] are com-
monly applied by pairwise sequence comparison of junctional sequences. Because the time 
for calculating all-versus-all comparisons rises quadratically with the number of antigen 
sequences (O(n2)), determining the genetic distance between all sequences using either 
method is not feasible for millions of nucleotide sequences. Consequently, a clustering algo-
rithm that circumvents the need for an all-versus-all sequence comparison would signifi-
cantly improve clustering performance.

Here we present Anchor Clustering, a novel approach for clustering of BCR nucleotide 
sequence data. Anchor Clustering incrementally partitions a dataset based on genetic 
distance to maximally spaced anchor sequences until each cluster is small enough to be 
amenable to pairwise sequence comparison. We show that Anchor Clustering can cluster 
datasets up to 10 times faster than existing methods at comparable clustering quality. In 
addition, Anchor clustering can cluster datasets with millions of sequences with minimal 
hardware requirements. This enables the meta-analysis of immune-repertoire data from 
different studies and could contribute to a more comprehensive understanding of the 
immune repertoire data space.

Methods
Data

Simulated BCR data

Simulated immune repertoire data with known clonal relationships (previously 
described in [12, 23]) were used in this work. These datasets were generated based on 
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the identified lineage tree topologies of four individuals (M2, M3, M4 and M5) with 
multiple sclerosis (MS) by picking a new germline sequence at random for each lineage 
and stochastically reintroducing mutations throughout the lineage branches [24]. This 
process was repeated 10 times for each individual, resulting in a total of 40 simulations 
(dataset group ‘MS’). In addition, we created 15 composite datasets by merging all 40 
simulated MS datasets, discarding ambiguous and duplicate sequences, and extracting 
10 kilo (K), 50 K and 100 K sequences with junctional lengths of 48, 51, 54, 57, and 60 
nucleotides, respectively (dataset group ‘MS-Mixed’). The details of each dataset and its 
usage are further summarized in Additional file 1.

Experimental BCR data

Experimental BCR repertoire data were obtained from the iReceptor platform [25] and 
are summarized in Additional file 1. To benchmark clustering speed, antigen receptor 
gene sequences from COVID-19 positive individuals and healthy controls [26] were ran-
domly selected and combined into 12 datasets ranging from 10 to 300 K sequences with 
ambiguous and duplicate sequences removed (dataset group ‘C19’). To test clustering 
performance on million-scale datasets, sequences from four different datasets (hepatitis 
B [27], chronic lymphocytic leukemia [28], systemic lupus erythematosus, and COVID-
19 [26, 29]) were randomly selected and combined at equal proportions to generate 
datasets ranging from 1 million (M) to 4 M unique sequences (dataset group ‘4 Diseases 
Mixed’).

Anchor Clustering workflow

Overview

Anchor Clustering integrates a Point Packing algorithm for anchor selection and unsu-
pervised learning for partitioning of sequences for rapid and accurate clustering (Fig. 1). 
After stratifying junctional sequences by length, several maximally spaced sequences are 
picked as anchor sequences using a Point Packing algorithm. Then, the HD to all anchor 
sequences is calculated for each remaining sequence and distances are concatenated into 
a distance vector. The dataset is then subdivided based on the distance vectors using 
the BIRCH algorithm. This workflow is repeated iteratively for each generated subcluster 
until every subcluster is smaller than a user-defined size threshold. Lastly, single link-
age hierarchical clustering is performed on each remaining subcluster, and the resulting 
clusters are cut using a user-defined threshold.

Anchor selection

Anchor sequences were selected using a Point Packing algorithm as described previ-
ously [30–32]. In short, Conway’s Lexicode Algorithm (CLA) takes a subset of points 
from a metric space, along with a specified minimum distance constraint, and produces 
the output set that satisfies the minimum distance requirement. In this study, junc-
tional sequences represented points and the HD was used as a distance measure. Con-
way’s Variation Operator (CVO) takes two subsets of packings with minimum distance 
constraints as the input and returns one set of packing as the output. Specifically, the 
union of these two subsets is augmented with random points, which are shuffled and run 
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through CLA to produce a new collection of points, still obeying the minimum distance 
constraint. Details of the CLA and CVO algorithms can be found in Additional file 2.

The Point Packing algorithm requires three user-defined hyperparameters—popu-
lation size, random material rate and minimum distance. Population size refers to the 
initial number of anchor sets. The random material rate is analogous to mutation and 
controls the number of sequences to be introduced. Minimum distance refers to the 
minimum HD between anchors and is dependent on the junctional length of sequences. 
To normalize the minimum distance parameter with respect to junctional length, we 
introduced a minimum distance ratio defined as minimum distance/junctional length. 
The following parameters were tested: minimum distance ratios {0.5, 0.6, 0.7, 0.8 and 
0.9}; population sizes {100, 250, 500, 750 and 1000}; random material rates {10, 25, 50, 75 
and 100}. This resulted in a total of 125 parameter combinations (5 × 5 × 5), which were 
applied to all 15 datasets of the dataset group ‘MS-Mixed’.

Partitioning into subclusters

After identifying anchor sequences, the distance of each remaining sequence to all anchor 
sequences was determined and the distance results were concatenated into a distance vec-
tor for each sequence. The dataset was then partitioned based on distance vectors using the 
BIRCH algorithm [33]. The BIRCH algorithm iteratively divides a single cluster into smaller 
clusters and requires the specification of a cluster number parameter and a radius thresh-
old. The number of clusters was set to the number of anchor sequences selected during 
Point Packing. The radius threshold determines whether a new sequence is merged into 
an existing subcluster or becomes a new subcluster. To characterize the effect of the radius 
parameter and anchor number on the clustering performance, the minimum distance ratios 

Fig. 1 Anchor Clustering workflow. Sequences are grouped by junctional length and processed 
independently. Anchor sequences are selected using a Point Packing algorithm, which ensures that the 
Hamming distance (HD) between any two selected anchors satisfies a minimum distance requirement. 
For every sequence, a distance vector is created by evaluating the HD of the sequence with every anchor. 
Next, the dataset is partitioned into subclusters based on the HD vectors using the BIRCH algorithm. If any 
of the resulting clusters is below a size threshold, sequences are clustered using single linkage hierarchical 
clustering. If a subcluster is larger than the size threshold, the process is repeated until all subclusters meet 
the size requirement
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{0.5, 0.6, 0.7, 0.8 and 0.9} and radius parameters {0.01, 0.05, 0.1 and 0.5} were tested on four 
simulated MS datasets (M2-1, M3-1, M4-1 and M5-1).

Hierarchical clustering of subclusters

Anchor selection and data partitioning are repeated iteratively until the number of 
sequences within a given subcluster falls below a user-defined size threshold. Sequences 
are then clustered using single linkage-based hierarchical clustering with a user-define 
normalized HD cut-off. To evaluate the effect of the subcluster size threshold on clus-
tering performance and speed, size thresholds {1000, 2000, 3000, 4000 and 5000} were 
applied to the four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1) utilizing sev-
eral minimum distance ratios {0.5, 0.6, 0.7 and 0.8}. To determine an optimal normalized 
HD threshold, we assessed clustering performance for different normalized HD values 
ranging from 0.1 to 0.2 with increments of 0.01.

Clustering performance evaluation

Simulated BCR data

The clustering quality of Anchor Clustering was evaluated based on sensitivity, preci-
sion, and F-measure using the 40 simulated MS datasets. True positives (TP) were 
defined as clonally related sequence pairs that were correctly clustered in the same clus-
ter. False Negatives (FN) were defined as clonally related sequence pairs that were falsely 
separated into different clusters. False positives (FP) were defined as clonally unrelated 
sequence pairs that were falsely clustered in the same cluster. Sensitivity (recall) and pre-
cision (positive predictive value) were calculated as follows:

The F measure (also known as the F score) was defined as the harmonic mean of sensi-
tivity and precision.

Experimental BCR data

Given that the clonal relationships in the experimental datasets are unknown, the evalu-
ation of clustering quality was carried out using retention and fraction metrics. A cluster 
was considered ‘pure’ if all sequences in a given cluster had the same disease label. If a 
cluster contained a single sequence only (i.e., a singleton), it was considered a pure clus-
ter. Singleton retention, i.e., the percentage of singletons in a dataset, was calculated by 
dividing the number of singletons by the total number of sequences.

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

FM =
2 ∗ Sensitivity ∗ Precision

Sensitivity+ Precision

Singleton Retention =
Singletons

Total sequences
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Similarly, the singleton fraction was calculated as the percentage of singletons divided 
by the total number of clusters, providing a measure of the proportion of clusters that 
were represented by singleton sequences.

Non-singleton retention was defined as the percentage of junctional sequences that 
appeared in all non-singleton pure clusters, divided by the total number of sequences.

Non-singleton fraction was calculated as the ratio of the number of non-singleton 
pure clusters to the total number of generated clusters, expressed as a percentage.

Benchmarking Anchor Clustering

To benchmark its performance, we compared Anchor Clustering to three existing BCR 
nucleotide sequence clustering tools: DefineClones [10], SCOPe [13] and an Align-
ment free method [34]. DefineClones uses a hierarchical-based clustering method 
with a specified linkage method and forms clusters using a bimodal distribution-
determined threshold. SCOPe is a spectral-based clustering method with an adaptive 
threshold to determine the local sequence neighborhood. The Alignment free method 
is based on natural language processing methodology and uses k-mer representations 
and re-weighting based on a numeric statistic reflecting the importance of k-mers in a 
sequence. The following distance clustering thresholds were tested: DefineClones with 
normalized HD {0.06, 0.08, 0.1, 0.12, 0.14 and 0.16}; SCOPe with upper-limit distance 
{0.04, 0.06, 0.08, 0.1 and 0.12}; Alignment free with cosine similarity {0.16, 0.18, 0.2, 0.22, 
0.24 and 0.26}. The distance clustering threshold that achieved maximum retention was 
chosen as the optimal threshold for each method and was used for comparing pure and 
non-pure clusters of classifying COVID-19 and Healthy labeled sequences in the data-
set ‘C19-K_Healthy_100K’. For parameters other than distance clustering thresholds, the 
default settings were used.

Runtime comparisons were performed using all datasets of the ‘C19’ dataset group 
and clustering performance (fraction and retention) was evaluated using the ‘C19- K_ 
Healthy_100K’ dataset. Benchmarking was performed on a MacBook Air computer 
equipped with an Apple M2 chip and 16 GB memory.

To further optimize the speed and quality of Anchor Clustering on million-scale 
datasets, we explored the benefit of grouping sequences based on variable (V) and join-
ing (J) gene usage before clustering (VJ grouping pre-clustering, shortened to VJ-Pre) 
as opposed to the workflow of grouping based on VJ usage after clustering (VJ group-
ing post-clustering, shortened to VJ-Post). If a junctional sequence had multiple V or 
J annotations, a cluster was greedily expanded if junctional sequences had at least one 
shared gene segment. Two Anchor Clustering strategies with normalized HD clustering 

Singleton Fraction =
Singletons

Total clusters

Non− singleton Retention =
Sequences in all non− singleton pure clusters

Total sequences

Non− singleton Fraction =
Pure non− singleton clusters

Total clusters
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thresholds from 0.08 to 0.16 with 0.02 increments were applied for achieving maxi-
mum non-singleton retention on the ‘C19-K_Healthy_100K’ dataset. To reduce memory 
requirements of clustering million-scale datasets (dataset group ‘4 Diseases Mixed’), we 
applied a 10% fraction of data levels to be trained in their BIRCH models.

Results
Parameter optimization

Point Packing parameter settings

First, we assessed the effect of junctional length on anchor number and runtime and 
found that the junctional length had a minor influence on both anchor number and 
runtime (Additional file 3: Fig. S1). This result was consistent across 15 composite data-
sets (dataset group ‘MS-Mixed’), regardless of dataset size. Given the negligible impact 
of junctional length on the results of Point Packing, subsequent results were represented 
as an average across all junctional lengths.

Next, we explored the effect of minimum distance ratio, population size and random 
material rate on the number of generated anchors and runtime (Additional file 3: Fig. 
S2). The minimum distance ratio had the most significant effect on both the number of 
generated anchors and runtime. The smaller the distance ratio, the higher the number 
of generated anchors and the longer the runtime. The random material rate had a minor 
effect on the number of generated anchors but increased the runtime for the minimum 
distance ratios between 0.7 and 0.9. Based on these findings, a population size of 1000 
and a random material rate of 0.5 were utilized as the default Point Packing parame-
ters, because these settings provided a reasonable balance between anchor number and 
runtime.

BIRCH parameter settings

After generating anchor sequences by Point Packing, Anchor Clustering partitions the 
data into clusters using the BIRCH algorithm, which requires the definition of a cluster 
number parameter and a radius threshold. Since the cluster number is defined by the 
number of generated anchors, the radius threshold was the only parameter that required 
optimization. A radius threshold of 0.5 yielded superior clustering performance com-
pared to lower radii (0.01, 0.05 and 0.1) (Fig. 2A). Of note, the poorer performance for 
lower radius values was associated with lower minimum distance ratios. When using a 
radius threshold of 0.5, a robust clustering performance with F-measure values consist-
ently exceeding 85% was observed across all four datasets, irrespective of the minimum 
distance ratio (Fig. 2B). Minimum distance ratios of 0.5 and 0.6 resulted in higher anchor 
numbers and F-measure values greater than 95% across all four datasets.

Cluster size threshold settings

Data partitioning by repeated cycles of anchor generation and BIRCH clustering contin-
ues until all resulting clusters fall below a specified cluster size threshold. To determine 
an optimal cluster size threshold, we assessed the effect of cluster size on clustering 
quality. Our results suggest that the optimal choice of a clustering threshold is depend-
ent on the minimum distance ratio during Point Packing (Fig. 3A). The use of smaller 
minimum distance ratio thresholds (0.5 and 0.6) resulted in above 90% F-measures for 
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all tested cluster size thresholds {1,000, 2000, 3000, 4000 and 5,000} on four simulated 
MS datasets. In contrast, larger distance thresholds (0.7 and 0.8) resulted in F-measure 
values between 80 and 90% for lower cluster size thresholds (1,000 and 2,000).

Next, we characterized the effect of cluster size threshold and minimum distance ratio 
on total runtime (Fig. 3B). For a minimum distance ratio of 0.5, the total runtime was 
markedly longer than for higher distance ratios. This was because multiple cycles of 
Point Packing and BIRCH clustering were required while for minimum distance ratios 
above 0.5, the total runtime essentially equaled the time for pairwise comparison. The 
cluster size threshold was positively correlated with total runtime, which is reflective of 
computational cost of pairwise sequence comparison. All effects were independent of 
the dataset used. The fastest runtime was achieved using a minimum distance ratio of 
0.6 with 1000 sequences as the size threshold in the four simulated MS datasets, and 
such settings were set as default in Anchor Clustering.

Distance threshold for hierarchical clustering

Following pairwise sequence comparison, sequences are clustered based on normalized 
HD using hierarchical clustering and a specified distance threshold. Relaxing the strin-
gency of clustering by increasing the normalized HD threshold resulted in a decrease 
in clustering quality (Fig. 3C). This was especially obvious for the M2-1 dataset, which 
showed poor F-measure and precision metrics for distance threshold values above 0.15. 
Raising the cut-off resulted in more sequences that were clustered erroneously, yield-
ing a lower precision and a higher false positive rate. Conversely, lowering the cut-off 
separated related sequences, resulting in a lower true positive rate and lower sensitivity. 
The other three datasets did not demonstrate significant changes except for high cut-off 

Fig. 2 A Clustering performance (F-measure) of four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1) 
under four minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and BIRCH radii {0.01, 0.05, 0.1 and 0.5}. B Clustering 
performance (F-measure) of four MS datasets (M2-1, M3-1, M4-1 and M5-1) under four minimum distance 
ratios {0.5, 0.6, 0.7 and 0.8} with the same BIRCH radius 0.5
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values for the M4-1 and M5-1 datasets. For all four simulated MS datasets, a normalized 
HD cut-off threshold of 0.12 yielded the best performance.

Data fractions for model fitting

To reduce memory usage, we explored the benefit of stochastically sampling a subset 
of sequences for constructing the BIRCH model. When comparing the clustering per-
formance using 10%, 30%, 50% and 100% of the data to fit the BIRCH model, most 
junctional lengths exhibited over 95% F-measures for all four fractions of data used for 
model fitting (Fig. 4A). The average F-measures across all junctional lengths in 10 simu-
lated MS datasets were consistently above 95% when utilizing different fraction settings 
in four groups (Fig. 4B) and a One-Way ANOVA did not yield significant differences in 

Fig. 3 A Clustering performance (F-measure) of four simulated MS datasets (M2-1, M3-1, M4-1 and M5-1) 
under the parameter settings of minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and size thresholds {1000, 
2000, 3000, 4000 and 5000}. B Runtime (in minutes) of four simulated MS datasets (M2-1, M3-1, M4-1 and 
M5-1) under the parameter settings of four minimum distance ratios {0.5, 0.6, 0.7 and 0.8} and size thresholds 
{1000, 2000, 3000, 4000 and 5000}. C  Clustering performance (F-measure, sensitivity, and precision) of four 
simulated MS datasets (M2-1, M3-1, M4-1 and  M5-1) with normalized HD cut-offs ranging from 0.1 to 0.2 with 
0.01 unit increments
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clustering performance among the groups. These results suggest that a fraction of 10% of 
the data is sufficient for fitting the BIRCH model.

Comparison with other methods

Benchmarking clustering speed

To benchmark the runtime of Anchor Clustering, we compared its performance 
against three previously published BCR clustering methods (DefineClones, SCOPe and 
Alignment free) using non-synthetic datasets from COVID-19 and healthy individu-
als (Fig. 5A). All methods performed similarly up to a dataset size of 100 K sequences. 
However, a further increase in the dataset size resulted in an exponential, and ultimately 
prohibitive, increase in runtime for all methods except Anchor Clustering. To further 
characterize the performance of Anchor Clustering, we tested its runtime on data-
sets with up to 4 M sequences (Fig. 5B). By limiting the fraction of data used to fit the 
BIRCH models to 10%, Anchor Clustering successfully clustered datasets from 1 to 4 M 
sequences, and dataset ‘4_Diseases_Mix_4M’ in less than 30 min using a MacBook Air 

Fig. 4 A The clustering performance of 40 simulated MS datasets (M2, M3, M4, and M5) was evaluated under 
different fractions of data {10%, 30%, 50% and 100%} that were fitted into BIRCH models. B The average 
clustering performance of each simulated MS dataset was evaluated across all junctional lengths for four 
fractions {10%, 30%, 50% and 100%}
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Apple M2 chip with 16 GB Memory. Of note, one of the merged datasets (hepatitis B 
[27]) contained a high number of sequences with multiple V gene segment labels, which 
rendered the Anchor Clustering with VJ-Pre method less effective but still slightly faster 
than VJ-Post.

Benchmarking clustering quality

When compared against DefineClones, Anchor Clustering exhibited a similar cluster-
ing performance on the 40 simulated datasets. For each simulated dataset, the cluster-
ing threshold for DefineClones was determined by the findThreshold function from the 
SHazaM R package [10]. For Anchor Clustering, the default parameters were used. The 
DefineClones method yielded higher F-measure and sensitivity values in 40 simulated 
MS datasets, while Anchor Clustering had a higher precision (Additional file 3: Fig. S3). 
Due to the lack of complete VDJ sequences in the 40 simulated datasets, the SCOPe and 
Alignment free methods could not be applied.  To further benchmark clustering qual-
ity, we compared Anchor Clustering with existing BCR clustering methodologies using 
the ‘C19-K_Healthy_100K’ dataset that included COVID-19 (moderate and severe) 
and Healthy control labels. We assessed singleton retention and non-singleton reten-
tion (Fig. 6A) and singleton fraction and non-singleton fraction (Fig. 6B) with different 
distance clustering thresholds for each method. Both singleton metrics reflect the clus-
tering algorithm’s ability to retain relevant information and avoid the fragmentation of 
relevant data points into separate clusters. The higher the fraction and retention values, 
the better the performance of the clustering method. These metrics were utilized to eval-
uate the performance of the clustering methods in grouping similar sequences together, 
while also accurately separating dissimilar sequences. The Alignment free methodol-
ogy with a cosine similarity threshold of 0.22 showed the highest percentage (55%) of 
non-singleton retention. Anchor Clustering using VJ-Pre method with a normalized HD 
threshold of 0.1 demonstrated the second-highest ratio (49%). SCOPe with an upper-
limit distance threshold of 0.06 demonstrated the third-highest ratio (47.9%). However, 
the SCOPe method without a threshold was faster, but fewer sequences were correctly 
clustered. DefineClones with a normalized HD threshold of 0.1 and Anchor Clustering 
using VJ-Post with a threshold of 0.1 achieved ratios of 45.8% and 44.3%, respectively. 

Fig. 5 A Runtime comparisons (in minutes) of different BCR clustering methods on the dataset group ‘C19’ 
(C19-K_Healthy_datasets) from 10 to 100 K with 10 K increments, 200 K, and 300 K. B Runtime (in minutes) of 
Anchor Clustering on the dataset group ‘4 Diseases Mixed’ with dataset sizes of 1 M, 2 M, 3 M and 4 M (using 
10% of the data for fitting the BIRCH models) with Python version 3.10, MacBook Air Apple M2 chip with 
16 GB Memory
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As the clustering thresholds for each method decreased, the singleton retention ratio 
increased gradually. On the other hand, DefineClones and Anchor Clustering VJ-Post 
method showed the highest singleton fractions, accounting for approximately 80% of all 
the clusters compared to other methods, while the Alignment free method with varied 
thresholds presented the highest non-singleton fractions.

We then compared pure clusters that were generated by different methods (Fig. 6C) 
using their best performing settings (highest ratio of sequences to be clustered into 
pure clusters). Both Anchor Clustering and DefineClones showed very similar cluster-
ing results. The Alignment free approach yielded the largest pure cluster and the clus-
ter with the largest edit distance between sequences. This is likely because the method 

Fig. 6 Comparisons of singleton retention and non-singleton retention ratios (A) and singleton fraction and 
non-singleton fraction ratios (B) with different BCR clustering methods and varying clustering thresholds 
on the ‘C19-K_Healthy_100K’ dataset. Comparisons of generated pure clusters (C) and non-pure clusters (D) 
with benchmarking methods on the ‘C19-K_Healthy_100K’ dataset with their optimal clustering thresholds. 
Comparison of singleton retention and non-singleton retention ratios (E) and singleton fraction and 
non-singleton fraction ratios (F) with Anchor Clustering using VJ-Pre and VJ-Post methods on the dataset 
group ‘4 Diseases Mixed’ with dataset size of 1 M, 2 M, 3 M and 4 M
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defines clusters based on the re-weights of k-mer similarity without requiring an identi-
cal junctional length of sequences. Both, the SCOPe and Alignment free methods failed 
to identify the second and third largest pure ‘COVID-19 severe’ clusters, unlike the 
Anchor Clustering and DefineClones methods. Furthermore, Anchor Clustering with 
VJ-Pre was able to identify the fourth largest pure ‘COVID-19 moderate’ cluster, while 
Anchor Clustering with VJ-Post and the DefineClones method did not.

We also observed differences in the clustering results for non-pure clusters (Fig. 6D). 
The SCOPe method generated 4 large impure clusters with sizes greater than 300 
sequences, which contained sequences from all three labels. Similarly, the Alignment 
free method also generated one large impure cluster with more than 300 sequences. 
Among clusters with less than 100 sequences, the Alignment free method showed higher 
ratios of impure clusters with three labels compared to the SCOPe method. In contrast, 
both Anchor Clustering and DefineClones methods demonstrated 4 intermediate sizes 
of ‘COVID-19 severe’ dominant clusters and fewer ratios of non-pure clusters with three 
different labels.

With respect to grouping sequences based on VJ usage before clustering (VJ-Pre) as 
opposed to the default workflow of grouping sequences after clustering (VJ-Post), we 
found that the clustering quality was similar for both methods across all 4 million-scale 
datasets (Fig. 6E and F). Anchor Clustering with VJ-Pre generally exhibited higher ratios 
of non-singleton retention and non-singleton fraction than VJ-Post clustering across 
four datasets. Despite these differences in performance, the ratio of impure clusters 
among the four datasets remained relatively consistent, with no more than 2% of all the 
generated clusters using both methods.

Discussion
The widespread application of high-throughput sequencing for immune repertoire 
analyses is generating vast amounts of data, which represents a challenge with respect 
to data analysis. Clustering methods to identify clonally related sequences commonly 
rely on pairwise comparison of nucleotide sequences or k-mers, which is computation-
ally intensive and potentially prohibitive for large datasets. Instead of determining the 
genetic distance between all sequences of a given dataset directly, Anchor Clustering 
partitions sequences before performing pairwise distance analyses. This is achieved by 
selecting a set of maximally spaced sequences as anchors and triangulating the relative 
position of each remaining sequence with respect to the anchor reference points. The 
resulting distance vectors are then clustered using unsupervised machine learning. This 
strategy significantly reduces the number of pairwise comparisons resulting in faster 
runtime and reduced memory requirements compared to existing methods.

A key consideration for determining the optimal parameter settings for Point Pack-
ing was to minimize runtime while ensuring a high quality of clustering. The mini-
mum distance ratio, which defines the minimum distance between anchor sequences, 
had a significant impact on these performance metrics. A complicating factor in 
optimizing this parameter was that the number of generated anchors, is depend-
ent on the size of a given dataset and the relatedness of its sequences. More closely 
related sequences require a lower minimum distance ratio than more distantly related 
sequences to obtain a given number of anchors. Increasing the minimum distance 
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ratio between anchors resulted in fewer anchors and hence fewer sequence-to-anchor 
comparisons, which reduced total runtime. However, this also resulted in larger sub-
clusters, which increased the number of partitioning cycles required to split a dataset 
into sufficiently small clusters for pairwise sequence comparison. In addition, for the 
smallest dataset M3-1, no anchors were obtained using a distance ratio of 0.9, sug-
gesting that the use of high distance ratios may render the algorithm inapplicable for 
datasets of limited size or closely related sequences. Consequently, optimization of 
parameter settings for Point Packing requires the consideration of the entire work-
flow and reflects a balance between optimizing anchor selection by Point Packing and 
sequence partitioning by unsupervised clustering.

Following anchor selection, each nucleotide sequence is converted into a distance 
vector that reflects its genetic distance to all anchor sequences. In this study, we 
chose Hamming distance as a distance metric, which is straightforward to compute 
but requires prior partitioning of sequences based on junctional length. While the lat-
ter allowed us to improve speed by multi-processing, this approach precludes detec-
tion of similar sequences with differing length. This contrasts with methods such as 
the Alignment free method, which is based on k-mer frequencies and hence capable 
of clustering similar sequences with differing length. Using a different distance metric 
such as the Levenshtein distance could potentially alleviate this shortfall but was not 
explored in this study.

After conversion into a distance vector, the BIRCH algorithm was used to parti-
tion the dataset into subclusters. The choice of this clustering method was based its 
superior performance compared to other unsupervised clustering methods in initial 
trials. However, it is possible that other clustering methods could result in an even 
better performance if parameters are further optimized. An adaptation that signifi-
cantly boosted performance was to only use a fraction of the data to construct the 
BIRCH tree model.

In addition to grouping sequences based on VJ usage after clustering, we assessed 
the effect of grouping sequences based on VJ usage before clustering. The potential 
advantage of sequence grouping pre-clustering is that the data is split into smaller 
subsets that are more amenable to pairwise comparison. Interestingly, this strat-
egy yielded small but insignificant improvements in runtime with similar clustering 
quality.

The most significant advantage of Anchor Clustering over existing methods is that 
it facilitates the clustering of millions of sequences with minor hardware and software 
requirements. The fact that datasets with more than one million sequences using 
existing methods could not be clustered with the computational means used in this 
study may be due to the limited computational power used in this study but illus-
trates the potential of Anchor Clustering for large datasets. It might provide a tool to 
explore the immune repertoire space across a large number of individuals or species.

There are several limitations to this study. First, Anchor Clustering requires the 
definition of various hyperparameters that might affect performance. While we 
attempted to characterize a broad range of settings using synthetic and biological 
datasets, it is unlikely that our findings are universally applicable and individual data-
sets might require further refinement of hyperparameters. Second, the final step of 
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Anchor Clustering still relies on pairwise comparison of nucleotide sequences, which 
could hamper the analysis of very large datasets. Third, Anchor clustering has only 
been tested on BCR nucleotide sequences. The use of Anchor Clustering on amino 
acid data will likely require modifications, such as the consideration of physicochemi-
cal features of amino acids.

Conclusions
In summary, we present a novel clustering algorithm that can process million-scale 
datasets than possible with existing methods, yet still obtain similar clustering quality. 
Anchor Clustering could facilitate meta-analyses of immune repertoire datasets and help 
characterize the immune repertoire sequence space in a more comprehensive manner.
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