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Abstract 

Background:  Strongly multicollinear covariates, such as those typically represented 
in metabolomics applications, represent a challenge for multivariate regression analy-
sis. These challenges are commonly circumvented by reducing the number of covari-
ates to a subset of linearly independent variables, but this strategy may lead to loss 
of resolution and thus produce models with poorer interpretative potential. The aim 
of this work was to implement and illustrate a method, multivariate pattern analysis 
(MVPA), which can handle multivariate covariates without compromising resolution 
or model quality.

Results:  MVPA has been implemented in an open-source R package of the same 
name, mvpa. To facilitate the usage and interpretation of complex association patterns, 
mvpa has also been integrated into an R shiny app, mvpaShiny, which can be accessed 
on www.​mvpas​hiny.​org. MVPA utilizes a general projection algorithm that embraces 
a diversity of possible models. The method handles multicollinear and even linear 
dependent covariates. MVPA separates the variance in the data into orthogonal 
parts within the frame of a single joint model: one part describing the relations 
between covariates, outcome, and explanatory variables and another part describing 
the “net” predictive association pattern between outcome and explanatory variables. 
These patterns are visualized and interpreted in variance plots and plots for pat-
tern analysis and ranking according to variable importance. Adjustment for a linear 
dependent covariate is performed in three steps. First, partial least squares regression 
with repeated Monte Carlo resampling is used to determine the number of predic-
tive PLS components for a model relating the covariate to the outcome. Second, 
postprocessing of this PLS model by target projection provided a single component 
expressing the predictive association pattern between the outcome and the covari-
ate. Third, the outcome and the explanatory variables were adjusted for the covariate 
by using the target score in the projection algorithm to obtain “net” data. We illustrate 
the main features of MVPA by investigating the partial mediation of a linearly depend-
ent metabolomics descriptor on the association pattern between a measure of insulin 
resistance and lifestyle-related factors.
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Conclusions:  Our method and implementation in R extend the range of possible 
analyses and visualizations that can be performed for complex multivariate data struc-
tures. The R packages are available on github.com/liningtonlab/mvpa and github.com/
liningtonlab/mvpaShiny.

Keywords:  Multivariate pattern analysis, Multicollinear covariates, Net association 
patterns, Latent variable projection, Covariate projection, Target projection

Introduction
Data are increasingly multivariate and collinear within most application areas. This 
has caused a steady increase in the use of latent variable projection (LVP) methods for 
data analysis and modeling [1] and references therein. LVP methods provide associa-
tion patterns as linear combinations of the measured variables. They share a common 
mathematical basis, but the appropriate methods to use are selected according to cri-
teria relevant for the problem at hand. Principal component analysis (PCA) [2] for data 
exploration and partial least squares (PLS) for regression modeling [3] are LVP methods 
that are currently used on a routine basis. These and other available methods can be 
described within a general projection algorithm [4], which has been expanded with cri-
teria facilitating interpretation and visualization of models [5] and references therein.

Multivariate pattern analysis (MVPA) [6, 7] is a variant of latent variable regression 
(LVR) focusing on interpretation and visualization of collinear data in terms of predic-
tive association patterns. The key steps of MVPA are as follows: (i) Quantify, visualize, 
and adjust for the influence of covariates on the outcome and the explanatory variables. 
(ii) Use PLS regression with repeated Monte Carlo resampling [8] to obtain a predictive 
model between the adjusted (net) outcome and explanatory variables. (iii) Postprocess 
the PLS model by performing a target projection (TP) [5, 9] to obtain the predictive 
association pattern of the explanatory variables to the outcome. (iv) Calculate measures 
of variable importance, e.g., selectivity ratio [10], to quantify and visualize the net asso-
ciation patterns.

When using multiple linear regression (MLR), explanatory variables (including covari-
ates) are traditionally mutually adjusted by their inclusion in a joint statistical model, 
given that this model allows for interpretation of the explanatory variables’ independ-
ent associations with the outcome. However, this procedure is not suited for multicol-
linear descriptors where associations are not independent but collinear and even linearly 
dependent. When the mutual correlations of covariates are relatively weak, the influ-
ence of covariates can be eliminated by regressing either the explanatory variables or 
the outcome (or both) on the covariates using MLR and applying the residuals from 
these models in further analysis [7]. However, when the correlations are strong, this is 
no longer a suitable approach. To solve this problem, we used principal components to 
adjust for even linearly dependent covariates and developed tools to quantify and visu-
alize the influence of covariates on association patterns by, e.g., variance plots [11, 12]. 
However, many principal components are usually needed to represent the covariates, 
which is a drawback for interpretation and visualization. Thus, we recently refined this 
procedure by regressing linear dependent covariates on the outcome using PLS and then 
postprocessing by target projection to obtain the predictive association pattern of the 
covariates to the outcome [13]. The score on the target component, for each multivariate 
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covariate, was subsequently used in a covariate projection to adjust both outcome and 
explanatory variables for the covariates prior to further modelling.

MVPA is a general tool for modeling, interpretation, and visualization of association 
patterns in the presence of covariates. In the next section, we describe the projection 
algorithm, how to handle univariate and multivariate covariates using this algorithm, 
and the main features of our MVPA software. We then apply the software to quantify 
how a linearly dependent metabolomics covariate partially mediates the association 
between lifestyle-related factors and a measure of insulin resistance. This application 
aims to show the data-analytical steps and some important visualization tools that are 
available in the developed software.

Methods, algorithms, and software
This section summarizes the key elements of our approach and the software.

Problem specification

The aim is to model the net association pattern between an outcome y and M explana-
tory variables, {x1, x2, …, xM}, in the presence of K variables, {z1, z2, …, zK}, covarying 
with the outcome and the explanatory variables. The net association pattern is defined as 
the pattern obtained after removal of the influence of covariates. The vector y contains 
the measurements for y and the matrices X and Z, the corresponding measurements for 
the x- and z-variables, respectively. The covariates can, for instance, be confounders or 
mediators, as in the application we use to illustrate the approach and the software below. 
Covariates can be univariate or multivariate. In the application studied here, we have 
both univariate and multivariate covariates.

The net vector ynet and net matrix Xnet for the outcome and explanatory variables, 
respectively, are defined as:

Here, ŷcov and X cov represent the part of y and X explained when regressing them on 
the covariates using the projection methods discussed in the next sections.

The vector of net regression coefficients bnet is subsequently derived from the regres-
sion model

Equations (1a), (1b), and (2) imply the following decompositions of y and X:

where ey and EX correspond to the residual vector and matrix for y and X, respectively, 
after accounting for the predictive parts of the covariates and the outcome and the 
explanatory variables.

(1a)ynet = y − ŷcov

(1b)Xnet = X − X̂ cov

(2)ynet = Xnetbnet + ey

(3a)y = ŷcov + ŷnet + ey

(3b)X = X̂ cov + X̂net + EX
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Latent‑variable projection methods

LVP methods decompose multicollinear data into linear combinations of the measured 
variables according to criteria adapted to solve the problem at hand. The projection algo-
rithm [4, 5] consists of four steps:

For a = 1,2, …, A

1.	 Select a weight vector wa normalized to unit length, i.e., ‖wa‖ = 1.
2.	 Calculate the score vector ta as ta = Xawa.
3.	 Calculate the loading vector pa as pa = Xa

Tta/(ta
Tta).

4.	 Remove dimension a from Xa by subtracting the product of the score and loading 
vector, Xa+1 = Xa − tapa

T.

A is the total number of latent variables extracted.
The algorithm is initialized with X1 = X, i.e., the column-centered (and pretreated) 

matrix X.
Initiate the algorithm with a randomly chosen weight vector and iterate between 2 

and 3 until p1/‖p1‖ = w1. This uniquely defines the first principal component. After the 
orthogonalization in step 4, the second principal component can be extracted in the 
same way. The process continues until the A components have been calculated.

Using the normalized vector of covariances between the explanatory variables and the 
outcome as a weight vector in step 1, i.e., wa = Xa

Ty/‖Xa
Ty‖, provides the PLS solution. 

The number of PLS components is determined by optimizing the predictive ability of 
the model. Several procedures have been developed for this purpose. MVPA uses a pro-
cedure based on repeated Monte Carlo resampling [8]. Figure 1 describes the algorithm 
used in this work.

Fig. 1  Flow diagram of the repeated Monte Carlo resampling algorithm used to validate the PLS models. 
This automatic procedure only needs three user defined inputs: i the number of repetitions, ii the maximum 
number of components in PLS models, and, iii the fraction of the distribution of the root mean squared 
prediction errors (RMSEPs) for the PLS model with lowest median that is higher than the median RMSEP for 
the model with one PLS component less. This fraction must be lower than 0.5 in order to protect against 
overfitting
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Other choices for projections are available. By means of target projection (TP) [5, 9, 
14], a single predictive latent variable is produced quantifying the association pattern 
between the outcome and the explanatory variables. In our MVPA implementation, 
the target component is derived from a validated PLS model by choosing the normal-
ized regression vector b for the PLS model as the weight vector, i.e., wTP = b/‖b‖ in the 
projection algorithm above, but the regression vector from other regression techniques 
can be used as well. Target projection provides a single pair of score and loading vec-
tors, denoted tTP and pTP, respectively, which optimally describe the association pattern 
of the x-variables with the predicted y-variable. Thus, the projection algorithm is used 
twice: first, to derive a validated PLS model, and second, to calculate a single predic-
tive latent variable expressing the predictive association pattern. Below, we show how the 
same targeted approach can be used to handle multivariate covariates.

Projections to quantify and isolate the influence of covariates

The aims of our approach to handle covariates are two-fold: (i) determine how covari-
ates influence the predictive association pattern between the outcome variable and the 
explanatory variables, and (ii) remove the influence of the covariates on the outcome 
and explanatory variables to determine the net (independent) association pattern of the 
explanatory variables to the outcome. Covariates are often present as confounders in 
statistical analysis, but covariates may also appear in a broader and more complex con-
text, as in our application below.

Consider first the case of a single univariate covariate. By using the projection algo-
rithm above, it is possible to eliminate the influence of the covariate on both the out-
come y and the explanatory variables X simultaneously by simply augmenting the 
column-centred matrix X with one extra column for the centred outcome y and one for 
the centred covariate z to create the matrix Xaug,1 = [y z X]. We define the corresponding 
covariate projection (CP) through the weight vector wCP with all elements equal to zero 
except the element corresponding to the position of the covariate in Xaug,1 and carry out 
steps 2–4 in the projection algorithm above.

The column in the residual matrix Xaug,2 corresponding to the outcome variable is 
then ynet = y −  y(zTy)/(zTz), which is the residual of y obtained by regressing the out-
come on the covariate. Similarly, the residual vectors of the x-variables after CP on the 
covariate are xnet,i = xi − xi(zTxi)/(zTz) for i = 1,2, …,M. The column in Xaug,2 represent-
ing the residuals of the covariate after CP is a vector where all elements are zero, i.e., 
ez = z − z(zTz)/(zTz) = 0. Thus, for a single covariate, the residual matrix Xaug,2 contains 
the adjusted outcome and explanatory variables and a column of zeros for the covariate.

Generalization to A covariates, not being multicollinear, is straightforward: Augment 
X by one column for each covariate to produce the matrix Xaug,1 = [y Z X]. Then, perform 
the CP procedure as many times as there are covariates. The elements in the residual 
matrix Xaug,A+1 are zero for all the covariates.

Strategy to handle multicollinear covariates

Adjustments can be performed stepwise for each covariate using the projection algo-
rithm as shown in the previous section, but adjustment of outcome and explanatory 
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variables to obtain net data can also be achieved by calculating regression models 
including all the covariates simultaneously:

The residuals ynet and {xnet,i, i = 1, 2, …, M} are subsequently used in Eq. 2 to calcu-
late the net regression coefficients associated with the outcome and the explanatory 
variables.

Assuming that the matrix Z is of full rank, MLR can be used to calculate the regres-
sion vectors from Eqs. (4a) and (4b). However, multivariate covariates may be linearly 
dependent, implying that the assumption of full rank fails. In such cases, PLS can be 
used to solve Eqs.  4a and 4b by calculating a Moore–Penrose pseudoinverse [15] to 
establish the relation of the covariates to the outcome and the explanatory variables. 
However, a drawback is the interpretation and visualization of models since more than 
one PLS component is usually needed to represent a multivariate covariate. However, 
this can be circumvented by using target projection as a postprocessing step.

In the case of linear dependency among covariates, we cannot use the projection algo-
rithm for the covariates directly. For such cases, we first use PLS to model the relation 
between the outcome and the multivariate covariate, then use the projection algorithm 
to obtain a single predictive target component and, finally, adjust for the multivariate 
covariate in a covariate projection using the score vector for the target component [13]. 
This procedure retains the option of using the projection algorithm above stepwise and 
thus relating single or groups of covariates to their specific association patterns with 
outcome and exploratory variables, providing enhanced possibilities for interpretation.

Figure 2 shows the procedure for a single multicollinear covariate. The mediator in this 
work represents an example of such a covariate. The method can handle more complex 
situations with several and different kind of covariates as illustrated in our application 
where covariate projections are performed in a stepwise manner: First, for the confound-
ers age and sex represented by single variables, and, subsequently, for the multicollinear 
mediating lipoprotein profile represented by the target component score. Note that it 
is not mathematically necessary to adjust the explanatory variables for the mediator to 
obtain the relation of the net explanatory to the net outcome. By adjusting the outcome 
for the mediator, we have already removed the possibility of this part of the associa-
tions to influence the model after adjustment. We adjust the explanatory variables in our 
implementation for two reasons: i) to obtain a general algorithm for covariate projection 
and, ii) to obtain a variance plot that includes the variance pattern relating the mediator 
to the explanatory variables as it does for confounders and potentially other covariates.

Total model and variance plot

As shown by Eq. 3a, our approach to adjust for covariates, separates the matrix X into 
orthogonal parts within the frame of a single model. After postprocessing the PLS model 
relating ynet to Xnet using repeated Monte Carlo resampling by target projection, we can 
rewrite the total model (Eq. 3b) for X as

(4a)y = ZbZ,y + ynet

(4b)xi = ZbZ,xi + xnet,i {i = 1, 2, . . . ,M}
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where nCP is the number of covariate projections performed.
Thus, we first use the projection algorithm to isolate the part of X related to the covari-

ates in the matrix, X̂ cov , and second, we calculate a validated PLS model for the associations 
between the adjusted outcome and explanatory variables that is postprocessed by target 
projection using the weight vector wnet,TP = bnet/‖bnet‖ to obtain the contribution Xnet,TP 
related to the adjusted outcome. Thus, the total model partitions the variance of X into a 
description of the covariates, the adjusted predictive part of X associated with the outcome, 
and a residual matrix EX,TP. The partition of X provides the basis for model visualization in 
a variance plot [11].

It is possible to further partition the variance of the residual matrix using, e.g., PCA, to 
reveal association patterns unrelated to the outcome [16].

The outcome is similarly partitioned as

Visualization of variance patterns

Variance patterns displaying how outcome and explanatory variables relate to covariates 
and to each other can be calculated from Eqs. 5a and 5b and visualized in variance plots. 
For the application in this work, the variance is decomposed as

(5a)X = X̂ cov + X̂net,TP + EX ,TP =
∑nCP

a=1
X̂ cov,a + tnet,TPp

T
net,TP + EX ,TP

(5b)y =
∑nCP

a=1
ŷcov,a + ŷnet + ey

(6a)X = X̂Age + X̂Sex + X̂Lipoproteins + X̂net,TP + EX ,TP

(6b)y = ŷAge + ŷSex + ŷLipoproteins + ŷnet + ey

Fig. 2  Flow diagram of covariate projection for a multicollinear covariate, i.e., the mediating lipoproteins in 
this work. Note that the projection step includes the mediator. This is necessary to be able to calculate the 
variance pattern of the mediator. The variance pattern of all covariates is displayed in variance plots which are 
crucial for interpretation
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The interpretability of variance plots is improved by including covariates in addition to 
outcome and explanatory variables.

For the study of variance patterns and variable importance in models, we have devel-
oped several measures [17]. The choice of measure depends on the objectives of the 
application. Here, we want to see the changes in pattern accompanying confounder pro-
jections and a mediator projection. The best measure for this purpose is the selectivity 
fraction (SF) plot:

The only difference between SF and the more commonly used selectivity ratio (SR) is 
the division by total variance ‖xi‖2 instead of the residual variance ‖ei,TP‖2. By relating 
variable importance to the fraction of total variance, we obtain a measure of explained 
predictive variance for the explanatory variables varying between − 1 and + 1. We use 
Eq. 7 for both unadjusted and adjusted data in this work.

Other options are available for interpretation of patterns and variable importance in 
models. Comparative studies performed by Farres et al. [18] and Mehmood et al. [19] 
confirm the usefulness of the selectivity ratio and thus the related measure selectivity 
fractions. A comparison with other available measures is outside the scope of this work.

Software description

The projection algorithm for the various steps was implemented in an open-source R 
package called mvpa. The software is available on GitHub (github.com/liningtonlab/
mvpa). To facilitate data handling and processing, we integrated the mvpa R package 
into an R shiny graphical user interface called mvpaShiny (github.com/liningtonlab/
mvpaShiny). The packages were designed to be a broadly applicable toolbox for multi-
variate datasets, allowing stepwise adjustment for variables and analysis of associations. 
A detailed description of how to install and use the packages is available on the associ-
ated documentation page (https://​linin​gtonl​ab.​github.​io/​mvpaS​hiny_​docum​entat​ion). 
Both packages have been developed in R version 4.2 and make use of popular packages 
from tidyverse [20] for dataset handling and plotly [21] for interactive plotting. The basic 
PLS regression algorithm is from the chemometrics package of Filzmosers and Varmuza 
[22], but the validation of predictive PLS components uses the repeated Monte Carlo 
resampling algorithm of Kvalheim et al. [8]. For the generation of the shiny app, we used 
the packages shiny [23] and shinyjs [24]. For a detailed list of packages used and required 
versions, we refer users to the description file in the respective package repository.

Data import

Data may be imported in either.csv or.xls(x) formats. Data are validated to highlight 
columns containing missing values or invariant variables. Columns containing Boolean 
terms (yes/no, True/False) or strings may optionally be converted to numerical values.

Preprocessing

Data may be normalized, log transformed, standardized, min–max scaled, or trans-
posed, either by column or by full dataset.

(7)SFi =
∥∥tTPpi,TP

∥∥2/�xi�2 {i = 1, 2, . . . ,M}

https://liningtonlab.github.io/mvpaShiny_documentation
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Subsetting

Data may be filtered by value ranges or subsets by the selection or exclusion of specific 
variables or objects.

Inspection

Variables can be inspected for normality via quantile–quantile plots and for correlation 
either against a single variable or as a correlation matrix.

Principal component analysis

Data can be subjected to PCA, optionally excluding specific variables and after adjust-
ments using covariate projections. Outputs include scree, scores and loadings plots. In 
addition, a variable variation plot is provided that illustrates the contribution of each 
variable to each principal component. Optionally, the dataset may also be dimensionally 
reduced by selecting specific principal components.

Covariate projection

Covariate projections can be generated from selections of variables and are visualized in 
variance plots displaying variance patterns for each covariate projection.

PLS regression and target projection

PLS regression models can be generated using Monte Carlo resampling. User-modifia-
ble variables include number components, number of repetitions, proportion of objects 
in calibration dataset and validation threshold. Additionally, users may select either 
RMSEP or MAE for the cost function. The results are displayed in a model informa-
tion plot, permitting selection of the number of retained components. Target projec-
tion is performed automatically, and the resulting target loading vector may be further 
processed and displayed in bar plots, such as selectivity ratio or selectivity fraction plots. 
The results are also displayed as a variable variance distribution plot based on the target 
projection.

At all stages in the processing pipeline, datasets may be visualized and saved. In addi-
tion, all plots are interactive and may be scaled, zoomed, and saved as images.

The online documentation describes the steps for either the R version or the 
mvpaShiny app to reproduce the results of the application example described in the next 
section.

Application example

It is well known that adiposity (obesity) and physical inactivity promote insulin resist-
ance and that there is a strong association of the serum lipoprotein profile with both 
these lifestyle-related factors and insulin resistance [13] and references therein. The 
aim of the worked application is i) to show how the projection algorithm can be used 
to adjust for confounders and quantify the partial mediation of a comprehensive lipo-
protein profile on the predictive association pattern between the homeostatic model 
assessment of insulin resistance (HOMA-IR) and adiposity and physical activity and ii) 
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to show some of the most important plots for model visualization and interpretation 
implemented as part of the software. Figure 3 displays the structure of the investigated 
model.

Figure 3 illustrates the relation between the variables. The net predictive associations 
between outcome and explanatory variables are predicted after adjustment for con-
founders and mediator as explained in the paragraph above accompanying Fig.  2. We 
use the projection method in all steps, but with projection criterion differing according 
to task.

Description of data set

We used baseline anthropometrics, metabolomics, and physical activity data for 836 
subjects from the active smarter kids (ASK) study [25]. Since procedures to obtain the 
data are thoroughly described in previous investigations [7, 11, 12], only a brief descrip-
tion is provided here.

Outcome: homeostatic model assessment of insulin resistance (HOMA‑IR)

HOMA-IR was calculated as fasting serum insulin times fasting serum glucose divided 
by 22.5 [26]. The product of fasting plasma insulin of 5 μU/ml and normal fasting plasma 
glucose of 4.5 mmol/l is 22.5. This value represents an individual with “normal” insulin 
sensitivity and a HOMA-IR score equal to 1 [27].

Explanatory variables: physical activity spectrum and adiposity

Physical activity (PA) data were obtained using the ActiGraph GT3X + accelerometer 
[28] worn at the waist over seven consecutive days, except during water activities (swim-
ming, showering) or while sleeping. We use a PA descriptor of 23 intervals covering the 
intensity spectrum of the vertical axis [7]. The intervals used for the descriptor were 
0–99, 100–249, 250–499, 500–999, 1000–1499, 1500–1999, 2000–2499, 2500–2999, 
3000–3499, 3500–3999, 4000–4499, 4500–4999, 5000–5499, 5500–5999, 6000–6499, 

Fig. 3  The model structure displaying the relations between groups of variables. HOMA-IR, which is a proxy 
for insulin resistance, is predicted from two groups of explanatory variables, i.e., three measures of adiposity 
and a physical activity descriptor providing the number of counts at 23 intensity intervals derived from 
an accelerometric sensor. Age and sex are confounders, and a profile of 26 lipoprotein measures acts as a 
mediator between HOMA-IR and adiposity and physical activity. Arrows imply the directions of the relations
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6500–6999, 7000–7499, 7500–7999, 8000–8499, 8500–8999, 9000–9499, 9500–9999 
and ≥ 10,000 counts per minute (cpm). Time (min/day) spent in each of the PA intensi-
ties was calculated for the children.

We used three measures of adiposity: body mass index (BMI) (kg/m2), the ratio of 
waist circumference to height (WC/H), and skinfold thickness (cm) derived from meas-
urements at four places (biceps, triceps, subscapular, and suprailiac).

Confounders: age and sex

Age is measured as a continuous variable. The subjects were all 5th graders, so the age 
range was narrow. Sex is included as a binary variable, 0 for girls and 1 for boys, to be 
able to make one joint model incorporating both sexes.

Mediator: lipoprotein features

Serum lipoprotein profiles were characterized by 26 variables predicted from proton 
nuclear magnetic resonance spectra with chromatographic measurements as reference 
values [11, 12]: Concentrations of total cholesterol (TC), triglyceride (TG), chylomicrons 
(CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), high-
density lipoproteins (HDL), two subclasses of CM (CM-1 and CM-2), five subclasses 
of VLDL (VLDL-L1, VLDL-L2, VLDL-L3, VLDL-M, VLDL-S), four subclasses of LDL 
(LDL-L, LDL-M, LDL-S, LDL-VS), six subclasses of HDL (HDL-VL1, HDL-VL2, HDL-
L, HDL-M, HDL-S and HDL-VS), and the average particle size of VLDL, LDL and HDL 
subclasses.

Transformations and pretreatment of variables

It is not a necessary assumption that the variables are normally distributed for the appli-
cation of the methods implemented in the MVPA package, but the Monte Carlo resa-
mpling method used to validate the number of PLS components produces more stable 
results if the variables are approximately normally distributed. All variables, except age 
and sex, were therefore log-transformed. Prior to the statistical analysis, the data were 
mean-centered and standardized to unit variance.

Target component model for the association of HOMA‑IR with lipoproteins

PLS regression was performed for the unadjusted data with Monte Carlo resampling 
repeated 1000 times using 50% of the samples as calibration samples randomly selected 
and the other 50% as prediction samples. This procedure showed that 4 PLS components 
carried predictive information about the associations between HOMA-IR and the 26 
lipoprotein variables (Fig. 4).

The validation plot shows that the minimum median for RMSEP is obtained for a 
4-component PLS model. Furthermore, only 47% of the RMSEPs for the 4-component 
PLS models exceed the median RMSEP for the 3-component PLS model, further con-
firming that the 4-component model has the best predictive performance. This PLS 
model explained 24.4% of the variance in HOMA-IR. Postprocessing this model by 
performing a target projection provided the predictive lipoprotein pattern associated 
with HOMA-IR. This target component explained 32.7% of the total variance in the 
lipoproteins. The standardized target component score vector is subsequently used for 
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adjustment in the projection algorithm to estimate the mediation effect of the lipopro-
teins on the physical activity spectrum and the three adiposity measures in their associa-
tions with HOMA-IR.

To validate that all predictive information had been extracted by the target lipoprotein 
component, regression of the lipoproteins on HOMA-IR after adjusting the data for age, 
sex and the target lipoprotein component was performed. Repeated Monte Carlo calcu-
lations confirmed that predictive associations between HOMA-IR and lipoproteins were 
exhausted by the target model (see Fig. 7 below).

Correlation between covariates

Before discussing association patterns after adjustment for the confounders age and sex 
and the mediating lipoproteins as represented by the target component, we explore the 
correlations of these covariates to the outcome HOMA-IR. The results are shown in 
Table 1.

The confounders age and sex are almost uncorrelated to each other. Age is also 
almost uncorrelated to HOMA-IR and to lipoproteins, while sex possesses a moderate 

Fig. 4  Validation plot to decide the number of predictive PLS components for the association pattern of the 
mediating lipoproteins to the outcome HOMA-IR. The plot displays the median value (black line) for Monte 
Carlo resampling with 1000 repetitions for an increasing number of components (starting from 0 and ending 
with 6 components which was chosen as the maximum number of components). The minimum median 
for RMSEP is found for the 4-component PLS model (indicated by *), implying that the number of predictive 
PLS components is lower than or equal to 4. The plot further compares the distribution of RMSEP values for 
the A-component models with the median of the (A-1)-component models. Red dots imply RMSEPs for the 
A-component models that exceed the median for the (A-1)-component model, while green dots indicate 
lower RMSEPs for the A-component models compared to the median of the (A-1)-component model. The 
numbers in parentheses show the fraction of the A-component model with RMSEPs exceeding the median 
for the (A-1)-component model. We start our assessment by comparing the 4-component model (minimum 
median of RMSEP) with the 3-componen model. The number 0.47 represents the fraction of repetitions for 
the 4-component PLS model, which exceeds the median for the 3-component model. Since the ratio of 
objects to variables is high in our data, we used 0.5 as the acceptance threshold. If this number is low the 
chance of overfitting increases and a lower number is recommended [8]. Thus, the 4-component model was 
chosen
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correlation to both HOMA-IR and lipoproteins. The strongest correlation is observed 
between HOMA-IR and lipoproteins.

Variance reduction in data and models caused by covariate projections

Covariate projections were performed in the following order: First, for the confounders 
age, sex, and. then, for the mediating lipoprotein target component. The same Monte 
Carlo validation procedure used for modelling the predictive association of HOMA-IR 
with lipoproteins produced predictive models with 7 PLS components for the associa-
tion of HOMA-IR with adiposity and physical activity for unadjusted as well as for the 
various adjusted versions of the data.

The three first columns of Table 2, with headings marked with superscript a, list the 
remaining variance in percent of original variance for the outcome (HOMA-IR) and the 
two groups of explanatory variables (the three adiposity variables and the 23 PA vari-
ables) for unadjusted data and after stepwise covariate projections in the order age, sex, 
and lipoproteins. The last three columns, with headings marked with superscript b, 
show the variances explained as percent of the original total variance (variance before 
any adjustments) for the corresponding target component models between HOMA-IR 
and adiposity and PA.

We observe from Table 2 that adjustment for age has almost no effect on the variances 
of outcome and explanatory variables. This is not surprising since age for the subjects 
spans a narrow interval in the analyzed cohort, i.e., 10.22 ± 0.29  years. The explained 
variances in the model were also barely changed after adjustment for age. Adjusting 
additionally for the confounder sex provides a few percentage reductions in variances 
for the outcome and the explanatory variables. This is accompanied by a reduction in 
the explained variances in HOMA-IR and PA in the corresponding model, while the 
variance explained in adiposity is almost unchanged. This is not surprising since pre-
vious investigations have established that girls are less physically active than boys for 
this cohort [11, 12] and thus also have higher HOMA-IR. However, adjusting for the 

Table 1  Correlation coefficients between the covariates and HOMA-IR

Age Sex Lipoproteins HOMA-IR

Age 1  − 0.012  − 0.054 0.033

Sex 1 0.162 0.176

Lipoproteins 1 0.494

HOMA-IR 1

Table 2  Remaininga and explainedb variances of corresponding models for HOMA-IR, adiposity, and 
the PA spectrum before and after covariate projections

Adjusted for V(HOMA-IR)a V(Adiposity)a V(PA)a V(HOMA-IR)b V(Adiposity)b V(PA)b

Unadjusted 100 100 100 30.3 72.2 16.4

Age 99.9 99.9 99.8 30.2 72.4 16.4

Age and sex 96.8 95.9 95.8 27.2 73.6 13.2

Age, sex, and lipoproteins 74.3 81.1 92.0 13.1 54.1 7.5
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lipoproteins using the target component profoundly changes explained variances for the 
model; particularly for the outcome HOMA-IR, which is more than halved, but also for 
PA, which is reduced from 13.2% to 7.5%, a relative decrease of 43%, and, although to a 
lesser degree, for adiposity, which experiences a relative decrease of 26%. These observa-
tions confirm the partial mediation of lipoproteins on the association between HOMA-
IR and lifestyle-related factors.

Patterns explained and visualized in variance plots

We can quantify and visualize the influence of the covariate projections on the asso-
ciation pattern in a variance plot. Figure 5 displays the variance pattern of all variables 
resulting from the covariate projections performed in the same order as in Table 2, i.e., 
first the confounders age and sex, then the mediating lipoproteins represented by the 
target component obtained from the modelling of the predictive association of HOMA-
IR to the 26 lipoprotein features.

Some observations from the variance plot are as follows: (i) Age shares almost no vari-
ance with any other variables, reflecting that age is almost uncorrelated to all the other 
variables in the narrow age range for this cohort. (ii) Sex associates moderately with the 

Fig. 5  Variance pattern with adjustment performed in the following order: age, sex, and lipoprotein target 
component representing the predictive association pattern with HOMA-IR
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adiposity measure skinfold (explaining 11.9% of the total variance) and with increas-
ing PA intensity, with a maximum correlation in the intensity region of 5–6000  cpm 
(explaining 8.6% of the original variance) but less with HOMA-IR (explaining 3.2% 
of the total original variance). These observations reflect that girls in our cohort were 
more prone to an increase in skinfold and spent less time in PA than boys [11, 12]. (iii) 
The mediating lipoproteins represented by the target score are moderately associated 
with all the adiposity measures (explained variances 11–13%) and with moderate- and 
high-intensity PA (5–7% of the total variance of each PA variable in the interval 4500–
10000 cpm is explained by the lipoprotein target score).

The predictive explained variances for adiposity and PA, the last two columns in 
Table  2, show that the mediation effect of lipoproteins on HOMA-IR is relatively 
stronger for PA than for adiposity, but PA and adiposity are not independent of each 
other. Thus, previous work [11, 12] revealed a moderate inverse relationship between 
adiposity and PA.

Model visualization and interpretation

For model interpretation, visualization of the association pattern and ranking of the 
exploratory variables according to their importance for predicting the outcome are cru-
cial. The MVPA package contains several tools for this task [17]. In this work, we use the 
selectivity fraction (SF) plot for this purpose. The SF plot displays the fraction of total 
variance explained by the target component for each exploratory variable. We use SF 
plots to examine how confounders and mediators impact the interpretation of the asso-
ciation pattern between HOMA-IR and adiposity and PA. Figure 6 shows the patterns 
for unadjusted and adjusted data:

Adjustment for the confounders age and sex (Fig. 6b) shows a weakening of the associ-
ation of the PA spectrum with HOMA-IR, while the association with the adiposity meas-
ures is unchanged. This conforms with the results in Table 2. The variance explained for 
the model after adjusting for sex shows a reduction in predictive PA variance from 16.4 
to 13.2%. This observation is ascribed to less time spent on PA among girls in our cohort 
compared to boys.

Adjustment for lipoproteins causes a greater change in the association pattern 
(Fig.  6c): The association between HOMA-IR and adiposity as measured by WC/H is 
strongly reduced. This adiposity measure is a proxy for abdominal fat, which is associ-
ated with HOMA-IR [29]. Furthermore, the association with the PA spectrum is almost 
halved, while the variance explained in HOMA-IR is more than halved. Thus, lipopro-
teins have a partial mediating effect on the association pattern of HOMA-IR with life-
style-related factors.

Influence of residual variance in the lipoproteins on model interpretation

The univariate confounders age and sex had zero variance after adjustment by covari-
ate projections and only marginally influenced the variances in the 26 lipoprotein fea-
tures (1.4% shared variance). However, a large amount of residual variance is present 
in the lipoprotein measures after the covariate projection since the lipoprotein target 
component used for the projection only explained 32.7% of the original variance in the 
lipoproteins. The large residual variance in lipoproteins may suggest potential problems 
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for the interpretation of the net regression model relating HOMA-IR to adiposity and 
PA. However, since our targeted approach adjusts for the systematic predictive variance 
of the lipoprotein associated with HOMA-IR, confounding due to residual variance is in 
fact shown to be of no concern.

To quantify the possible impact of residual confounding caused by adjusting for the 
multivariate mediator by projecting the variables on the lipoprotein target score, we 
modelled HOMA-IR with the lipoproteins included as explanatory variables together 
with adiposity and PA for the data after adjustment for sex, age, and the lipoprotein tar-
get score. Inclusion of the adjusted lipoproteins adds noise to the model, so a 3-compo-
nent PLS model is predictive, explaining 12.7% of the original variance in HOMA-IR, 
which can be compared with 13.1% for the 7-component model without the lipoproteins.

The associations between HOMA-IR and the explanatory variables are displayed in 
the selectivity fraction plot (Fig. 7).

Evidently, the SF plot displays no significant associations with the lipoprotein meas-
ures. Only 0.4% of the original total variance of the 26 lipoprotein features is accounted 
for by the model. The explained variances in the PA and adiposity variables are 8.4 and 
52.5%, respectively, which is in line with the result for the corresponding model not 
including the lipoprotein variables (Table  2). However, the reduction in association 

Fig. 6  The association patterns of HOMA-IR with adiposity and physical activity with a unadjusted data, b 
data adjusted for the confounders age and sex, and c data adjusted for age, sex and the lipoprotein target 
component associated with HOMA-IR. Medians and 2.5 and 97.5% confidence limits are derived from the 
RMSEP distributions of 1000 models calculated by repeated Monte Carlo resampling
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between HOMA-IR and the adiposity measure WC/H is lost in the lower-dimensional 
PLS model due to the noise introduced by adding the nonrelevant adjusted lipoproteins, 
which leads to a lower-dimensional PLS model.

Discussion
MVPA for handling multicollinearity in covariates and explanatory variables by projec-
tion methods is implemented in R as an open-source package. The software includes 
a graphical user interface to determine, visualize and interpret association patterns. 
Repeated Monte-Carlo resampling is used to determine the number of PLS components 
to be included in the target projection postprocessing step providing the predictive asso-
ciation pattern.

The projection algorithm provides variance patterns for covariates as an integrated 
part of the model. Taking covariates into account is crucial in analysis to arrive at 
estimates of independent associations between explanatory and outcome variables. 
In the first applications of MVPA, adjustment was performed using residualized 
variables from MLR [6, 7]. However, this process is tedious with many explanatory 
variables and thus does not work when covariates are linearly dependent. In two 
recent applications [11, 12], we used PCA to handle linearly dependent covariate. A 

Fig. 7  The association patterns with data adjusted for age, sex and the lipoprotein target component 
associated with HOMA-IR and with the 26 lipoprotein features included as explanatory variables. Medians 
and 2.5 and 97.5% confidence limits are derived from the RMSEP distributions of 1000 models calculated by 
repeated Monte Carlo resampling
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drawback with this procedure is that many principal components are usually neces-
sary to describe multivariate covariates. This complicates visualization and interpre-
tation. This is resolved by condensing the associations of a multivariate covariate to 
the outcome and the explanatory variables on a single target component. Handling 
multicollinear covariates in the way exemplified by the lipoprotein profiles in this 
work, and including them as an integrated part of the model is therefore an impor-
tant step towards an effective, streamlined approach for analyzing complex, multicol-
linear datasets. In addition to efficiently adjusting for covariates, we can quantify and 
visualize this part of the total model using variance plots. The approach is transparent 
and works stepwise, which makes it easy to observe problems caused by collinearity. 
Importantly, the implemented method handles linearly dependent covariates, which 
is common in metabolomics applications.

The influence of the covariates can be quantified as their cumulative part of the total 
variance in unadjusted data as well as for each variable individually in variance plots. 
This allows for assessing the influence of covariates on the model and the individual 
variables constituting the model.

Equations 5a and 5b imply stepwise projection, i.e., one projection for each single 
or multivariate covariate. This approach has the advantage that it provides possibili-
ties for detailed visualization and interpretation of covariates since it partitions the 
variance into parts relating covariates to specific association patterns. This is the 
approach we use in the application in this work. However, if some or all the covariates 
are strongly associated, a single projection including all the strongly associated covar-
iates may be preferable, as implied by Eqs. 4a and 4b. Covariate patterns are orthogo-
nal to the remaining variance pattern so that the variance pattern of the net data can 
be analyzed and interpreted independently of their associations to the covariates.

The software includes excellent possibilities for visualization and interpretation. Rank-
ing of variable importance is available as SR and SF plots. However, additional tools are 
available for exploring predictive correlation patterns and quantifying variable impor-
tance, namely, the so-called multivariate correlation coefficient plot and the multivari-
ate covariance coefficient plot [17]. While SR and SF plots are built from and related 
directly to the predictive model, the multivariate correlation (standardized) and covar-
iance (unstandardized) coefficient plots take the explained variance of the PLS model 
into account and can be interpreted as equivalent to bivariate correlation or regression 
coefficients, respectively, except that they are derived from and must be interpreted in 
the multivariate space. Thus, the coefficients relate directly to the actual outcome, which 
substantially eases the comparison of association patterns across, for example, models 
for different outcomes or different groups. While recommending the multivariate cor-
relation coefficient on this background, we urge researchers to exercise caution in using 
the multivariate covariance coefficient for strongly multicollinear explanatory variables 
since the variables carry (more or less) the same information but with potentially very 
different standard deviations. For instance, different choices of binning of variables may 
have a great impact on these covariance coefficients. This may substantially complicate 
interpretation, particularly when there is a lack of a standard operationalization of the 
explanatory variables. Furthermore, it may mislead researchers to interpret associations 
as independent, which they are not.
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The developed software provides a tool with broad applications. Most data pro-
duced by sensors and instruments are inherently multicollinear, and it is advan-
tageous to take full advantage of the high resolution usually delivered instead of 
reducing the resolution to derive data that fit the assumption of less general analytical 
methods. There are no limitations on the number of explanatory variables or covari-
ates that the mvpa software can handle. However, the method and the software can 
presently only handle one outcome at a time.

It is also an advantage that all the methods needed to analyze and visualize the data 
can be included in a common mathematical frame based on the projection algorithm. 
Only the criteria are different depending on whether covariates are univariate or mul-
tivariate and possibly linearly dependent.

While there are many software packages that can analyze data with multicollinear 
data, there is no software package available, to our knowledge, that can handle lin-
ear dependent covariates such as the serum lipoprotein profile mediating the relation 
between the explanatory variables and the outcome in the application investigated in 
our work and provide the type of model interpretation and visualization presented 
here.

Conclusion
MVPA represents a tool for studying and visualizing association patterns in complex, 
multicollinear data. The implemented software in R handles situations with multicol-
linear covariates that influence association patterns in regression models. The method 
works irrespective of the number of covariates and for linear dependent covariates 
and explanatory variables. Furthermore, the method treats covariates as an integrated 
part of the model and acknowledges the complementary and important information 
supplied by these variables. Interpretation of their variance pattern shared with out-
come and explanatory variables may provide additional insight into important aspects 
of the data.
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