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Background
Cancer is a heterogeneous disease driven by genetic alterations [1]. Identifying the 
cancer driver genes with alterations plays a crucial role in the treatment and diagnosis 
of cancer [2–5]. A number of computational methods have been proposed to identify 
cancer driver genes in recent years [2]. Most of these methods concentrate on identi-
fying driver genes in specific types or subtypes of cancer [3]. Based on the rationale, 
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these computational methods can mainly be grouped in mutation-based methods 
and the network-based methods. Mutation-based methods [6–10] employ the char-
acteristics of gene mutations to identify cancer driver genes while the network-based 
methods [11–14] utilize gene interaction networks to assess the role of genes to pre-
dict cancer driver genes.

Several mutation-based methods have been proposed to identify cancer driver 
genes, each with its unique approach and hypothesis [15]. MutSigCV [7] evaluates the 
gene mutation frequencies that exceed what is expected to identify potential cancer 
driver genes. However, it may incorrectly identify the genes with frequent mutations 
that are non-contributory to cancer development as potential cancer driver genes. 
Unlike MutSigCV, OncodriveFM [8] hypothesizes that the genes with significantly 
functional impact are more likely to be candidate driver genes. OncodriveFM evalu-
ates the bias of gene mutations with functional impacts rather than the sheer muta-
tion count, enabling the detection of driver genes with low recurrence but significant 
roles in cancer development. OncodriveFML [6], similar to OncodriveFM, employs 
functional impact assessment but extends its scope to both coding and non-coding 
mutations. DriverML [9] adopts a different approach by considering how mutation 
types affect the functional impact of mutations. It uses a supervised machine learn-
ing approach with pan-cancer training data to optimize weight parameters for muta-
tion types, scoring functional influences of gene alterations. ActiveDriver [10], on the 
other hand, identifies cancer drivers based on the structural consequences of gene 
mutations, particularly focusing on the enrichment in post-translational modification 
sites like phosphorylation, acetylation, and ubiquitination sites. Although these muta-
tion-based methods offer valuable insights into the identification of cancer driver 
genes, they face the problems of the incomplete gene mutation databases caused by 
cancer heterogeneity. This may limit their ability to comprehensively identify driver 
genes.

On the other hand, the network-based methods identify cancer driver genes by 
incorporating the information of pathways, gene–gene or protein–protein inter-
actions to measure the gene roles in the biological networks [15–17]. For instance, 
CBNA [11] combines the network controllability analysis with mutation data, allow-
ing it to pinpoint both coding and miRNA driver genes within gene networks. Mean-
while CBNA can also be employed to uncover the drivers specific to particular types 
or subtypes of cancer. In contrast to CBNA, DriverNet [12] integrates various multi-
omics data such as gene expression data and biological pathway information to con-
struct bipartite gene network, and utilizes greedy optimization search to identifies 
driver genes with high outlying expression in the bipartite gene network. Similarly, 
Subdyquency [13] integrates mutated genes’ variation frequency and its interac-
tions with dysregulated genes in a certain compartment to build bipartite graph, then 
employs random walk method on the built graph to produce walking score for each 
mutated gene of patient to pinpoint candidate driver genes. Different from these 
methods, MEMo [14] (Mutual Exclusivity Modules) takes a module-centric approach, 
using mutual exclusivity techniques in biological networks to discover oncogenic net-
work modules. MEMo suggests that genomic alterations in the same cancer type tend 
to occur within a limited number of pathways and are unlikely to coexist within the 
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same patient. These abovementioned methods provide diverse strategies for uncov-
ering cancer driver genes, contributing valuable insights into the molecular mecha-
nisms of cancer.

Nevertheless, all these methods identify cancer driver genes at the population level. 
Due to tumor heterogeneity in cancer, different patients may have different genetic 
alterations and their tumors may be caused by different genes, and two patients who 
suffer from the same kind of cancer and receive the same remedy may have different 
prognosis [2, 3]. Thus, it is necessary to identify cancer drivers specific to an indi-
vidual patient for personalized diagnosis and treatment [2, 3]. DawnRank [18] for the 
first time utilizes a ranking framework to assess the connectivity and the amount of 
differential expression genes in gene interaction network. By combining gene ranks 
with somatic alteration data, such as copy variation number, DawnRank effectively 
detects individual driver alterations. However, it relies on the same gene regulatory 
network for all patients, potentially missing patient-specific regulatory information. 
To address this limitation, SCS [19] constructs a personalized gene regulatory net-
work for each patient using the gene expression data of patients and normal people. 
SCS identifies personalized cancer driver genes as the minimal set of the most differ-
entially expressed genes in the constructed network. Further, PRODIGY [20] adopts 
Steiner tree model to evaluate the impact of the genes with mutations on the dereg-
ulated pathways to identify personalized cancer driver genes. Later, PersonaDrive 
[21] tries to construct a personalized bipartite graph that links mutated genes to dif-
ferentially expressed genes for each patient, and calculates the edge weights of the 
graph based on the overlap between the mutated gene and the differentially expressed 
gene pair in biological pathways. Subsequently, it ranks the the potential driver genes 
based on their influence scores evaluated by the edge weights in the bipartite graph. 
Similarly, BetweenNET [22] combines patient genomic data with protein–protein 
interaction network to build customized gene interaction network and identifies 
personalized cancer driver genes in the customized network. Meanwhile, based on 
the structural controllability theory.  Cheng et  al. [23] proposed a weighted mini-
mum dominating set network model WMDS.net to find the key regulators of gene 
co-expression networks to determine cancer driver genes. Distinguishing from these 
methods focusing on coding driver genes, Pham et al. [2] shifts the focus to the com-
prehensive exploration of coding and non-coding cancer drivers. They introduced a 
network-based approach named pDriver to identify personalized coding and miRNA 
cancer drivers. Recently, Guo et al. [24] proposed a structure-based network control 
method called PNC for identifying personalized cancer driver genes based on the net-
work control method NCUA. In order to verify the effectiveness of NCUA, Guo et al. 
replaced NCUA with the state-of-the-art structure-based network control methods 
MMS [25] and MDS [25] in PNC respectively and compared their performance in 
identifying personalized cancer driver genes. The experimental comparison results 
showed that as compared to MMS and MDS, NCUA is more effective for PNC in 
identifying personalized cancer driver genes.

In this paper, we propose a novel method, called LPDriver, to identify personalized 
cancer driver genes. In comparison to existing methods for finding personalized cancer 
driver genes, LPDriver mainly includes the following advantages:



Page 4 of 21Huang et al. BMC Bioinformatics           (2024) 25:34 

 i. LPDriver attempts for the first time to explore the gene-patient associations 
extracted from personalized gene network to mine functionally similar genes 
among patients for identifying personalized driver genes. Nevertheless, LPDriver 
does not need to bind gene-patient associations with the known driver genes and 
the mutation genes to detect driver genes, which will promote and facilitate identi-
fication of cancer driver genes.

 ii. Distinguishing from existing network-based methods, LPDriver finds the genes in 
the maximum matching set of the personalized gene network, which maximumly 
cover most but not all edges of the gene network, as potential driver genes. This 
could further extend exploration of driver genes.

To take advantages of the gene interaction network specific to a patient of a specific 
cancer, we first construct the personalized gene interaction network for each patient 
based on the tumor gene expression data of the patient. Next, we build the personal-
ized gene network for the given patient upon the difference between the gene network 
built on all patients of the specific cancer dataset (e.g. the cancer dataset of The Cancer 
Genome Atlas) and the gene network built on all patients excluding the patient under 
consideration. Then we extract potential driver genes by finding the maximum match-
ings of the bipartite graph of the personalized gene network to build gene-patient asso-
ciations. Finally, we utilize a linear neighborhood propagation model to mine the linear 
neighborhood similarity of genes among patients to infer the personalized driver genes 
from the built gene-patient associations.

We applied LPDriver on multiple cancer datasets of The Cancer Genome Atlas 
(TCGA) [26] and validated the results by considering the cancer driver genes in the Net-
work of Cancer Genes (NCG) [27] and Cancer Genes Census (CGC) [28] as the bench-
mark. The experimental comparison results demonstrate that LPDriver is more effective 
than the existing methods in detecting cancer driver genes. Moreover, the experimental 
results also show that LPDriver not only can reveal personalized cancer driver genes for 
individual patient, but also detect some potentially novel driver genes that have been 
documented to be related to cancer. Generally, LPDriver is an effective and applicable 
complement to the existing methods for identifying cancer driver genes.

Materials and methods
LPDriver identifies personalized cancer driver genes by three main steps: (1) Construct-
ing personalized gene interaction network (PGIN) using the gene expression data of 
tumor samples of patients. (2) Identifying potential gene-patient associations by finding 
the maximum bipartite matchings from the bipartite graph of PGIN. (3) Predicting per-
sonalized driver genes from the gene-patient associations through linear neighborhood 
propagation. The overview of our method is summarized in Fig. 1.

Constructing personalized gene interaction network

Intrigued by LIONESS [29], for a given patient p and a group of patients as refer-
ence, such as the patients of a specific cancer data set in TCGA, we construct a per-
sonalized gene interaction network for the given patient p based on the statistical 
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difference between the gene network built on all patients and the gene network built 
on all patients except the given patient p.

Pearson Correlation Coefficient (PCC) has been widely adopted to assess the corre-
lations between the patients’ gene expression profiles to identify personalized driver 
genes. Following literature [19, 24], we first use all patients’ tumor gene expression data 
to compute the Pearson Correlation Coefficient (PCC) between the patients’ genes to 
evaluate the correlations between the patients’ gene expression profiles. Briefly, we first 
identified a group of tumor samples for the studied cancer type. The PCC of each pair of 
genes was calculated according to the expression data of the patient p to construct the 
gene interaction network G1. In the similar way, we use the tumor gene expression data 
of all patients excluding the patient p to compute the PCC between the patients’ genes 
and construct another gene interaction network G2. Then, all the edges with significantly 
differential correlations [23, 24] (i.e. p value < 0.05) were retained and used to construct 
the personalized gene interaction network for that cancer patient.

Finally, we remove the edges that exist in both G1 and G2, and remain the edges that 
only exist in G1 or else G2, and use the remaining edges of G1 and G2 to construct the 
personalized gene interaction network Gp(V, E) for the patient p, where V and E are 
the node set and edge set of Gp(V, E) respectively.

Note that, in the construction of Gp(V, E) for the patient p of a cancer, remaining 
the edges, which only exist in G1 or else G2, between genes i and j is based on the 
observation: G1 is produced with the patient p and G2 is produced without the patient 
p, and the edge between genes i and j is only included in G1 or else G2, which implies 
the presence of this patient alters the association between genes i and j in Gp(V, E), 
and therefore the interactions between genes i and j of this patient could have a rela-
tively high correlation with this cancer. We thus remain these edges in Gp(V, E).

On the other side, removing the edges, which exist in both of G1 and G2, between 
genes i and j is based on the observation: both of G1 and G2 include the edges between 

Fig. 1 Illustration of LPDriver. I Constructing the gene interaction network G1 and G2. II Removing the edges 
that exist in both G1 and G2. III Removing the edges(interactions) that are not supported by the known 
gene interaction network. IV Transform Gp(V,E) into bipartite graph and identify driver genes of patient p in 
bipartite graph. V Identify the potential driver genes of all patients to construct the matrix Mgp. VI Compute 
the linear neighborhood similarity of genes among patients in Mgp. VII Adopt label propagation method 
based on matrix S to refine Mgp. VIII Identify highly rank genes as the personalized driver genes from F* 
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genes i and j, which implies the presence of this patient does not affect the association 
of genes i and j in Gp(V, E), and therefore the interactions between genes i and j of 
this patient could have a relatively low correlation with this cancer. We thus remove 
these edges in Gp(V, E).

In order to obtain accurate and reliable regulatory mechanism of personalized gene 
interaction network for each patient, based on the known gene interaction network 
retrieved from the existing gene interaction databases, we refine the personalized 
gene interaction network Gp(V, E) by removing the edges(interactions) that are not 
supported by the known gene interaction network [30, 31]. The constructed personal-
ized networks for different types of cancer are specific significantly as the constructed 
network are built upon the individual patients of a specific cancer dataset in TCGA. 
Meanwhile, the known gene interaction network data only serves to refine the con-
structed personalized interaction network. Note that the specific known gene interac-
tion network can be specified by the users and the known gene interaction network 
ConsensusPathDB [30, 31] used in this work can be found at Additional file 1.

Identifying potential gene‑patient associations

After obtaining the personalized gene interaction network Gp(V, E) for the patient p, 
we now try to determine potential gene-patient associations for the patient p based 
on Gp(V, E). Note that, in Gp(V, E), the interactions(edges) between genes i and j are 
possibly associated with current tumor for the patient p. A set of genes that are capa-
ble of interacting (connecting) with most genes of Gp could play central or driving role 
in controlling the gene interaction network and could most likely be potential driver 
genes for the patient p [2]. An intuitive way for discovering such potential genes is to 
find the genes that are able to maximumly cover the nodes of Gp(V, E) [2, 24].

Based on this intuition, we adopt the following steps to identify potential driver 
genes for each patient in Gp(V, E): (1) building a bipartite graph from the personalized 
gene interaction network Gp(V, E), where the nodes of the left side are the nodes of 
Gp(V, E) and the nodes of the right side are the edges of Gp(V, E), and (2) determining 
the maximum matching set of the left side nodes to cover the right side nodes in the 
bipartite graph by using the well-known bipartite graph matching Hungarian algo-
rithm [24, 32].

Specifically, for the personalized gene interaction network Gp(V, E), we first transform 
Gp(V, E) into a bipartite graph G(L, R, EB, W), where L = V, R = E, EB is the edge set of the 
bipartite graph G(L, R, EB, W) and Wv,u ∈ W is the weight of the edge (v, u)∈ EB, v ∈ L, u ∈ 
R. After building the bipartite graph G(L, R, EB, W), we try to find a maximum matching 
set M from L, which could maximumly cover the nodes of R, and choose the genes in the 
maximum matching set M as the potential driver genes for the patient p.

Next, we apply the well-known bipartite graph matching algorithm “Hungarian algo-
rithm” [32] to find the maximum weighted bipartite matching in G(L, R, EB, W). In fact, 
the maximum weighted bipartite matching in G(L, R, EB, W) is an edge set M ⊆ EB such 
that the sum of the edge weights (v,u)∈MWv,u is maximum and the nodes of each edge 
in M are different [33]. Following Hungarian algorithm, we can obtain the maximum 
matching set M from L by solving the following linear programming relaxation [32]:
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where the edge weight Wv,u of the bipartite graph is set to 1, xv,u is an indicative variable, 
(v, u)∈ EB is the edge between v ∈ L and u ∈ R in the bipartite graph G(L, R, EB, W). The 
solution of formula (1) is the maximum bipartite matching set M in G(L, R, EB, W).

Since the nodes(genes) in the maximum matching set M can maximumly cover the 
right side nodes of the bipartite graph G(L, R, EB, W) [33], these nodes(genes) could 
associate with most of the genes in Gp(V, E) and play central or driving role in control-
ling the gene interaction network. Finally, we can choose the genes in the maximum 
matching set M as the potential driver genes for the patient p.

In the following, the potential driver genes of all patients in the tumor reference sam-
ples will be repeatedly produced in the similar way and the produced driver genes of all 
patients are used to construct the gene-patient association matrix Mgp, where the rows 
are genes and the columns are patients in Mgp. In matrix Mgp, if gene i is a potential 
driver gene for patient j then Mgp(i,j) = 1, otherwise Mgp(i,j) = 0.

Predicting driver genes

Previous studies indicated that the data point associations in matrix could be recon-
structed and refined by using linear neighborhood similarity [34–36]. Intrigued by this, 
we utilize a linear neighborhood propagation model to refine the gene-patient associ-
ations in Mgp to detect personalized driver genes. In this model, we compute the lin-
ear neighborhood similarities of genes among patients in Mgp, use a label propagation 
method based on the linear neighborhood similarities of genes to infer the unobserved 
gene-patient associations to refine Mgp, and identify the personalized driver genes from 
the refined gene-patient associations.

Specifically, assume that there are n genes and m patients in Mgp, we denote these n 
genes as feature vectors yi, i = 1, 2, …, n and consider these genes as data objects. This 
optimization problem can be formulated as the objective function:

where N(yi) is a neighbor set of yi with k (k = 1, 2, …, n − 1) nearest neighbors, yij denotes 
the jth neighbor of yi and wiij represents the contribution of yij to reconstruct yi, and 
wiij can be regarded as the linear neighborhood similarity of yij and yi, wi = (wii1, wii2, …, 
wiik)T. Gi

ij,ik = (yi − yij)T(yi − yik) is the jth row and kth column of Gram matrix Gi [34–36].
In order to minimize the norm of reconstructive weight wi, the Tikhonov regulariza-

tion term was added to prevent overfitting [34–36]. Then, we can rewrite the objective 
function as:

(1)

maxxv,u

∑
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where γ is the regularization coefficient and is set to 1 for simplicity and I ∈ Rn×n is iden-
tity matrix.

We first use standard quadratic programming [37] to solve (3), and the solutions 
wi = (wii1, wii2, …, wiik)T are the reconstructive weights of the data point yi, i = 1, 2, …, 
n and k = 1, 2, …, n − 1. Then we use these solutions to construct a weight matrix S ∈ 
Rn×n and each entry of S can be regarded as the linear neighborhood similarity of genes. 
Based on the weight matrix S, we construct an undirected graph Gdg where the nodes are 
genes and the edge weights are the similarities of genes.

In the graph Gdg, we utilize a label propagation method, which iteratively propagates 
the label information of driver genes on Gdg, to discover the unobserved gene-patient 
associations to refine Mgp. The initial associations of n genes and the patient pi in Mgp 
can be regarded as the initial labels of n genes for the patient pi. In each propagation, 
every driver gene receives label information from the gene’s neighbors with proportion α 
and reserves the initial label with proportion 1 − α. The iteration is defined as:

where F0
i = (f 0

1i, f
0
2i, . . . , f

0
ni)

T represents the initial labels of n genes for the patient pi and 
Ft
i = (f t

1i, f
t
2i, . . . , f

t
ni)

T denotes the predicted labels of n genes for the patient pi at itera-
tion t [34]. Considering all m patients, let Ft = (Ft

1
, Ft

2
, . . . , Ft

m) , and the iteration process 
can be formulated in matrix form as follows:

We can use Eq. (5) to update the label matrix. Finally, Eq. (5) will be converged to the 
following:

F* is the predicted gene-patient association score matrix. Then the gene-patient asso-
ciations in Mgp are refined to F* by inferring the unobserved gene-patient associations 
through propagating the label information of driver genes. We can obtain the prediction 
scores of the genes for each patient from F* and identify the highly rank genes as the per-
sonalized driver genes of each patient for further analysis. More details on the conver-
gence inference of the label propagation can be found in literature [35].

Results
Performance comparison

In this section, we validate the effectiveness of LPDriver by comparing it with other 
ten state-of-the-art methods including five personalized cancer driver identification 
methods including PNC [24], WMDS.netP [23], DawnRank [18], SCS [19] and SSN 
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[38], and five population level cancer driver identification methods including Driver-
Net [12], OncoDriveFM [8], MutSigCV [7], DriverML [9] and ActiveDriver [10].

Based on the data availability of the compared methods, we used twelve TCGA [26] 
cancer datasets as the test datasets: Breast invasive carcinoma (BRCA), Colon adeno-
carcinoma (COAD), Head and neck squamous cell carcinoma (HNSC), Kidney chro-
mophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary 
cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma 
(LUAD), Lung squamous cellcarcinoma (LUSC), Prostate adenocarcinoma (PRAD), 
Papillary thyroid carcinoma (THCA) and Uterine corpus endometrial carcinoma 
(UCEC).

The known driver genes of Cancer Gene Census (CGC v.84) [28] and the Network of 
Cancer Genes (NCG 6.0) [27] database are used as the ground truth for assessing pre-
dicted driver genes. In cancer research, CGC and NCG are commonly used cancer gene 
datasets for validating driver genes predicted by computational methods. In total, 711 
known cancer genes and 616 cancer census genes are downloaded from CGC and NCG 
gene lists (see Additional file 2).

The predicted driver genes annotated in the NCG and CGC were utilized to compute 
the F-measure to evaluate the performance of different methods [2, 24]. F-measure is 
computed by the following equation:

where the precision denotes the ratio of correctly identified driver genes to all identified 
driver genes and the recall denotes the ratio of correctly identified driver genes to the 
driver genes of NCG and CGC [2, 24]. In the performance comparisons, LPDriver finds 
potential driver genes from 12 cancer datasets with the proportion parameter α = 0.5 
and choose the identified genes appearing among over 80% patients in each dataset as 
the resulting driver genes. For these ten comparative methods, we obtained their iden-
tified driver genes for twelve TCGA cancer datasets from the WMDS.netP paper [23]. 
These identified driver genes of the comparison methods were obtained by using the 
same TCGA cancer type datasets based on the default parameter values provided in 
their papers.

Figure  2 shows the F-measures of the predicted cancer driver genes from different 
methods. As can be seen in Fig. 2, we can find that LPDriver outperforms other com-
parative methods in terms of the average values of F-measure. This result indicates that 
LPDriver is an effective method for predicting cancer driver genes.

Moreover, to verify whether LPDriver detects similar driver genes as other top 5 per-
forming methods such as PNC, WMDS.netP, DawnRank, ActiveDriver and DriverML, 
we also compare the overlap between the prediction results of these methods. The 
discovered cancer drivers of these comparison methods are validated with both NCG 
and CGC and intersected to find the overlaps. Figure 3 shows the overlap among dif-
ferent methods for BRCA. The prediction overlap of the remaining eleven datasets can 
be found in the Additional file  3. As we can see in Fig.  3, although different methods 
have identified similar driver genes, the prediction overlap between LPDriver and other 
methods demonstrate that LPDriver is able to identify cancer driver genes that have not 

(7)F −measure =
2 ∗ precision ∗ recall

precision+ recall
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yet been identified by other methods. The complementarity of these methods can be uti-
lized to maximize the prediction accuracy of cancer driver genes.

Effect of proportion parameter α

LPDriver relies on propagating label information of genes in the graph Gdg to mine gene-
patient associations to detect personalized driver genes. The parameter α is used to 
adjust the gene label propagation proportion for each gene’s initial label and the label 
information from neighborhood genes, which is critical in propagating gene labels.

Fig. 2 Significant enrichment F-measures of the results from 11 methods. For each method, the F-measure 
values are the average results of twelve TCGA cancer datasets including BRCA, COAD, HNSC, KICH, KIRC, KIRP, 
LIHC, LUAD, LUSC, PRAD, THCA and UCEC

Fig. 3 Overlap among different methods for BRCA. The chart depicts the overlap between the driver genes 
detected by the six methods (LPDriver, PNC, WMDS.netP, DawnRank, ActiveDriver and DriverML) for BRCA. 
The horizontal bars situated at the bottom left signify the number of the identified driver genes that have 
been validated in both NCG and CGC. Meanwhile, the vertical bars, in conjunction with the dotted lines, 
collectively depict the overlaps among the validated driver genes of different methods
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In order to learn the impact of α on the performance of LPDriver, we calculate the 
F-measures of LPDriver with different α on twelve cancer datasets and the results are 
shown in Table 1. As we can see in Table 1, for 7 out of 12 datasets (i.e. COAD, HNSC, 
KIRC, LUAD, LUSC, PRAD and THCA), LPDriver receives the best F-measure in the 
case of α = 0.5. Meanwhile, LPDriver yields the best F-measure for BRCA and LIHC 
when α = 0.4, and gives the best F-measure for KICH and UCEC when α = 0.6. This 
result indicates that the gene’s initial label and the label information from neighborhood 
genes contribute almost equally to the identification of cancer driver genes. We thus 
identically set α as 0.5.

Influence of different reference networks

In order to comprehensively learn the influence of the reference gene interaction net-
work on the network-based methods, we also evaluated the performance of LPDriver 
and other top 2 performing network-based methods PNC [24] and WMDS.netP [23] 
using different reference networks. These reference gene interaction networks are Con-
sensusPathDB [30, 31], HumanNet [39], StringNet [40] and the best performing refer-
ence network used in PNC, which is marked as network 6 in literature [24] and is called 
PNCNet in this work. Table 2 summarizes the number of genes and interactions from 
each of these four networks. (See Additional file 1 for more details of these networks).

To obtain fair and convincing comparison results, we obtained the source codes of 
PNC and WMDS.netP from their literatures and ran these two comparative algorithms 
according to the default values suggested by their papers. Specifically, PNC sets to its 
default p value threshold 0.05 and WMDS.netP sets to its default hyperparameter γ 0.01. 
In the comparison, all compared algorithms were run on a computer with an Intel Xeon 
6130 and 208GB RAM. The running operating system is Linux. We then compared the 
performance of LPDriver, PNC and WMDS.netP using four reference gene interaction 
networks on 12 cancer datasets and the comparison results are shown in Fig. 4.

As shown in Fig. 4, for using different reference gene interaction networks, LPDriver 
achieves better performance than PNC and WMDS.netP. This indicates that LPDriver is 
an effective network-based method for predicting cancer driver genes using different ref-
erence networks. Moreover, as we can see in Fig. 4, the F-measures of these three meth-
ods vary for different reference networks. This demonstrates that reference network has 
direct impact on these four network-based methods in deed. Interestingly, in Fig. 4, we 
can observe that, the variances of the F-measures for PNC and LPDriver using different 
reference networks are larger than those of WMDS.netP. These results reveal that PNC 
and LPDriver are more sensitive to reference network than WMDS.netP, and the use of 
proper reference network may enable LPDriver and PNC to obtain better performance.

Ablation study

In this section, we will evaluate the effectiveness of different parts of LPDriver by abla-
tion study. In the second step, LPDriver identifies the potential driver genes by find-
ing the genes in the maximum matching set of gene-interaction bipartite graph and 
we call this step as BGGM for simplicity. In order to evaluate the effectiveness of the 
step BGGM, we replace the step BGGM of LPDriver with three classical network con-
trol methods including NCUA [24], MMS [24, 25] and MDS [24, 25] respectively to find 
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driver genes in the gene-interaction bipartite graph. We constructed three modes for 
LPDriver, namely LPDriver_NCUA, LPDriver_MMS and LPDriver_MDS. Specifically, 
LPDriver_NCUA denotes the step BGGM of LPDriver is replaced by NCUA. LPDriver_
MMS denotes the step BGGM of LPDriver is replaced by MMS. LPDriver_MDS denotes 
the step BGGM of LPDriver is replaced by MDS.

Figure  5 shows the F-measures of the predicted cancer driver genes of four differ-
ent LPDriver’s modes on twelve cancer datasets. Furthermore, in Fig. 5, to estimate the 
effect of predicting driver genes using linear neighborhood propagation in LPDriver, we 
performed these four LPDriver’s modes with and without using linear neighborhood 
propagation respectively.

From Fig.  5, we can see that, for the mode performed with using linear neighbor-
hood propagation, the F-measure of LPDriver is better than that of LPDriver_NCUA, 
LPDriver_MMS and LPDriver_MDS. Similarly, in Fig. 5, for the mode performed with-
out using linear neighborhood propagation, the F-measure of LPDriver is higher than 
that of LPDriver_NCUA, LPDriver_MMS and LPDriver_MDS as well. These results 
demonstrate that finding genes in the maximum matching set of the gene-interaction 
bipartite graph could be an effective way of identifying personalized driver genes for 
LPDriver.

Moreover, as can be seen in Fig.  5, the F-measures of the LPDriver’s modes per-
formed with using linear neighborhood propagation are much better than those of the 

Table 2 The gene number (Nodes) and interaction number (Edges) in four networks 
ConsensusPathDB, PNCNet, HumanNet and StringNet

ConsensusPathDB PNCNet HumanNet StringNet

Nodes 4912 9160 15,351 11,302

Edges 96,256 104,153 158,499 273,210

Fig. 4 Average F-measures of LPDriver, PNC and WMDS.netP on twelve cancer data sets using different 
reference gene interaction networks (i.e. ConsensusPathDB, PNCNet, HumanNet and StringNet)
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LPDriver’s modes performed without using linear neighborhood propagation. These 
results illustrate the effectiveness of predicting driver genes via linear neighborhood 
propagation in LPDriver.

Discovering personalized driver genes

The personalized driver genes may vary for different patients due to cancer heterogene-
ity [3]. Hence, the genes that rarely mutated in a population could potentially drive the 
cancer development of each patient, and these genes are also called rare driver genes [3]. 
The rare driver genes are likely ignored by mutation frequency-based methods [3]. In 
this section, we discuss the rare driver genes predicted by LPDriver to learn the effec-
tiveness of detecting personalized driver genes for LPDriver at the individual level.

Here, we define the genes that are mutated in no more than 5% of patients in a cancer 
dataset and is ranked top 100 of a patient’s potential driver genes as the personalized 
rare driver genes. We used DAVID [41–43] tools to perform the functional enrichment 
analysis on these personalized rare driver genes identified by LPDriver against the path-
way database Kyoto Encyclopedia of Genes and Genomes (KEGG) [44]. Taking BRCA as 
an example, the top 10 enriched KEGG pathways of the personalized rare driver genes 
are shown in Fig. 6. The identified rare driver genes and the top 10 enriched pathways of 
these driver genes for BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, 
PRAD, THCA and UCEC cancers are given in the Additional file  4 and file 5 respec-
tively. From these results, we can find that these rare driver genes are enriched in some 

Fig. 5 F-measures of LPDriver, LPDriver_NCUA, LPDriver_MMS and LPDriver_MDS. “With LP” and “Without LP” 
denote that the LPDriver’s modes are performed with and without using linear neighborhood propagation 
respectively. The x-axis shows four LPDriver’s modes and the y-axis is for F-measure. For each mode, the 
F-measure value is the result of twelve cancer datasets including BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, 
LUAD, LUSC, PRAD, THCA and UCEC



Page 15 of 21Huang et al. BMC Bioinformatics           (2024) 25:34  

critical pathways related with cancer [41]. It is noted that, in the functional enrichment 
analysis [2, 3, 24, 45], the higher -log(p value) value of the pathway is, the better enriched 
significance of the pathway is. Notably, we chose three rare driver genes GSK3B, SP1 
and XRCC6, which have the minimum occurrence frequency as mutated genes in BRCA 
cancer dataset, to analyze.

Taking the gene GSK3B as example, it ranks the top 2.3% of the potential driver genes 
for the patient TCGA-BH-A0DL and ranks the top 2.8% of the potential driver genes for 
the patient TCGA-BH-A18M. Even though the mutation frequency of gene GSK3B in 
BRCA cancer dataset is only 0.504%, our LPDriver still ranks GSK3B in top 10% of all 
personalized driver genes with mutation in BRCA cancer dataset. Additionally, it was 
reported that the overexpression of GSK3B promotes the development of multiple can-
cers [46]. Similar results can also be observed in the patients with genes SP1 and XRCC6. 
SP1 plays a critical role in the development of pancreatic cancer [47] and XRCC6 is a 
risk allele for breast cancer [48]. These two rare mutation genes SP1 and XRCC6 are 
also obviously ranked ahead in the personalized driver genes for other patients in BRCA 
cancer dataset. Even when some driver genes rarely mutate in a cohort, LPDriver still 
uncovers and promotes these genes for personalized therapies. In short, the above 
results demonstrate that LPDriver is able to detect personalized driver genes by their 
network characteristics even if the mutation profiles of the genes are hidden.

Statistic analysis of the identified driver genes

LPDriver constructs personalized gene interaction network by using a group of tumor 
reference samples and the size of tumor reference samples may influence the effect 
of identifying driver genes. In order to learn the impact of tumor reference sample 
size to the performance of LPDriver, we apply LPDriver to identify driver genes on 
twelve cancer datasets (i.e. BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, 
LUSC, PRAD, THCA and UCEC) by using different sizes of tumor reference samples. 
The average F-measures of LPDriver for each size of tumor reference samples across 

Fig. 6 Top 10 enriched KEGG pathways of the personalized rare driver genes on BRCA cancer dataset. 
The Y-axis indicates the name of enriched KEGG pathway. The X-axis represents the opposite value of log 
transformed p value. The larger value of X-axis indicates that the genes are more significantly enriched in the 
pathway
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the twelve datasets are shown in Fig. 7. As can be seen in Fig. 7, the F-measure values 
keep stable with different sizes of tumor reference samples. This result indicates that 
the performance of LPDriver is not greatly affected by the size of tumor reference 
samples to some extent.

Detecting potentially novel driver genes

In order to assess the ability of LPDriver on detecting potentially novel driver genes, 
we first used LPDriver to search for the top-ranked 100 driver genes from the 
breast cancer dataset BRCA while not in NCG and CGC, and obtained 42 poten-
tially novel driver genes (see Additional file  6). We then used DAVID [41] tools to 
perform functional enrichment analysis on these 42 obtained driver genes against 
Genetic Association Database (GAD) which records the genes associated with dis-
eases [49]. Interestingly, 36(85.7%) of these 42 genes are involved in GAD, and 28 
(66.7%) genes are related with cancer, 18 genes are enriched for “Breast Cancer” (p 
value = 9.3 ×  10–4, FDR = 6.6 ×  10–2). Particularly, it has been confirmed that ACTB 
(actin beta) (ranked the 3th in patient TCGA-E2-A158 and the 5th in patient TCGA-
BH-A1EU), is distinctly associated with the metastatic ability of human colon ade-
nocarcinoma cells [50] and accumulating evidence demonstrates that ACTB is 
irregularly expressed in a variety of cancers and affects the metastasis and invasive-
ness of tumors [51].

Moreover, we performed enrichment analysis on these 42 genes against three 
pathway databases Kyoto Encyclopedia of Genes and Genomes (KEGG) [52], Gene 
Ontology (GO) [53, 54] and Reactome [55], the results show that these 42 genes 
are enriched for “Viral carcinogenesis” (KEGG pathway, p value = 4.8 ×  10–11, 
FDR = 6.3 ×  10–9), “R-HSA-2894862” (Reactome pathway, p value = 2.3 ×  10–9, 
FDR = 2.5 ×  10–7), and “viral process” (GO biological process, p value = 3.4 ×  10–8, 
FDR = 2.1 ×  10–5). Specifically, RBPJ (ranked 8th in patient TCGA-BH-A0BZ and 9th 

Fig. 7 Average F-measures of LPDriver for different sizes of tumor reference samples. The y-axis indicates 
the average F-measures across the twelve datasets (i.e. BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, 
LUSC, PRAD, THCA and UCEC). The x-axis shows the size of tumor reference samples used to construct gene 
interaction network, e.g. 10% indicates 10% of the tumor reference samples in the cancer data set are used to 
construct gene interaction network
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in patient TCGA-BH-A0BJ) was reported as a potential oncogene in certain cancers 
and the upregulation of RBPJ can induce pancreatic cancer [56], although RBPJ has 
not been listed in NGC and CGC under current version yet.

Driver genes may play different roles in cancer. Based on the identified driver genes 
from BRCA, we accordingly categorized some of these potentially novel driver genes 
that were recently reported to associate with cancer into four types based on their 
roles in the development of cancer [1]. The four types are the direct driver gene, 
induced driver gene, target driver gene and biomarker driver gene. These catego-
rized genes are summarized in Additional file  7. In the following we discuss some 
of these categorized genes to learn the effectiveness of identifying potentially novel 
driver genes for LPDriver. The direct driver gene is the driver gene that was reported 
to directly cause the cancer [57]. For example, CDK2(ranked 16th in patient TCGA-
BH-A18M) was recently discovered to be essential for the proliferation of prostate 
cancer cell [58]. Moreover, accumulating evidence indicates that MED23 (ranked 9th 
in patient TCGA-E2-A1LH) plays an oncogenic role in the development of NSCLC 
(a non-small cell lung cancer) and influences the invasiveness and development of 
tumors [59].

The induced driver gene can exert its action on other genes or proteins to cause 
cancer [60]. For instance, PCAF (ranked 11th in patient TCGA-E9-A1RF), is recently 
reported to have positive role for inducing the acetylation of Glycerol 3-phosphate 
dehydrogenase (an enzyme in glycolysis) to promote cell proliferation in liver tumor 
[61]. Besides, due to the decrement of expression level, the attenuated function of 
gene SIN3A (ranked 93th in patient TCGA-E9-A1N6) may lead to the epigenetic 
deregulation of the growth-associated genes, which results in the oncogenesis of lung 
cancer cells [62]. Basically, the direct and induced driver genes predicted by LPDriver 
could help us to study the cause of cancer on genomic level.

On the other hand, the target driver gene could serve as the therapy target for cur-
ing cancer [63]. For example, recently, the overexpression of SKIP (ranked 10th in 
patient TCGA-BH-A1FD) was included in the pathogenesis and diagnosis of breast 
cancer, which could possibly serve as a future therapeutic target for breast cancer 
[64]. Besides, SH3KBP1(ranked 10th in patient TCGA-BH-A1FD) was reported to 
serve as a new regulator of carcinogenic EGFR (Epidermal Growth Factor Receptor), 
and it could also serve as a potential therapy target for GBM (Glioblastoma multi-
forme, a kind of cancer) patients with EGFR activation [65].

The biomarker driver gene could serve as biomarker for detecting the existence 
of cancer cell [66]. For example, a recent report showed that RPA1 (ranked 8th in 
patient TCGA-E2-A15M) works as a presumed oncogene in tumorigenesis and serves 
as a prognosticative biomarker for colorectal cancer [67]. Also, the upregulation of 
HnRNPM (ranked 13th in patient TCGA-BH-A0H9) is contained in the human colo-
rectal epithelial tumorigenesis and could serve as a tumor biomarker for colorectal 
cancer. These biomarker and target driver genes detected by LPDriver could help peo-
ple to find the existence of cancer cell and provide potential therapy target for curing 
cancer.

In summary, the abovementioned results demonstrate that LPDriver is also an 
effective method for detecting potentially novel cancer driver genes.
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Discussion and conclusion
In this work, we propose LPDriver, a novel computational method for predicting per-
sonalized cancer driver genes. LPDriver offers several distinct advantages over its 
counterparts. First, LPDriver innovatively explores gene-patient associations within per-
sonalized gene networks to uncover functionally similar genes among patients. A key 
differentiator in this step is that LPDriver does not rely on known driver genes or muta-
tion data to detect driver genes. This novelty accelerates and simplifies the identifica-
tion process of cancer driver genes. Meanwhile, unlike other network-based methods, 
LPDriver identifies potential driver genes by selecting genes from the maximum match-
ing set of personalized gene networks. This maximizes the coverage of gene network 
edges while preserving room for further exploration of driver genes, and strikes a bal-
ance between comprehensiveness and specificity in identifying candidate driver genes.

We have conducted comprehensive experiments on multiple cancer datasets from 
TCGA, benchmarking LPDriver against the state-of-the-art methods. LPDriver’s supe-
rior performance in the experimental comparison demonstrates its effectiveness in 
detecting cancer driver genes. Notably, LPDriver excels in identifying known cancer 
driver genes, while also revealing potentially novel driver genes that are documented to 
be cancer-related. LPDriver thus can serve as an effective and valuable complement to 
the existing toolkit for identifying cancer driver gene, ultimately contributing to a com-
prehensive understanding of cancer genetics.

Despite the effectiveness of LPDriver in identifying cancer driver genes, some limita-
tions remain. LPDriver constructs personalized gene networks upon the same known 
gene interaction networks and the gene expression data of a specific cancer. The infor-
mation of specific cancer could be lost in the construction of personalized gene net-
works. A further extension is to utilize the gene interactions that are specific to a cancer 
under consideration to initiate the construction of personalized gene networks for a spe-
cific cancer. Moreover, as a future work, a variety of the biological features of genes and 
cancers, such as sequence profiles of genes or miRNA, could be incorporated to further 
promote the identification performance. Furthermore, for simplicity, LPDriver sets the 
edge weight of the bipartite graph of gene network to 1 to find the maximum match-
ing in the bipartite graph for inferring potential gene-patient associations. In the future, 
more gene interaction information could be integrated to enrich the edge weight of the 
bipartite graph of gene network, which may help to find more accurate gene-patient 
associations.
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