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Abstract 

Background: Enzymes play an irreplaceable and important role in maintaining 
the lives of living organisms. The Enzyme Commission (EC) number of an enzyme 
indicates its essential functions. Correct identification of the first digit (family class) 
of the EC number for a given enzyme is a hot topic in the past twenty years. Sev-
eral previous methods adopted functional domain composition to represent 
enzymes. However, it would lead to dimension disaster, thereby reducing the effi-
ciency of the methods. On the other hand, most previous methods can only deal 
with enzymes belonging to one family class. In fact, several enzymes belong to two 
or more family classes.

Results: In this study, a fast and efficient multi-label classifier, named Predict-
EFC, was designed. To construct this classifier, a novel feature extraction scheme 
was designed for processing functional domain information of enzymes, which 
counting the distribution of each functional domain entry across seven family 
classes in the training dataset. Based on this scheme, each training or test enzyme 
was encoded into a 7-dimenion vector by fusing its functional domain information 
and above statistical results. Random k-labelsets (RAKEL) was adopted to build the clas-
sifier, where random forest was selected as the base classification algorithm. The two 
tenfold cross-validation results on the training dataset shown that the accuracy of Pre-
dictEFC can reach 0.8493 and 0.8370. The independent test on two datasets indicated 
the accuracy values of 0.9118 and 0.8777.

Conclusion: The performance of PredictEFC was slightly lower than the classifier 
directly using functional domain composition. However, its efficiency was sharply 
improved. The running time was less than one-tenth of the time of the classifier 
directly using functional domain composition. In additional, the utility of PredictEFC 
was superior to the classifiers using traditional dimensionality reduction methods 
and some previous methods, and this classifier can be transplanted for predicting 
enzyme family classes of other species. Finally, a web-server available at http:// 124. 221. 
158. 221/ was set up for easy usage.

Keywords: Enzymes, Family class, Multi-label classification, Functional domain, 
Dimension reduction, Random forest

*Correspondence:   
chen_lei1@163.com

1 College of Information 
Engineering, Shanghai Maritime 
University, Shanghai 201306, 
People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05665-1&domain=pdf
http://124.221.158.221/
http://124.221.158.221/


Page 2 of 27Chen et al. BMC Bioinformatics           (2024) 25:50 

Introduction
Enzymes, also named biocatalysts, are a special type of proteins, which can speed up 
cellular biochemical processes. It is known that the energy to maintain the living 
organisms is produced by various chemical reactions. Almost all these reactions need 
enzymes to participate in. Thus, enzymes are the essential matters for living organisms. 
With the accumulation of the knowledge on enzymes, our understanding on them has 
been sharply improved. To distinguish enzymes with different functions, each enzyme 
was assigned at least one Enzyme Commission (EC) number. Such number is composed 
of four digits, such as 1.1.1.1. According to mechanisms of catalytic reactions, enzymes 
can be classified into seven family classes: (1) Oxidativereductases; (2) Transferases; (3) 
Hydrolases; (4) Lyases; (5) Isomerases; (6) Ligases and (7) Translocases, which are rep-
resented by the first digit of enzyme EC numbers. This enzyme classification is recom-
mended by Nomenclature Committee of the International Union of Biochemistry and 
Molecular Biology (IUBMB, https:// iubmb. qmul. ac. uk/). Identification of the family 
classes of enzymes is the first step to uncover its functions.

Traditional methods to identify the family classes of enzymes needs lots of costs and 
time. In the past twenty years, several computational methods have been proposed to 
predict the family classes or EC numbers of enzymes, providing an alternative way to 
investigate enzymes. Most of them are machine learning based methods. Some methods 
were proposed to predict the first digit of enzyme EC numbers (i.e., the family classes of 
enzymes) [1–3]. More methods were designed to first predict enzyme or non-enzyme, 
and then to recognize the family classes of enzymes [4–13]. To obtain the entire EC 
numbers of enzymes, some methods were built to identify the second digit of EC num-
bers (i.e., the sub-classes of family classes of enzymes) [14–18]. However, these methods 
cannot predict enzyme or non-enzyme and the family classes of enzymes. An impor-
tant top-down approach, proposed by Shen and Chou, integrated above methods by first 
determining enzyme or non-enzyme and them identifying the first two EC numbers of 
enzymes [19]. A recent method, UDSMProt [20], was also designed for this purpose. The 
later methods are devoted to predicting entire EC numbers of enzymes, such as BENZ 
WS [21], ECPred [22], DEEPre [23], and  EFICAz2.5 [24]. Extraction of informative fea-
tures from enzymes is an important step for designing most above methods. Popular 
enzyme features include amino acid composition [4, 14], pseudo amino acid composi-
tion [1, 5–7, 15–18], protein structure [2, 3, 8, 9, 23], functional domain composition 
[10, 11, 13, 18, 19], gene ontology [6], pseudo position-specific scoring matrix [12, 13, 
19, 23], physicochemical properties [22, 23]. Selection of proper classification algo-
rithms is another important step to build the efficient machine learning based methods. 
Several algorithms have been adopted, such as artificial neuron network (ANN) [25], 
support vector machine (SVM) [1, 2, 4, 7, 11, 16], Bayesian [3], nearest neighbor algo-
rithm (NNA) [6, 10, 17, 19], linear discriminant analysis (LDA) [8, 9], hidden Markov 
model [21], ensemble learning [22, 24], and deep learning algorithms [20, 23]. When 
investigating the family classes of enzymes, all methods, except BENZ WS [21], consid-
ered six family classes of enzymes. However, in 2018, IUBMB added the seventh fam-
ily class (translocases), inducing the limitations on applications of these methods. It is 
necessary to reconstruct efficient computational methods to predict family classes of 
enzymes, even the EC numbers of enzymes. On the other hand, few previous methods 
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can deal with enzymes belonging to multiple family classes. In fact, several enzymes 
can belong to two or more family classes. The methods in [12, 13] can identify multi-
ple family classes of enzymes. However, they cannot identify the seventh enzyme fam-
ily class (translocases). Thus, the multi-label classifiers for prediction of family classes 
of enzymes are still needed. As mentioned above, functional domain composition is an 
important feature type to describe enzymes and the methods with such representation 
always provide good performance. However, such representation always involves a prob-
lem of dimension disaster, i.e., each enzyme is represented by a large number of fea-
tures, which reduces the efficiency of the classifiers based on this representation. This 
study was conducted with the above background. We want to design an effective feature 
extraction scheme from functional domain information and build a multi-label classifier 
to predict family classes of enzymes with high performance and efficiency.

In this study, a multi-label classifier was proposed for identifying family classes 
of enzymes. Enzymes were represented by features extracted from their functional 
domains. To avoid dimension disaster, a novel feature extraction scheme was designed, 
which conducted a deep analysis on each involved functional domain entry across all 
enzyme family classes in the training dataset. The analysis result was used to encode 
the test or training enzyme in terms of its functional domain information, yielding a 
low-dimension feature representation for each enzyme. With such representation of 
enzymes, random k-labelsets (RAKEL) [26, 27] was employed to build the multi-label 
classifier, named PredictEFC, where random forest (RF) [28] was selected as the base 
classification algorithm. The tenfold cross-validation results on the benchmark dataset 
shown that the accuracy and absolute true were 0.8493 and 0.8350, respectively, indicat-
ing the good performance of the classifier. Its performance on two independent datasets 
was also high. The accuracy values reached 0.9118 and 0.8777, which were higher than 
those yielded by two previous methods. Although the PredictEFC was a little weaker 
than the classifier directly using functional domain composition, its efficiency was 
largely improved, indicating the utility of the feature extraction scheme. Furthermore, 
PredictEFC outperformed the classifiers using enzyme features that were obtained by 
applying popular dimensionality reduction methods on functional domain composition.

Materials and methods
Benchmark dataset

A rigorous and objective benchmark dataset is the base for developing efficient clas-
sifiers. Although several datasets on enzymes have been proposed in the past twenty 
years [29], they were not complete enough as new discoveries have been added in recent 
years, especial for the addition of the seventh family class in 2018. Thus, we downloaded 
3550 human enzymes and their EC numbers from Expasy (https:// enzyme. expasy. org/, 
accessed in August 2022), a repository of information on the nomenclature of enzymes. 
All enzymes were represented by their UniProt IDs. Based on these IDs, the protein 
sequences were retrieved from UniProt. As the homogenous proteins may overestimate 
the constructed classifiers, the well-known tool, CD-HIT [30], was adopted to exclude 
proteins with similar sequences. 2382 enzymes remained, which constituted the bench-
mark dataset of this study, denoted by S. The sequence identity of any two proteins in 
this dataset was less than 0.4. According to the first codes of the EC numbers of these 
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enzymes, 2382 enzymes were classified into seven family classes, which are listed in the 
second column of Table 1. For convenience, seven family classes were tagged as EC 1–7. 
Let us denote the enzyme set consisting of enzymes in EC i as Si (1 ≤ i ≤ 7). Then, the 
benchmark dataset S can be formulated by

Enzymes, denoted by UniProt IDs, in each set are provided in Additional file 1. The 
number of enzymes in each Si was counted and is also listed in Table 1. As some enzymes 
can belong to more than one family class, the sum of above numbers (2445) was larger 
than the number of different enzyme (2382). Evidently, it was a multi-label classification 
problem for assigning family classes to enzymes.

For multi-label classification problems, it is necessary to count the multiplicity degree 
(MD), which is defined as the average number of labels for samples. For the benchmark 
dataset S, MD was 1.026 (2445/2382), meaning that each enzyme belongs to 1.026 family 
classes. An upset graph was plotted to show the intersection of enzymes in seven family 
classes, as illustrated in Fig. 1. It can be observed that hydrolases and transferases shared 
20 common enzymes, isomerases and lyases had six common enzymes. Few enzymes 
belong to more than two family classes.

Two independent datasets were constructed for testing the generalization ability 
of PredictEFC. The first independent dataset was also retrieved from Expasy. The lat-
est information of human enzymes and their EC numbers were extracted (Accessed in 
November 2023), obtaining 3593 enzymes. We constructed the independent dataset 
from these enzymes using the following procedures: (1) These enzymes were combined 
with 2382 enzymes to constitute a large enzyme dataset, which was processed by CD-
HIT with cutoff 0.4; (2) The 2382 enzymes were excluded; (3) Remaining enzymes with-
out functional domain information were discarded. 34 enzymes were obtained under 
above operations, which comprised the first independent dataset, called independent 
dataset I. The second independent dataset was extracted from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) ENZYME [31] (Accessed in November 2023). Obtained 
enzymes were processed with the similar data cleaning procedures for the independent 

(1)S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7

Table 1 Breakdown of the enzymes in the benchmark dataset and two independent datasets

Tag Enzyme family class Number of enzymes

Benchmark 
dataset

Independent 
dataset I

Independent 
dataset II

EC 1 Oxidoreductases 288 5 0

EC 2 Transferases 1080 13 57

EC 3 Hydrolases 747 14 60

EC 4 Lyases 113 0 5

EC 5 Isomerases 80 0 8

EC 6 Ligases 86 0 6

EC 7 Translocases 51 2 3

Sum 2445 34 139

Number of different enzymes 2382 34 139

The multiplicity degree 1.026 1 1
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dataset I. Finally, 139 enzymes and their EC numbers were obtained, which constituted 
the second independent dataset, called independent dataset II. The breakdown of these 
two independent datasets is also provided in Table 1 and the detailed enzymes in them 
are provided in Additional files 2 and 3.

Enzyme representation

In machine learning, sample representation is an important step. A good representation 
should contain essential properties of samples as complete as possible. As mentioned in 
Sect.  "Introduction", the functional domain information is useful materials to indicate 
the essential properties of proteins, from which informative features can be extracted. 
In this study, such information was employed as the raw data for extracting protein fea-
tures. A novel feature extraction scheme was designed to extract informative features of 
enzymes.

The functional domain information of 2382 enzymes was retrieved from the InterPro 
database (http:// ftp. ebi. ac. uk/ pub/ datab ases/ inter pro/, version 88.0, accessed in March 
2022) [32, 33]. 5117 IPR terms were involved for 2382 enzymes. The average number of 
IPR terms for one enzyme was 5.66. For easy descriptions, the IPR terms of protein p 
constituted a set, denoted by IPR(p), which was formulated by

where k was the number of IPR terms annotated to protein p.

(2)IPR(p) = {IPR1
p, IPR

2
p, · · · , IPR

k
p}

Fig. 1 Upset graph to show the distribution of enzymes across seven family classes. Some classes share 
common enzymes, meaning that some enzymes belong to more than one family classes

http://ftp.ebi.ac.uk/pub/databases/interpro/
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Functional domain composition is a traditional way to use functional domain infor-
mation for protein representation. In this way, a binary vector is built for each protein 
according to its IPR terms. Each component corresponds to one IPR term. It is set to 
1 if such IPR term is annotated to the protein; otherwise, it is set to zero. Evidently, 
such representation could lead to the problem of dimension disaster as huge number 
of IPR terms have been defined to date. For enzymes investigated in this study, each 
of them could be represented by a 5117-dimensional binary vector. The efficiency 
of the classifiers based on such representation is not very high. In view of this, this 
study proposed a novel scheme to give a deep insight into the IPR terms of training 
enzymes and then assign informative features to a given enzyme.

Given a training enzyme dataset, denoted by Str = {e1, e2, · · · , en} , where n is the 
number of enzymes in Str , pick up all related IPR terms that is annotated to at least 
one enzyme. Suppose that there are m IPR terms, formulated by

For each IPR term, say IPRi , count the number of training enzymes that are anno-
tated by IPRi . Such term is denoted by N (IPRi) , i.e.,

As the labels of training enzymes can be observed, all training enzymes can be 
divided into L subsets, where L is the number of different labels (L = 7 in this study), 
denoted by Sjtr (1 ≤ j ≤ L). For IPRi , the second term was computed for each enzyme 
subset, denoted by Nj IPRi  , which can be formulated by

Cleary, Nj

(

IPRi
)

(1 ≤ j ≤ L) indicate the distribution of IPRi across L labels. Intui-
tively, if a protein annotated by IPRi , it is more likely to be assigned the label whose 
Nj

(

IPRi
)

 is maximum. As the range of N
(

IPRi
)

 and Nj

(

IPRi
)

(1 ≤ j ≤ L) greatly var-
ies for different IPR terms, direct usage of N

(

IPRi
)

 and Nj

(

IPRi
)

 (1 ≤ j ≤ L) is not an 
excellent choice. In view of this, N

(

IPRi
)

 and Nj

(

IPRi
)

 are combined as

Rj

(

IPRi
)

 indicates the proportion of enzymes with the j-th label that are annotated 
by IPRi among all training enzymes annotated by the same IPR term. A large value 
means that such IPR term may be highly related to the j-th label, which can be fur-
ther induced that enzymes annotated by such IPR term have the j-th label with a 
high probability. Furthermore, after such operation, Rj

(

IPRi
)

 is all between 0 and 1 
no matter which label or IPR term is involved. These values are suitable raw materials 
to encode enzymes. On one hand, they contain the distribution information of IPR 
terms. On the other hand, the label information is also included. Above information 
is useful to determine the family classes of enzymes.

(3)IPR1
, IPR2

, · · · , IPRm

(4)N
(

IPRi
)

= |
{

e|e ∈ Str and IPRi ∈ IPR(e)
}

|

(5)Nj

(

IPRi
)

= |
{

e|e ∈ S
j
tr and IPRi ∈ IPR(e)

}

|

(6)Rj

(

IPRi
)

=
Nj

(

IPRi
)

N
(

IPRi
)
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Given a training or test enzyme p, it can be encoded into a vector according to the 
above entries and its IPR terms. Suppose that its IPR terms are formulated by Eq. 2. For 
each IPR term, say IPRi

p (1 ≤ i ≤ k), pick up Rj

(

IPRi
p

)

 (1 ≤ j ≤ L) calculated from the train-

ing dataset. For the j-th label, compute the following entry:

Xj indicates the maximum proportion of enzymes with the j-th label among all 
enzymes across all IPR terms of the enzyme p. Generally, a high value suggests it is more 
likely for p to share the j-th label, which is helpful for making correct classification. As 
seven labels (family classes) were involved in this study, each enzyme can be encoded 
into a 7-dimension vector, as formulated by

Compared with the binary vector obtained by functional domain composition, the 
dimension is sharply reduced, which give a strong base for building classifiers with high 
efficiency.

Classifier construction

As mentioned in Sect.  "Benchmark Dataset", some enzymes can belong to more than 
one family class. A multi-label classifier should be designed to assign family classes to 
the test enzyme. In multi-label machine learning, problem transformation is a widely 
used scheme to design multi-label classifiers. Such scheme transforms the original prob-
lem into multiple single-label classification problems [34]. In this study, we adopted such 
scheme to design the multi-label classifier.

Label Powerset (LP) is a classic problem transformation scheme in multi-label learn-
ing. This method takes the members of the powerset of label set as new labels and 
assigns a new label to each sample according to its original labels. Under such operation, 
each sample has exact one label. A single-label classifier can be built based on samples 
that has been assigned new labels. The LP method has an evident defect. With the rais-
ing of label number, the size of powerset sharply increases. It is indicated that lots of 
new labels are employed, inducing label disaster. Furthermore, some labels may have few 
samples, reducing the learning efficiency. To tackle such problem, its improved version, 
RAKEL [26, 27], was designed. This method employs the random selection of labels. If 
the classification problem containing L labels, it randomly selects k labels from all labels, 
where 1 ≤ k ≤ L. This procedure is executed multiple times to cover all labels, i.e., each 
label is selected at least once. Such number of times is determined by another parameter 
of RAKEL, denoted by m. Accordingly, m label subsets are constructed. On each subset, 
LP method is applied to set up a LP classifier with a given single-label classification algo-
rithm. All m LP classifiers are integrated to build the final classifier.

As a problem transformation method, a single-label classification algorithm is nec-
essary. In this study, we tried two classic classification algorithms: RF [28] and SVM 
[35]. RF is an ensemble algorithm consisting of several decision trees. Each tree is 
built by randomly selecting samples and features. For a test sample, each tree provides 
the prediction. These predictions are integrated with majority voting in RF. SVM is 

(7)Xj = max

{

Rj

(

IPR1
p

)

,Rj

(

IPR2
p

)

, · · · ,Rj

(

IPRk
p

)}

(8)V (p) = [X1,X2,X3,X4,X5,X6,X7]T
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a powerful classification algorithm based on statistical theory. It tries to find out a 
hyperplane that can separate samples in two classes as perfect as possible. In many 
cases, samples are mapped into a high-dimensional space via a kernel function so that 
such hyperplane is easy to be discovered. For a test sample, it is also mapped into the 
same high-dimensional space and its prediction is determined according to the side of 
hyperplane it is located. RF and SVM have been widely used to tackle many biologi-
cal problems [36–42]. The final classifier would select the classification algorithm that 
can provide the best performance.

To quickly implement RAKEL, the tool “RAKEL” in Meka (http:// waika to. github. 
io/ meka/, version 1.9.3) [43] was adopted in this study. The RF and SVM were also 
implemented by tools “RandomForest” and “SMO” in Meka. Some parameters of 
above tools were tuned to access the optimal multi-label classifier.

Performance evaluation

Cross-validation is a commonly used method to evaluate the performance of classi-
fiers [44]. Such method always equally and randomly divides samples into K parts. 
Each part is singled out one by one to constitute the test dataset, whereas the rest K-1 
parts are used to constitute the training dataset. The classifier built on the training 
dataset is applied on the test dataset. The average performance on K parts is com-
puted to assess the performance of the classifier. K is always set to five or ten. Here, 
it was set to 10, i.e., tenfold cross-validation was adopted to evaluate all classifiers 
in this study. It is necessary to point out that the enzyme representation is highly 
related to the training dataset. The representations for the same enzyme in different 
rounds of cross-validation are different. Thus, when executing tenfold cross-valida-
tion, we always divided the samples in advance and then generate the representa-
tions of enzymes. The above general cross-validation randomly divided samples into 
some parts, which may cause differences between the distributions of samples in the 
test dataset and those in the whole dataset. This problem can be reduced by employ-
ing stratified sampling. This study further adopted this method to construct test and 
training datasets in tenfold cross-validation. In details, we first divided enzymes into 
nine groups, where seven groups contained enzymes exactly belonging to seven fam-
ily classes, the eighth group included the enzymes exactly belonging to hydrolases 
and transferases, and the last group consisted of the rest enzymes. Then, enzymes in 
each group were randomly divided into ten parts. Parts with the same index for nine 
groups were combined to constitute one fold of the cross-validation. The above sam-
ple partition procedures can guarantee that the distributions of enzymes in ten folds 
are similar, which are also similar to the distribution of samples in the whole dataset.

Several measurements have been proposed to evaluate the quality of predicted 
results of the multi-label classifiers. In this study, two sets of measurements were 
employed, where the first set was to assess the overall performance of the classifier 
and the second set can assess the performance of the classifier on different family 
classes. Five measurements contained in the first set include aiming, coverage, accu-
racy, absolute true, and absolute false [45–51]. They can be computed by

http://waikato.github.io/meka/
http://waikato.github.io/meka/
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where N denoted the number of enzymes, M represented the total number of labels 
(M = 7 in this study), Lk indicated the subset of observed labels of the k-th enzyme, L∗k was 
the subset of predicted labels of the k-th enzyme, �(Lk , L

∗
k) was determined by comparing 

Lk and L∗k , which can be calculated by

Among these five measurements, the higher the aiming, coverage, absolute true and 
accuracy, the higher  the performance of the classifier. Absolute false is on the contrary. A 
low value suggests the high performance.

Measurements in the second set assess the classifier’s performance on different family 
classes. To compute these measurements, the true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN) for one family class should be defined in advance. 
Take the i-th family class as an example. Enzymes in this class are termed as positive sam-
ples, whereas other enzymes are regarded as negative samples. Then, TP, FP, TN and FN 
can be defined as their definitions in binary classification. Accordingly, the following five 
measurements: accuracy, recall, precision, F1-measure and Matthews correlation coeffi-
cient (MCC) [52, 53], can be computed based on them, formulated by

(9)Aiming =
1

N

N
∑

k=1

�Lk ∩ L∗k�
�L∗k�

,

(10)coverage =
1

N

N
∑

k=1

�Lk ∩ L∗k�
�Lk�

,

(11)accuracy =
1

N

N
∑

k=1

�Lk ∩ L∗k�
�Lk ∪ L∗k�

,

(12)absolute true =
1

N

N
∑

k=1

�(Lk , L
∗
k),

(13)absolute false =
1

N

N
∑

k=1

�Lk ∪ L∗k� − �Lk ∩ L∗k�
M

,

(14)�
(

Lk , L
∗
k

)

=
{

1, ifLk is same as L∗k
0, otherwise

(15)accuracy(i) =
TP(i)+ TN (i)

TP(i)+ TN (i)+ FP(i)+ FN (i)

(16)recall(i) =
TP(i)

TP(i)+ FN (i)

(17)precision(i) =
TP(i)

TP(i)+ FP(i)
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In addition to these four measurements, the ROC and PR curves were also employed 
to fully display the performance of the classifier on different family classes. The areas 
under these two curves, denoted by AUROC and AUPR, were also calculated to show 
the performance of the classifier on one family class.

Results and discussion
In this study, a new multi-label classifier, PredictEFC, was designed to identify family 
classes of enzymes, which adopted the compact features derived from proteins’ func-
tional domain information via a novel feature extraction scheme. The entire construc-
tion and evaluation procedures are illustrated in Fig. 2.

Parameter selection

There were some parameters in the proposed multi-label classifier, PredictEFC, which 
should be tuned. For RAKEL, the parameter k was set to 3, 5, and 7, whereas the other 
parameter m was set to its default value of 10. The classification algorithm was set to 
RF or SVM. For RF, its main parameter I, number of decision trees, was set to various 
values in [80, 500]. As for SVM, the regularization parameter C was set to 0.5, 1, 3, 5, 
and 7, whereas four kernel functions were attempted, including polynomial kernel, 
normalized polynomial kernel, Puk kernel and RBF kernel. Their parameters were set 

(18)F1−measure(i) =
2× TP(i)

2× TP(i)+ FP(i)+ FN (i)

(19)

MCC(i) =
TP(i)× TN (i)− FP(i)× FN (i)

√
(TP(i)+ FP(i))× (TP(i)+ FN (i))× (TN (i)+ FP(i))× (TN (i)+ FN (i))

Fig. 2 Entire construction and evaluation procedures of PredictEFC. The enzymes and their EC numbers are 
retrieved from Expasy. These enzymes are processed by CD-HIT to access a high-quality enzyme dataset, 
involving 2382 enzymes and 7 family classes. From the training dataset, the distribution of each functional 
domain (IPR term) is counted, which is used to encode training and test samples into 7-D vectors. The vectors 
are fed into random k-labelsets, with random forest or support vector machine as the base classification 
algorithm, for training the classifier. The classifier is assessed by tenfold cross-validation and independent test



Page 11 of 27Chen et al. BMC Bioinformatics           (2024) 25:50  

as follows. Polynomial kernel: exponent e was set to various values in [1, 3]. Normal-
ized polynomial kernel: exponent e was set to various values in [1, 3].

Puk kernel: default setting in Meka.
RBF kernel: parameter γ was set to various values in [0.1, 3.0].
As mentioned above, each parameter was set to several values in a certain scope. 

We adopted grid research to construct classifiers with all possible parameter combi-
nations. According to the evaluation results yielded by tenfold cross-validation, the 
optimal values for each parameter can be determined and the classifier with optimal 
parameters were built as PredictEFC.

Performance of the PredictEFC

According to Sect.  "Parameter selection", several multi-label classifiers with all pos-
sible parameter combinations, yielded by grid research, were constructed. These clas-
sifiers were evaluated by tenfold cross-validation. With different base classification 
algorithms (SVMs with different kernels were deemed to be different), the best ten-
fold cross-validation results, measured by accuracy, are listed in Table  2. It can be 
observed that all classifiers seems to give similar performance. In detail, accuracy was 
around 0.8450, absolute true was about 0.8350, aiming was between 0.85 and 0.86 and 
coverage was between 0.84 and 0.87. The absolute false was around 0.0450. Evidently, 
such performance was quite high. Among these classifiers, the classifier using RF as 
the base classification algorithm was relatively better than others as it provided the 
best absolute false, aiming and accuracy, whereas the absolute true and coverage were 
ranked at the second place. Thus, we set this classifier as the proposed multi-label 
classifier, PredictEFC.

The general tenfold cross-validation adopted the random division of samples, caus-
ing the different performance of the classifier on different folds. Table 3 displays the 
detailed performance of PredictEFC on ten folds. It can be observed that the standard 

Table 2 Performance of the multi-label classifiers using different base classification algorithms

Base 
classification 
algorithm

Parameter Absolute false Absolute true Aiming Coverage Accuracy Time(s)

Random forest k = 7, I = 500 0.0444 0.8350 0.8577 0.8563 0.8493 716.09

Support vector 
machine
(Polynomial 
kernel)

k = 7, C = 1, 
e = 1

0.0460 0.8329 0.8522 0.8422 0.8422 628.99

Support vector 
machine
(Normalized 
polynomial 
kernel)

k = 5, C = 0.5, 
e = 2

0.0454 0.8283 0.8573 0.8604 0.8483 636.80

Support vector 
machine
(Puk kernel)

k = 7, C = 5 0.0461 0.8325 0.8530 0.8447 0.8430 1278.65

Support vector 
machine
(RBF kernel)

k = 7, C = 7, 
γ = 0.1

0.0450 0.8363 0.8556 0.8456 0.8456 1368.10
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deviations for five measurements were quite small, indicating that the performance of 
PredictEFC on ten folds was quite similar.

To fully evaluate the performance of PredictEFC, we further calculated the accuracy, 
precision, recall, F1-measure, and MCC on seven family classes, which are listed in 
Table 4. The accuracies were all very high (≥ 0.89). For precision, PredictEFC provided 
high performance on five classes (oxidoreductases, transferases, hydrolases, ligases, and 
translocases). The recall, F1-measure, and MCC values were high for four classes (oxi-
doreductases, transferases, hydrolases and ligases). In addition, the ROC and PR curves 
were plotted for each family class, as shown in Fig. 3. The AUROC and AUPR were also 

Table 3 Detailed cross-validation results of PredictEFC

Fold Absolute false Absolute true Aiming Coverage Accuracy

1 0.0406 0.8410 0.8696 0.8682 0.8591

2 0.0389 0.8619 0.8703 0.8787 0.8703

3 0.0486 0.8235 0.8424 0.8361 0.8340

4 0.0336 0.8739 0.8887 0.8845 0.8824
5 0.0432 0.8361 0.8739 0.8666 0.8582

6 0.0408 0.8445 0.8718 0.8782 0.8634

7 0.0522 0.8067 0.8323 0.8361 0.8239

8 0.0570 0.7773 0.8169 0.8256 0.8064

9 0.0468 0.8277 0.8529 0.8466 0.8424

10 0.0486 0.8151 0.8375 0.8424 0.8312

Standard devia-
tion

0.0069 0.0277 0.0227 0.0213 0.0235

Table 4 Performance of the PredictEFC on seven family classes

Family class Accuracy (i) Precision (i) Recall (i) F1-measure(i) MCC (i) AUROC (i) AUPR (i)

Oxidoreductases 0.9652 0.8726 0.8173 0.8424 0.8240 0.9002 0.8556

Transferases 0.8913 0.8502 0.9291 0.8856 0.7899 0.8937 0.9055
Hydrolases 0.9198 0.8827 0.8704 0.8730 0.8207 0.9055 0.8966

Lyases 0.9664 0.6973 0.4590 0.5454 0.5489 0.7242 0.5905

Isomerases 0.9698 0.5375 0.3570 0.4146 0.4225 0.6735 0.5078

Ligases 0.9841 0.8462 0.7234 0.7465 0.7750 0.8572 0.7895

Translocases 0.9874 1.0000 0.4000 0.5714 0.6283 0.8340 0.8280

Fig. 3 ROC and PR curves of PredictEFC for seven family classes. A ROC curves on seven family classes; B PR 
curves on seven family classes
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listed in this figure and Table 4. Evidently, the AUROC and AUPR values were high for 
three classes (oxidoreductases, transferases, and hydrolases). However, those on lyases 
and isomerases were low. In generally, the PredictEFC provided satisfied performance 
for the classification of enzymes.

Furthermore, the PredictEFC was tested by the tenfold cross-validation under strati-
fied sampling. The detailed performance is listed in Table  5. It can be found that the 
absolute false, absolute true, aiming, coverage, and accuracy were 0.0481, 0.8207, 0.8449, 
0.8463, and 0.8370, respectively. This performance was slightly lower than that yielded 
by the general tenfold cross-validation. The key measurements: accuracy and absolute 
true were 0.0123 and 0.0143 lower, respectively. This gap can be concluded that the per-
formance under different sampling strategy was almost at the same level. In addition, the 
performance of PredictEFC on different folds was almost at the same level, suggesting 
that PredictEFC was quite stable for different folds.

Comparison with the classifier using functional domain composition

Proteins’ functional domain information is widely used to investigate many protein-
related problems. The traditional way to utilize such information for the protein rep-
resentation is called functional domain composition. This section employed functional 
domain composition to represent enzymes, thereby building the classifier and compar-
ing it with PredictEFC.

As mentioned in Sect.  "Enzyme representation", 5117 IPR terms were involved 
for 2382 investigated enzyme. In this case, each enzyme was represented by a 
5117-dimensional binary vector. These vectors, alone with the class labels of enzymes, 
were fed into RAKEL to construct classifiers. We also used RF and SVM with different 
kernel functions as base classification algorithms. The same parameters were tuned as 
mentioned in Sect. "Parameter selection". The best performance under different base 
classification algorithms is listed in Table 6. The range of accuracy was 0.7707–0.8545. 
Compared with the accuracies listed in Table 2, the accuracies of the classifiers using 
compact features varied in a small interval. However, the peak value of classifiers 
using functional domain composition was higher than those using compact features. 

Table 5 Performance of PredictEFC under tenfold cross-validation with stratified sampling

Fold Absolute false Absolute true Aiming Coverage Accuracy

1 0.0490 0.8140 0.8388 0.8395 0.8313

2 0.0383 0.8577 0.8776 0.8787 0.8706
3 0.0478 0.8159 0.8494 0.8396 0.8354

4 0.0658 0.7531 0.7908 0.7835 0.7751

5 0.0504 0.8235 0.8393 0.8445 0.8351

6 0.0450 0.8235 0.8508 0.8655 0.8466

7 0.0450 0.8319 0.8571 0.8571 0.8487

8 0.0426 0.8445 0.8638 0.8676 0.8575

9 0.0496 0.8220 0.8326 0.8369 0.8305

10 0.0474 0.8213 0.8489 0.8496 0.8390

Mean 0.0481 0.8207 0.8449 0.8463 0.8370

Standard devia-
tion

0.0072 0.0273 0.0231 0.0261 0.0252
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The same phenomenon occurred for other four measurements. Among five classifiers 
using functional domain composition, the classifier with SVM (RBF kernel) yielded 
the best performance as it generated the highest performance on all five measure-
ments. Accordingly, we selected this classifier to compare with PredictEFC.

For five overall measurements (Eqs. 9–13), PredictEFC produced a little lower per-
formance on each measurement (see Fig.  4). In detail, the accuracy, absolute true, 
coverage and aiming were 0.0052, 0.0071, 0.0005, 0.0073, respectively, lower than 
those of the classifier using SVM (RBF kernel) and functional domain composition, 
whereas the absolute false was 0.0021 higher. Such gaps indicated that the perfor-
mance of these two classifiers was almost at the same level. For other measurements 
representing the performance of classifiers on seven enzyme family classes, box plot 

Table 6 Performance of the multi-label classifiers using functional domain composition and 
different base classification algorithms

Base 
classification 
algorithm

Parameter Absolute false Absolute true Aiming Coverage Accuracy Time(s)

Random forest k = 7, I = 500 0.0446 0.8350 0.8566 0.8484 0.8465 36,890.08

Support vector 
machine
(Polynomial 
kernel)

k = 7, C = 1, 
e = 1

0.0434 0.8380 0.8610 0.8530 0.8505 4956.18

Support vector 
machine
(Normalized 
polynomial 
kernel)

k = 5, C = 0.5, 
e = 2

0.0543 0.8018 0.8234 0.8162 0.8135 34,370.13

Support vector 
machine (Puk 
kernel)

k = 7, C = 5 0.0665 0.7607 0.7799 0.7721 0.7707 19,275.39

Support vector 
machine (RBF 
kernel)

k = 7, C = 7, 
γ = 0.1

0.0423 0.8421 0.8650 0.8568 0.8545 13,167.54

Fig. 4 Bar chart to compare the overall performance of PredictEFC and the classifier with functional domain 
composition. These two classifiers give almost equal performance
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was drawn for each measurement, as illustrated in Fig. 5. It can be observed that the 
ranges of all measurements except precision, including accuracy, recall, F1-measure, 
MCC, AUROC, and AUPR, were almost same for these two classifiers, further con-
firming their equal performance.

Besides the performance of the classifiers, the computing time is also an impor-
tant indicator of the classifiers. Generally, the time follows an increasing trend on the 
dimension of the input vectors. In PredictEFC, enzymes were represented by 7-dimen-
sion vectors, whereas the classifier using functional domain composition adopted the 
5117-dimension vectors. In theory, the efficiency of PredictEFC was much higher 
than that of the classifier using functional domain composition. To prove this fact, the 
cross-validation time was counted for classifiers using compact features or functional 
domain composition, as listed in the last column in Table 2 and 6. Evidently, the time 
for classifiers using compact features was much less than those using functional domain 

Fig. 5 Box plot to compare performance of PredictEFC and the classifier with SVM (RBF kernel) and 
functional domain composition on seven family classes. The red and blue boxes represent the measurements 
of PredictEFC and the classifier with SVM (RBF kernel) and functional domain composition, respectively
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composition. The time for classifiers using compact features was less than a tenth of that 
of classifiers using functional domain composition.

With above arguments, the PredictEFC had similar performance but much higher effi-
ciency to/than the traditional classifiers using functional domain composition. The novel 
feature extraction scheme based on functional domain information reserved the essen-
tial information of proteins and discarded useless information, improving the efficiency 
of classifiers but at the same time, the performance was not evidently reduced.

Comparison with classifiers using traditional dimensionality reduction methods

The PredictEFC adopted the enzyme representation that was obtained by a deep analysis 
on enzymes’ functional domain information. The result can be deemed as the dimen-
sionality reduction on functional domain composition. To indicate the superiority of the 
enzyme representation used in this study, some widely used dimensionality reduction 
methods were employed, which would be applied to the functional domain composition 
for obtaining the vectors of enzymes with lower dimensions. These methods included 
principal component analysis (PCA), singular value decomposition (SVD), non-negative 
matrix decomposition (NMF), t-distributed stochastic neighbor embedding (t-SNE), 
and uniform manifold approximation and projection (UMAP). Each above method was 
applied to the functional domain composition to obtain a new vector of each enzyme 
with a low dimension. For PCA, the various covered was set to different values (85%, 90% 
and 95%) to determine the dimension of vector. For SVD, the proportion of top singular 
values to all singular values (called singular value covered in this study) was employed 
to determine the dimension, which was set to 85%, 90% and 95%. As for NMF, the row 
vectors in the first matrix were picked up as the latent representations of enzymes. The 
dimension was set to various values between 100 and 1000. For t-SNE, perplexity was 
set to 30 and dimension was set to 2 and 3. For UMAP, number of neighbors was set to 
15 and the dimension was set to various values between 5 and 20. Above dimensionality 
reduction methods have been implemented by corresponding packages in Scikit-learn 
[54], which were directly used in this study.

Each new representation of enzymes with low dimensions was fed into RAKEL to set 
up the multi-label classifier, where the base classification algorithm was RF or SVM. Each 
classifier was also evaluated by tenfold cross-validation. The best performance, meas-
ured by accuracy, of each dimensionality reduction method is listed in Table 7. It can 
be observed that the accuracies for classifiers with PCA, SVD, NMF, t-SNE, and UMAP 
were 0.3970, 0.8046, 0.3825, 0.8152, and 0.7885, respectively. Compared with that of 
PredictEFC (Table 2), the accuracies of classifiers with PCA or NMF were much lower, 
the gap was more than 0.45; whereas the accuracy of the classifier with SVD, t-SNE, or 
UMAP was relatively close to that of PredictEFC, the gaps were between 0.03 and 0.07. 
Similar results occurred for other four measurements. For a clear display on the per-
formance of above five classifiers and PredictEFC, a bar chart was plotted, as shown in 
Fig. 6. Evidently, PredictEFC provided better performance than other five classifiers. It 
was indicated that the novel scheme to reduce the dimension of functional domain com-
position was effective in retaining essential information of proteins.
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Table 7 Performance of classifiers using functional domain composition processed by traditional 
dimensionality reduction methods

Dimensionality 
reduction 
method

Parameter Absolute 
False

Absolute True Aiming Coverage Accuracy Time(s)

Principal compo-
nent analysis

Various cov-
ered = 95%

0.1748 0.3896 0.4038 0.3984 0.3970 6054.56

Singular value 
decomposition

Singular value 
covered = 85%

0.0568 0.7939 0.8139 0.8064 0.8046 3023.14

Non-negative 
matrix decompo-
sition

Dimen-
sion = 100

0.1784 0.3753 0.3899 0.3830 0.3825 3012.49

t-distributed sto-
chastic neighbor 
embedding

Dimension = 2 0.0542 0.8010 0.8248 0.8204 0.8152 315.50

Uniform mani-
fold approxi-
mation and 
projection

Dimension = 10 0.0615 0.7775 0.7974 0.7910 0.7885 602.84

Fig. 6 Bar chart to compare the overall performance of PredictEFC and the classifiers with traditional 
dimensionality reduction methods. PredictEFC is superior to other classifiers



Page 18 of 27Chen et al. BMC Bioinformatics           (2024) 25:50 

On the other hand, we also counted the cross-validation time of the classifiers with 
PCA, SVD, NMF, t-SNE, and UMAP, which is listed in Table 7. The time for classifiers 
with PCA, SVD, and NMF exceeded 3000 s. Such time for PredictEFC was only 716.09 s, 
less than one fourth of the above time. This result suggested that PredictEFC had much 
higher efficiency than classifiers with PCA, SVD, and NMF. With the deep analysis on 
functional domain information of proteins, we can obtain a compact representation for 
enzymes and at the same time, the classifiers based on such representation had rela-
tive high performance. As for the cross-validation time for classifiers with t-SNE, it was 
much less than that of PredictEFC. The reason was that the feature dimension was only 
two. The cross-validation time of classifiers with UMAP was slightly less than that of 
PredictEFC. Considered the fact that above two classifiers provide lower performance 
than PredictEFC, PredictEFC was a more perfect classifier than these two classifiers to 
predict enzyme family classes.

Performance of PredictEFC on two independent datasets

Two independent datasets were construct to test the generalization ability of Predict-
EFC, which were extracted from Expasy and KEGG ENZYME. The test results are listed 
in Table 8. On the independent dataset I, the PredictEFC yielded the absolute false of 
0.0252, absolute true, aiming, coverage and accuracy of all 0.9118. This performance was 
even better than that on the benchmark dataset S, which are listed in Table 2. On the 
independent dataset II, the absolute false, absolute true, aiming, coverage, and accuracy 
of PredictEFC were 0.0349, 0.8705, 0.8777, 0.8849, and 0.8777. Likewise, this perfor-
mance was also better than that on the benchmark dataset S. The comparison of perfor-
mance of PredictEFC on two independent datasets implied that PredictEFC had better 
performance on the independent dataset I than independent dataset II. This result was 
reasonable because the independent dataset I was constructed from the same database 
(Expasy) to the benchmark dataset, whereas the independent dataset II was built from 
another database (KEGG ENZYME). Anyway, the performance of PredictEFC on two 
independent datasets was quite high, proving that PredictEFC had a strong generaliza-
tion ability.

Comparison with previous models

Several computational models have been proposed to predict EC numbers of enzymes. 
As all previous models were established on different datasets, it was difficult to fairly 

Table 8 Performance of different models on two independent  datasetsa

a: Bold numbers indicate the best performance on independent dataset I, whereas italic numbers denote the best 
performance on independent dataset II

Model Independent dataset Absolute False Absolute True Aiming Coverage Accuracy

PredictEFC Independent dataset I 0.0252 0.9118 0.9118 0.9118 0.9118
Independent dataset II 0.0349 0.8705 0.8777 0.8849 0.8777

ECpred [22] Independent dataset I 0.0588 0.6471 0.6471 0.6471 0.6471

Independent dataset II 0.0319 0.8273 0.8273 0.8273 0.8273

BENZ WS [21] Independent dataset I 0.0462 0.6765 0.6765 0.6765 0.6765

Independent dataset II 0.0349 0.7842 0.7842 0.7842 0.7842
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compare PredictEFC with previous models. In view of this, we selected the models 
with web-server, including ECpred [22] and BENZ WS [21] for comparing their per-
formance on two independent datasets. We directly input the sequences of enzymes 
in two independent datasets into above two web-servers and captured the predicted 
results for counting measurements listed in Eqs. 9–13. In another word, we tested the 
generalization ability of ECpred and BENZ WS. Obtained five measurements of these 
two models on two independent datasets are provided in Table 8. The performance of 
ECpred and BENZ WS on the independent dataset I was not very high. The accuracy 
and absolute true values were about 0.65. This performance was evidently lower than 
that of PredictEFC, which yielded accuracy and absolute true higher than 0.90. As for 
their performance on the independent dataset II, the absolute true and accuracy values 
were around 0.80, higher than those on the independent dataset I. However, they were 
still lower than those yielded by PredictEFC, which were about 0.87. Based on above 
results, it can be concluded that PredictEFC provided higher performance than ECpred 
and BENZ WS on two independent datasets, further proving the strong generalization 
ability of PredictEFC.

Analysis of the effectiveness of the enzyme representation

In this study, we designed a novel scheme to count the distribution of each IPR term 
across seven family classes based on the enzymes in the training dataset, and this infor-
mation was combined with the IPR terms of the given enzyme to generate the new rep-
resentation of the given enzyme. Evidently, the distribution of IPR terms across seven 
family classes was a key factor to influence the quality of enzyme representation. This 
section gave an investigation on such information.

As mentioned in Sect. "Enzyme representation", we counted Rj

(

IPRi
)

 for the i-th IPR 
term and the j-th family class based on all 2382 enzymes. The results can be collected 
in a matrix with 5117 rows and 7 columns. A heat map was plotted for such matrix, as 
shown in Fig. 7. It can be observed that each family class has several exclusive IPR terms 
(the value of Rj

(

IPRi
)

 was close to one). Under such fact, the classifier is apt to clas-
sify the enzyme annotated by these IPR terms into the corresponding family class. Fur-
thermore, for each family class, we first divided IPR terms into five groups according to 
their distributions on this family class, that is the IPR terms with distributions in [0, 0.2] 
constituted the first group, those with distributions in (0.2, 0.4], (0.4–0.6], (0.6–0.8] and 
(0.8–1.0] comprised the second, third, fourth and fifth groups, respectively. Under each 
group, the distributions of IPR terms in this group across other six family classes were 
counted and shown in box plot. The box plot for oxidoreductases is shown in Fig. 8 and 
those for other family classes are provided in Additional file 4. From Fig. 8, we can see 
that with the increasing of distributions on oxidoreductases, the distributions on other 
six family classes were generally reduced. Such phenomenon confirmed that IPR terms 
with high distributions on oxidoreductases were strongly related to this family class, 
whereas their linkages to other family classes were weak. The same conclusions can be 
obtained for other family classes (see Additional file 4). Above arguments suggested that 
the distributions of IPR terms across seven family classes had strong rules, which was 
very helpful to extract informative features, thereby building efficient classifiers.
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Analysis of PredictEFC on domain frequency

There were 2382 enzymes in the benchmark dataset S. The numbers of domains anno-
tated to different enzymes were remarkably changed. A violin plot shows the distribu-
tions of numbers of domains annotated to 2382 enzymes, as illustrated in Fig.  9. It 
can be observed that most enzymes were annotated by less than 10 domains, some 
enzymes were annotated by only one domain, whereas the enzymes “P49327” and 
“P27708” had the most domains (25). As the proposed model, PredictEFC, was con-
structed based on domains of enzymes. It was interesting to investigate the influence 
of domain frequency on PredictEFC. To this end, we divided 2382 enzymes into three 
groups. The first group contained 100 enzymes with most domains, the second group 
consisted of 100 enzymes with least domains, and the rest enzymes comprised the 
last group. For the predicted results yielded by the general tenfold cross-validation, 
the five measurements on above three enzyme groups were counted individually, 
which are provided in Table 9. It can be found that the performance of PredictEFC 
was highly related to the domain frequency. For enzymes annotated by few domains, 
the performance of PredictEFC was not very high. The accuracy was only 0.7400. 
Its performance increased with the increasing in domain frequency. The accuracy 
for enzymes annotated by middle domains raised to 0.8422, and that for enzymes 

Fig. 7 Heat map to show the distribution of IPR terms across seven family classes. Each family class has 
several exclusive IPR terms, meaning enzymes annotated by these IPR terms are more likely to be classified 
into the corresponding family class



Page 21 of 27Chen et al. BMC Bioinformatics           (2024) 25:50  

Fig. 8 Box plot to show the distribution of IPR terms on six family classes according to the different ranges of 
their distribution on oxidoreductases. A the range is [0, 0.2]; B the range is (0.2, 0.4]; C the range is (0.4–0.6]; D 
the range is (0.6–0.8]; E the range is (0.8–1.0]
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annotated by most domains achieved maximum of 0.9042. Based on the above results, 
the predicted family classes of enzymes annotated by many domains were generally 
more reliable than those of enzymes annotated by few domains. This result was rea-
sonable because the quantity of domains determined the abundance of features. Few 
domains provided limited essential information of enzymes, whereas many domains 
gave the abundant core information of enzymes.

Performance of the PredictEFC on Yeast

So far PredictEFC was only tested on human enzymes. This section further tested 
its performance on enzymes of another specie, Yeast. The Yeast enzymes were also 
retrieved from Expasy (accessed in August 2022), resulting in 1449 enzymes. With the 
same data cleaning procedures for human enzymes, 1165 Yeast enzymes were obtained 
for building and testing PredictEFC. Their distribution on seven enzyme family classes 
is provided in Table 10. It can be observed that this enzyme dataset was smaller than 
the benchmark dataset S, however, the MD was almost same. We still used the same 
scheme to encode Yeast enzymes (see Sect. "Enzyme representation") and RAKEL with 
SVM or RF as base classification algorithm to set up the classifier. The grid search was 
also applied to the parameter values mentioned in Sect. "Parameter selection" to extract 
optimal parameters. According to the tenfold cross-validation results of classifiers with 
all possible parameter combinations, the final classifier for Yeast selected SVM with pol-
ynomial kernel as the base classification algorithm, C, k, and e were set to 3, 7, and 1, 
respectively. For convenience, this classifier was also called PredictEFC. Its performance 
under general tenfold cross-validation is listed in Table 11. The five measurements were 
0.0633, 0.7702, 0.7923, 0.7862, and 0.7826. Table 11 also lists its performance under the 
tenfold cross-validation with stratified sampling, indicating absolute false of 0.0672, 

Fig. 9 Violin plot to show the distribution of numbers of domains annotated to enzymes in the benchmark 
dataset. Most enzymes are annotated to less than 10 domains

Table 9 Performance of PredictEFC on enzymes annotated by few, middle and many domains

Quantity of 
domains

Absolute False Absolute True Aiming Coverage Accuracy

Few 0.0757 0.7400 0.7400 0.7400 0.7400

Middle 0.0462 0.8272 0.8506 0.8499 0.8422

Many 0.0300 0.8700 0.9250 0.9192 0.9042
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absolute true of 0.7559, aiming of 0.7792, coverage of 0.7742, and accuracy of 0.7695. 
Same to the results on human enzymes, the performance under tenfold cross-validation 
with stratified sampling was lower. However, the difference was very small. Compared to 
the cross-validation results on human enzymes, the performance of PredictEFC on Yeast 
enzymes decreased. However, the decrease is not very remarkable. PredictEFC still pro-
vided high performance on Yeast enzymes. It is believed that PredictEFC can be trans-
planted for predicting enzyme family classes of other species.

Web-server and user guide

For easy usage of PredictEFC, a web-server with the same name was developed, which 
can be accessed at http:// 124. 221. 158. 221/. The home page is illustrated in Fig. 10. There 
are three tabs at the top of home page, including Supporting Information, Code and 
Citation. In the tab of Supporting Information, two datasets are provided: (1) labels of 
2382 enzymes; (2) features of 2382 enzymes. It is necessary to point out that the features 
of 2382 enzymes are for training the final classifiers, which are different from those used 
for tenfold cross-validation. In the tab of Code, codes for this web-server are provided, 
along with the supporting materials. In the tab of Citation, the reference for this web-
server is available. In the right of home page, a brief description of this web-server is 
given. In the left of home page, a text box is placed for receiving input. Users can use the 
following steps to submit their input and access the results.

Step1. Users input the protein sequence with fasta format in the text box in the left of 
home page and click Submit button to submit the sequence to the web-server. If users 
input a wrong sequence, they can use Clear button to remove the original input and give 
a new input.

Table 10 Breakdown of the Yeast enzymes

Tag Enzyme family class Number 
of 
enzymes

EC 1 Oxidoreductases 158

EC 2 Transferases 493

EC 3 Hydrolases 327

EC 4 Lyases 75

EC 5 Isomerases 48

EC 6 Ligases 75

EC 7 Translocases 21

Sum 1197

Number of different enzymes 1165

The multiplicity degree MD 1.027

Table 11 Performance of PredictEFC on Yeast enzymes

Cross-validation Absolute false Absolute true Aiming Coverage Accuracy

General tenfold cross-validation 0.0633 0.7702 0.7923 0.7862 0.7826
tenfold cross-validation with 
stratified sampling

0.0672 0.7559 0.7792 0.7742 0.7695

http://124.221.158.221/
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Step2. After submitting the sequence, users can access the results within 2–3 min. The 
result page displays the name of seven family classes and the predicted classes of the input 
sequence.

Step3. Users can click Back button to return the home page.

Limitations of this study

This study proposed an efficient classifier for predicting enzyme family classes. Although 
this classifier had some merits, it still had some limitations. First, only two base classifi-
cation algorithms (RF and SVM) were attempted when constructing the classifier. It was 
not clear whether this selection was optimal. Employment of other classification algo-
rithms may yield a more powerful classifier. Second, the classifier was built using traditional 
machine learning algorithms, which restricted its performance. The newly designed deep 
learning algorithms provided abundant resources for designing excellent classifiers. Third, 
the proposed classifier strongly relied on the functional domain information of enzymes. 
For the enzymes annotated by no domains or few domains, the classifier cannot provide 
reliable results. Finally, this study only focused on enzyme family classes (the first EC num-
ber), causing the proposed classifier cannot recognize non-enzyme proteins and EC num-
bers at high levels. This limited the applications of PredictEFC. In future, we will continue 
this work to set up more perfect classifiers.

Fig. 10 Home page of the web-server
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Conclusions
This study proposed a new multi-label classifier for predicting family classes of 
enzymes. In this classifier, each enzyme was represented by a compact vector contain-
ing seven components, which was yielded by a novel feature extract scheme designed 
for processing functional domain information. The experiment results indicated that 
the classifier had good performance as well as high efficiency. The classifier was com-
petitive for classifiers using traditional schemes and previous classifiers, and the run-
ning time was sharply reduced. The user-friendly web-sever was also set up, which 
was easy to use for any users without computer science background. It is hopeful that 
the newly proposed classifier can be a useful tool for the large-scale test on candidate 
enzymes and the newly proposed feature extraction scheme on functional domain 
information can be applied to deal with other protein-related problems.
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