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Background
The development of complex disease systems can be categorized into three stages [1]: 
normal state, critical state and disease state. The human system has high elasticity and 
strong robustness in normal state and disease state. In the critical state, the human sys-
tem is unstable and reversible, with low rebound and weak robustness. If the system is 
disturbed at this time, it may transition to the subsequent stable state or revert to the 
preceding stable state. Most diseases are discovered at this stage of the onset of symp-
toms. Despite receiving appropriate treatment, returning to a normal state remains chal-
lenging [2]. Being able to identify critical states of complex diseases at an early stage 
and identify tipping points before serious complications occur allows for more precise 
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personalized treatment. In experiments conducted at the single-cell level, cell fate com-
mitment marks a pivotal transition, and the essential endeavor of understanding and 
foreseeing this shift is crucial for tailoring disease models and performing personalized 
assessments of therapeutic efficacy in individual patients [3]. Therefore, it holds signifi-
cant biomedical importance to describe the dynamic features of biological systems and 
accurately detect the critical stages.

In the study of complex biological systems, researchers had made great achievements 
in the detection of preliminary alerts of complex systems by using dynamic network 
markers, differential network and network entropy. The recently proposed DNB con-
cept theoretically derived a DNB-based indicator that acts as a basis for detecting the 
approach of critical state [2]. Single-cell graph entropy quantified the robustness and 
pivotal nature within gene regulatory networks between cellular communities and could 
be used to provide key signals of cell fate determination [4]. At the small-sample level, 
evaluating the critical state can also be achieved by calculating the network entropy dif-
ference generated by perturbation using a single perturbed sample [5].

Although many studies had contributed to the development of areas related to warn-
ing signs of qualitative changes in detection systems, a large amount of research was cur-
rently conducted on bulk datasets. Compared with traditional bulk omics information, 
single-cell analysis is impacted by high dimensionality, noise, sparsity, and heterogeneity 
in samples. Characterizing the dynamics of biological systems from single-cell datasets 
and accurately detecting critical state is a complex task.

In this research, we suggest a differential entropy method utilizing mutual information 
network, i.e., mutual information weighted entropy (MIWE), which uses the differen-
tial entropy information of each stage to detect the critical state. The gene expression 
is transformed into probability distribution and the mutual information network is 
constructed at each stage. Then, according to the weight between genes in each stage 
network, the weighted differential entropy of each local network is calculated to quan-
titatively describe the fluctuations of the system at each stage, thus identifying the criti-
cal state. The MIWE method is utilized on a numerical simulation dataset and four 
real biological datasets, encompassing bulk sequencing and single-cell RNA sequenc-
ing (scRNA-seq) data. We effectively identify critical states of colon adenocarcinoma 
(COAD) and thyroid carcinoma (THCA). In addition, signals related to cell fate com-
mitment are detected in datasets related to cell differentiation, encompassing mouse 
embryonic fibroblast (MEF) to neuron and mouse embryonic stem cell (mESC) to meso-
derm progenitor (MP). The predicted results align with the original experimental results, 
which support the validity and stability of the MIWE method.

The MIWE method offers a reliable way for identifying critical states in the evolution 
of the complex biological systems. This approach possesses the following four benefits: 
(1) From the perspective of continuous variables, MIWE method can more accurately 
describe the mutual influence between genes than discrete variables, and can cap-
ture small changes and trends when dealing with complex data structures and nonlin-
ear relationships, with strong robustness. (2) MIWE method is suitable for both bulk 
and single-cell expression data. By using edge weights to calculate phase entropy and 
make full use of network information, MIWE method can accurately reflect the dynam-
ics and complexity of system changes and enhance effectiveness. (3) Based on MIWE 
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method, critical states can be detected before critical qualitative changes occur in com-
plex biological systems and the signaling genes of the critical state can be detected. (4) 
Based on the MIWE method, key TFs related to embryonic differentiation and more 
potential dark genes that are not detectable by traditional biomarkers are discovered. 
Although these dark genes are non-differential signaling genes, they have been demon-
strated to participate in embryonic differentiation processes through functional pathway 
mechanisms.

Methods
Data progression and functional analysis

The MIWE method has been utilized on a numerical simulation dataset and four real 
biological datasets, encompassing bulk sequencing data including COAD and THCA 
from The Cancer Genome Atlas (TCGA) database (http:// cance rgeno me. nih. gov) and 
scRNA-seq data (embryonic differentiation of MEF to neurons (GEO: GSE67310) [6] 
and mESC to MP (GEO: GSE79578) [7]. from the NCBI GEO database (http:// www. 
ncbi. nlm. nih. gov/ geo).

The functional annotation analysis relies on the DAVID Bioinformatics Resources 
(https:// david. ncifc rf. gov/) and Circos (http:// www. circos. ca/). Potential upstream regu-
lators of signaling genes are identified based on ChEA3 (https:// amp. pharm. mssm. edu/ 
chea3/). Protein–Protein Interaction (PPI) networks are constructed utilizing STRING 
(https:// string- db. org/) and the client software Cytoscape (https:// cytos cape. org/).

Theoretical background

The dynamic change of complex biological system can be regarded as irregular pro-
cess, which will undergo qualitative change when approaching the critical stage. DNB 
theory proposed that when system approaches critical point, a set of genes or protein 
molecules, known as the DNB group, emerges that fulfills the following conditions: 
the connection between any two molecules in the DNB group swiftly grows, while the 
correlation with any other non-DNB molecule declines. The standard deviation of any 
member of the DNB group grows sharply. The system state may show small significant 
changes before reaching the critical point, and traditional biomarkers or methods can-
not successfully predict the critical state, while the DNB index acts as a basis for iden-
tifying the approach of critical state [2]. Therefore, it is the active changes in molecular 
binding and spatial fluctuations, instead of differences in gene expression, that lead to 
differences in biological systems [8].

MIWE method transforms gene expression into probability distribution and con-
structs mutual information network at each stage. The edge between genes in each local 
network is used as the weight to calculate the weighted differential entropy of each stage. 
The dynamic difference changes of each stage can be measured by the difference of 
entropy value. The global MIWE score at every stage functions as a precursor signal for 
identifying the critical state.

Algorithm to detect the tipping point based on MIWE

Given the chronological datasets of scRNA-seq or bulk sequencing, we design the fol-
lowing algorithm to detect the critical state (Fig. 1).

http://cancergenome.nih.gov
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/
http://www.circos.ca/
https://amp.pharm.mssm.edu/chea3/
https://amp.pharm.mssm.edu/chea3/
https://string-db.org/
https://cytoscape.org/
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[step 1] Fit Gaussian distribution of each gene at different time T .
Based on given samples and transform gene expressions into probability distribution.

Fig.1 The schematic of the MIWE method. A Gaussian distribution is fitted for each gene. B Mutual 
information network is constructed by taking mutual information between genes as edge weight, and 
local network is extracted from global network. C The weighted differential entropy of the global network is 
calculated. When the system is in the critical state, the MIWE score is at a low level, and once it reaches the 
critical state, the MIWE score increases sharply
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The Gaussian distribution is fitted according to the expression of gi (i = 1, 2, . . . ,m) in 
the n samples {S1, S2, . . . , Sn} at time T  . The goodness of fit test is performed on the fit-
ted Gaussian distribution. The gene expression values among the samples are converted 
to cumulative probability Pi(xir) . If any linear combination of genes gi   and gj obey one-
dimensional normal distribution, then the joint distribution between the two genes as the 
bivariate normal distribution, and their joint probability is Qi(gi, gj).

where xir is the gene expression values of gene gi (i = 1, 2, . . . ,m) in the samples r 
(r = 1, 2, . . . , n) , gi and gj are the average expression values of genes gi and gj  in n samples 
at time T  respectively, ρ is the correlation coefficient between gene gi and gj at time T  , µi , σi 
(i = 1, 2, . . . ,m) are the mean expression value and standard deviation of gene gi in n sam-
ples at time T .

[step2] Construct mutual information network MINT at each time T .
The edge association in the MINT can quantitatively characterize the correlation degree 

between genes, in which the edge weight between genes gi and gj is determined by the 
MIT (gi, gj) index.

the degree of correlation between genes is described from the perspective of informa-
tion. In the presence of a certain level of gene correlation, increased mutual information is 
observed when there is less randomness between genes.

[step3] Extract the local network from the global network.
Extract the local network MINk

T (k = 1, 2, . . . ,m) from the global network MINT at each 
time T  , which contains a central gene gk and first-order neighbors {gk1 , g

k
2 , ..., g

k
M} , where the 

edge weight WT (g
k , gkl ) = MIT (g

k , gkl ) in the local network.
[step4] Calculate differential entropy of the neighborhood gene gkl  (l = 1, 2, . . . ,M) in 

local network MINk
T (k = 1, 2, . . . ,m).

For each local network MINk
T (k = 1, 2, . . . ,m) at time T  , the differential entropy of 

neighborhood gene gkl  (l = 1, 2, . . . ,M) is denoted as:
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where gkl  are the average expression values of genes gkl  in n samples at time T  , µk
l  , σ k

l  
(l = 1, 2, . . . ,M) are the mean expression value and standard deviation of gene gkl  in n 
samples at time T .

[step5] Calculate mutual information weighted entropy of the global network MIWET.
Calculate the weighted entropy value MIWEk

T  (k = 1, 2, . . . ,m) of each local network 
at time T  , namely,

then the weighted entropy score of the global network is:

Signaling biomolecules exhibit significant collective behavior and intense fluc-
tuations during the critical transition of a complex dynamic system. The weighted 
entropy of the local network containing signal biomolecules in the critical state is sig-
nificantly different from that in the pretransition state. If MIWET  sharply increases, 
then time point T  is the critical point, and the top 5% genes of MIWEk

T  are signaling 
genes that regarded as DNBs in this work.

Results
Validation based on numerical simulation

We use a theoretical model to validate the robustness of MIWE method, and con-
struct a 10-node monitoring network based on the Michaelis–Menten equation [9], 
which is mainly used to study transcription and translation processes [10], nonlinear 
biological processes [11, 12]. The 10-node monitoring network can generate datasets 
for numerical simulation, and as the parameter p varies from − 0.5 to 0.25, the system 
experiences the critical transition when the parameter value is p = 0.

Figure  2A shows the gene regulatory network composed of 10 nodes with both 
activating and inhibitory interactions. Before the system reaches the critical point, 
MIWE score is at a low level. When the parameter value p = 0, MIWE score increases 
sharply, providing a precursor signal for the upcoming state change (Fig.  2B). Con-
sidering the existence of strong noise in real datasets, we verify the MIWE method 
under the influence of different noises, and compare it with SLE [5] and sJSD [13] 
methods (Fig.  2C). As the noise intensity increased, MIWE consistently offers early 
warning signals for impending tipping points with heightened sensitivity, indicating 
that the MIWE method is more robust and efficient in detecting critical points in bio-
logical processes. Additional information regarding the numerical simulation is avail-
able in the Additional file 1: Section A.
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Identifying cell fate commitment during embryonic differentiation

To verify the validity of the MIWE method and detect the transformation of cell fate 
commitment, the method is utilized on two datasets of cell differentiation, includ-
ing MEF to neurons (GSE67310) and mESC to MP (GSE79578) data. The weighted 
entropy of each local network is calculated according to the steps of the algorithm. 
Finally, the average weighted entropy (Eq. 7) is taken at each time point to quantita-
tively characterize the criticality of the single-cell community.

We use the MIWE score curve across time points to show the fluctuations of cell 
differentiation at each stage. For MEF to neurons data, MIWE scores increase signifi-
cantly from day 5 to day 20 (Fig. 3A), providing a precursor signal for the imminent 
differentiation into neurons, indicating that cell fate commitment began on day 22. 
In mESC to MP data, MIWE scores at 24 h are significantly different from those at 
adjacent stages (Fig. 3B), indicating that transition is about to take place after 24 h, 
namely mouse embryonic stem cells differentiate into mesoderm. The algorithm 
detection results of the two datasets are consistent with the original experimental 
observation. Moreover, to prove the robustness of the proposed method, box graphs 
of weighted entropy at each stage are presented based on samples at each time point. 
The median value of the block diagram provides obvious signal for the critical point, 
indicating that the MIWE value is highly robust to the sample noise.

The signaling genes are identified as the top 5% of genes with the highest local 
MIWE scores, which may be highly correlated with cell differentiation. The landscape 
map shows dynamic changes in the distribution of local MIWE values of signaling 
genes in the global view (Fig.  3C, D), and the local MIWE values of the signaling 
genes in the two datasets increase sharply at day 20 and 24 h, respectively. Changes 
in local MIWE values of all genes are shown in Additional file 1: Fig. S2. In addition, 
signaling genes are mapped to PPI networks to observe the dynamic changes of net-
works at different stages. For both datasets, significant changes in network structure 

Fig.2 Numerical simulation dataset is used to verify the effectiveness of MIWE. A Gene regulatory network 
model, where the arrow represents positive regulation. B MIWE score for each parameter of 10 nodes. C 
Comparison of the robustness of the MIWE method with the SLE, sJSD method at various levels of noise 
strength
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are observed at day 20 and 24 h, respectively, indicating an upcoming cell fate com-
mitment (Fig. 3E, F).

Detecting potential upstream TFs

TFs are important molecules that control gene expression and can be considered as key 
players in controlling or driving cell fate commitment [14, 15]. In order to explore the 
involvement of the signaling genes identified in the two cell differentiation datasets in 
the process of cell fate commitment, we separately predict the TFs of the two groups of 
signaling genes on the ChEA3 website, and select the top 20 in the comprehensive aver-
age ranking as the main research content. In the GSE67310 and GSE79578 data, two sets 

Fig.3 Detecting the signal of cell fate commitment. The MIWE value is calculated for A MEF to neurons and 
B mESC to MP. The landscape of local MIWE values illustrates the dynamic evolution of network entropy in 
a global view for C MEF-to-neuron, D mESC to MP. The dynamical evolution of gene regulatory networks for 
the E MEF-to-neuron, F mESC to MP
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of TFs modulate 74% and 86% of the signaling genes at the critical point, respectively 
(Fig. 4A, B).

Some TFs play an important role in cell differentiation and proliferation. They are 
closely related to cell proliferation and self-renewal, and are crucial contributors to the 
early embryonic development and cell lineage specification. For GSE67310 data, the 
absence of CHCHD3 expression can lead to tissue undergrowth and cell proliferation 
defects [16], VEZF1 can regulate cell differentiation and proliferation and participate in 
the early vascular differentiation process [17], SP3 is required for perinatal survival in 
mice [18]. GTF2I indirectly contributes to the transcriptional regulation of genes con-
trolling cell proliferation and cell cycle through encoding transcription factor TFII-I 
[19]. Functional annotations of TFs for GSE79578 data are in the Additional file 1: Sec-
tion C.

In the analysis of TFs from GSE67310 data, we find two relatively key TFs, which can 
contribute to a more profound comprehension of the molecular mechanisms of embry-
onic development and hold significant implications for the treatment and prevention 

Fig.4 TFs regulation and related enrichment analysis. A TFs modulated 74% of signaling genes identified 
by GSE67310 critical point. B TFs modulated 86% of signaling genes identified by GSE79578 critical point. 
Regulatory network of C CREB1, D CREB3. E CREB1 and its regulated signaling genes participate in significant 
biological processes and KEGG pathways. The outer ring’s left side signifies the signaling genes identified 
by MIWE, while the right side represents the diverse biological processes associated with these genes. The 
inner ring depicts various enrichment pathways, with connection color and width indicating different levels 
of gene function significance. F CREB3 and its regulated signaling genes participate in significant biological 
processes and KEGG pathways
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of related diseases, namely CREB1 and CREB3. CREB1 plays a role in cell proliferation, 
myogenic differentiation and other related pathways [20]. CREB3 is involved in embry-
onic development and the differentiation of other tissues and organs, such as osteoblast 
differentiation [21]. In order to visualize the downstream signaling genes regulated by 
these two TFs, we present the regulatory network centered on TFs (Fig. 4C, D). Com-
bined with the TFs and their regulated signaling genes, we find that they are involved 
in some signaling pathways related to embryonic differentiation (Fig. 4E, F). The TNF 
signaling pathway is central to a range of physiological and pathological processes, influ-
encing cell proliferation, differentiation, apoptosis, immune response regulation, and 
inflammation induction. Activation of TNF signaling pathway can trigger activation of 
PI3K-Akt signaling pathway. The interaction between CREB1 and NF-κB can modulate 
the transcription of downstream genes and thus contribute to the control of apoptosis 
and other processes. The mechanism of CREB1 in the PI3K-Akt signaling pathway is 
shown in Fig. 5E. The cAMP signaling pathway governs various intracellular processes, 
such as the modulation of cell proliferation, differentiation, and apoptosis via the acti-
vation of cAMP-dependent protein kinase (PKA) [22]. Phosphorylated PKA can then 
further phosphorylate CREB3 and activate its transcriptional activity. By binding to CBP, 
CREB3 regulates the transcription of specific genes and thus contributes to the control 
of various cellular physiological responses. In this way, CREB3 is crucial for cell growth 
and development, metabolic regulation, and stress response.

The underlying signaling mechanisms revealed by dark genes based on scRNA‑seq data

Differential expression not only helps to reveal the secret of biological process, but also 
provides important theoretical basis for gene diagnosis and therapy. In many medical 
experiments and molecular studies, differentially expressed genes (DEGs) serve as mark-
ers or drug therapeutic targets, while some non-differentially expressed genes (non-
DEGs) are often ignored, which will also have a significant role in biological processes 
and may be potential therapeutic biomarkers. In this study, genes with no differential 
expression but sensitive to the MIWE score are defined as dark genes, and differential 
MIWE analysis is performed on the two embryonic differentiation datasets to show 
the differences in MIWE values and gene expression of dark genes in the two datasets 
(Fig. 5A, B). There is a clear observation that gene expression remains relatively constant 
at each stage, while there are significant differences in MIWE values.

For mESC to MP data, it has been confirmed that some dark genes are closely related 
to embryonic differentiation, which are mainly involved in the regulation of chemi-
cal reactions in cells or organisms, macromolecular metabolism, and the frequency, 
rate or degree of gene expression and other biological processes. Extracellular STIP1 
engages with diverse receptors to boost induced differentiation, cell proliferation, and 
protein synthesis [23]. Low expression of Receptor coactivator 3 (NCOA3) may lead 
to decreased differentiation potential of embryonic stem cells in vitro and in vivo [24]. 
CKS1B regulates cell cycle processes by engaging with cyclin-dependent kinase (CDK) 
and SCF complex to affect cell proliferation [25]. MDM2, an E3 ubiquitin ligase, plays 
a crucial role in the differentiation of various cell types, including osteoblasts and myo-
blasts [26].
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Fig.5 Potential regulatory mechanisms related to embryonic differentiation revealed by dark genes. 
Dynamic changes of gene expression and entropy of dark genes for A MEF to neurons, B mESC to MP. C 
Pathways enriched of MEF to neurons. D GO analysis of MEF to neurons. E The enrichment and regulation of 
related dark genes of MEF to neurons
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To investigate the potential signaling mechanisms indicated by mouse dark genes 
and their domain genes, we conduct a series of functional analyses of dark genes 
from MEF to neurons (Fig.  5C, D). HSP90B1 participates in the Thyroid hormone 
synthesis pathway, in which synthetic thyroid hormones bind to nuclear receptors 
and control the expression of numerous genes associated with cell cycle regula-
tion and differentiation [27]. In Prostate cancer pathway, HSP90AB1 and HSP90B1 
can indirectly affect cell proliferation and survival by activating Ar and thus bind-
ing to DNA sites. GSK3B phosphorylates β-catenin to further activate Cyclin D1, 
an important regulatory factor of cell cycle [28], it can also lead to cell prolifera-
tion. The PI3K-Akt signaling pathway serves as a crucial hub governing cell growth, 
proliferation and metabolism in mammalian cells [29]. Figure 5E shows the poten-
tial mechanism of dark genes in MEF to neurons data and their domain genes in 
pathways. During embryonic differentiation, the high expression of GNB1 activates 
PI3K, which is then combined with HSP90 to activate the downstream target AKT 
of PI3K, HSP90 regulates various biological processes, such as cell growth, differ-
entiation, and survival [30], AKT kinase translates diverse signals into intracellular 
cues governing cell survival, proliferation, metabolism, and differentiation [31] and 
transmits them to downstream genes, affecting cell proliferation and differentiation. 
The gene expression of the dark genes changes significantly between day 5 and day 
22, and the recognized critical point could serve as a crucial time point to guide the 
differentiation of MEF to neurons.

Identifying the critical state during cancer progression

In addition to identifying the critical transition of embryonic differentiation, we also 
apply MIWE algorithm to two cancer datasets, COAD and THCA, and take healthy 
samples as the reference group to participate in the entropy calculation at each stage. 
In the second phase, local MIWE values in the COAD and THCA data increased 
significantly (Fig. 6A, B), which could be identified as a critical state of disease pro-
gression. The landscape map shows the dynamic changes of local MIWE values of 
signaling genes (Fig.  6C, D), which also indicated the abnormal system in the sec-
ond stage. In addition, genes with the top 5% maximum local MIWE value at the 
critical stage are used as signaling genes, Changes in local MIWE values of all genes 
and dynamic changes of signaling genes in PPI network are shown in the Additional 
file 1: Fig. S3. Detection of critical points before disease progression or metastasis is 
conducive to timely clinical intervention for subsequent treatment. MIWE method 
can provide early warning signals in the course of disease development, which is 
helpful for disease treatment.

We use the Kaplan–Meier method for prognostic survival analysis of clinical 
samples from two cancers. By comparing the survival rate of each sample and its 
standard error, it can be observed that the prognosis of patients diagnosed before 
the critical state is significantly different from that of patients diagnosed after the 
critical stage, with P values less than 0.05 (Fig. 6E, F). Patients treated before dete-
rioration have higher survival rate and longer survival time. More details of survival 
analysis are shown in the Additional file 1: Section E.
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Functional analysis of the common MIWE signaling genes among two cancers

To comprehend the mechanism of signaling genes involved in disease development, 
we perform functional enrichment analysis of the common signaling genes of two can-
cers. The GO analysis results show that the signaling genes are mainly involved in the 
chemical reaction of protein formation in the cytoplasm, the macromolecular modifica-
tion process of synthesis or assembly of ribonucleoprotein complexes, and the regula-
tion of the rate of ubiquitin groups added to proteins (Fig. 7A). The lack of numerous 
ribosomal proteins can directly impact the overall translation process and the global 
expression of proteins, contributing to the onset of various diseases, including cancer 
[32]. Figure 7B shows the association between genes and biological processes. Elevated 
in numerous solid tumors, HSP90AB1 is believed to stimulate angiogenesis and facilitate 
cancer metastasis [33]. Heat shock protein family A (HSPA5) as a diagnostic and prog-
nostic biomarker for various malignancies [34]. P4HB can influence tumor formation in 
a collagen-dependent or collagen-independent manner [35].

In addition, common signaling genes are involved in several pathways associated with 
cancer progression (Fig. 7C). MHC Class I and Class II antigen processing and presenta-
tion pathways present peptides to circulating CD8 + cytotoxic T cells and CD4 + helper 

Fig.6 Detection of the critical point of cancer progression. The MIWE score for A COAD, B THCA. Landscapes 
of the local MIWE score for C COAD, D THCA. Survival analysis before and after the identified critical states for 
E COAD, F THCA
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T cells, respectively, to recognize pathogens and transform cells. Immune surveil-
lance of transformed cells/tumor cells induces alterations in antigen processing and 
presentation pathways to evade immune response, which is an important process in 
tumor development [36]. Figure 7D shows the related pathways involved in each gene. 
β2-microglobulin (B2M) plays a physiological and pathological role in tumor cells [37]. 
In Antigen processing and presentation, the complex of B2M and HLA-B/C activates 
down-stream signals, upregulates and enhances T cell immunity, and plays an impor-
tant role in controlling colon/rectal cancer growth [38]. Studies have shown that B2M 
is a potential tumor suppressor gene in COAD and has been identified as a potential 
biomarker for THCA [39]. Processing, modification, and folding of proteins in the endo-
plasmic reticulum (ER) are highly regulated procedures that dictate cell function, fate, 
and survival. Abnormal activation of the downstream signaling pathway of ER has been 
proven to be a key regulatory factor for tumor growth and metastasis [40]. Estrogen can 
affect tumor progression by regulating tumor microenvironment and plays a pivotal 
role in the occurrence and development of THCA [41]. GNAS is considered to be an 
oncogene that can be constitutionally activated by a specific point mutation of Guanine 
nucleotide binding protein alpha subunit (Gsα) in the Estrogen signaling pathway, thus 
activating multiple cancer-related pathways [42].

Discussion
Identifying critical states in complex biological systems is essential, such as critical 
stages of disease progression and cell fate commitments during embryonic develop-
ment, early warning signs of disease progression that can prepare for treatment, and 

Fig.7 Functional analysis of common signaling genes in two cancers. A Common signaling genes involve in 
major biological processes. B The association of genes with biological processes. C Common signaling genes 
involve in cancer related pathways. D The association between genes and pathways, where the number 
represents the ENTREZ ID of the gene
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understanding cell fate commitment that can build individual specific disease models. 
However, identifying critical transitions in complex biological systems is often chal-
lenging, and real biological datasets have strong noise and cannot characterize the 
dynamics of biological processes. In this study, we propose MIWE method for identi-
fying cell fate transitions and complex disease critical states. The MIWE score quanti-
fies the dynamic differences of mutual information networks at each stage based on 
weighted differential entropy at each time point, and converts gene expression values 
into probabilities to minimize the influence of strong noise. To verify the validity of 
the MIWE algorithm, the method is utilized on one simulated dataset and four real 
datasets, encompassing two scRNA-seq datasets and two bulk sequencing datasets.

Based on the MIWE method, we successfully detect the critical states the dynamic 
processes of complex biological systems. The function analysis of signaling genes in 
critical stage reveals the important role of signaling genes in embryonic differentia-
tion or cancer development. In addition, we focus on exploring the potential signal-
ing mechanisms of some non-differential signaling genes in embryonic differentiation 
pathways. Although they are not DEGs, the pathways involve are highly related to cell 
differentiation.

MIWE method is model-free and suitable for both bulk and single-cell expression 
data. However, MIWE also has limitations, as undirected networks are used in the con-
struction of networks, which ignore causal relationships between nodes compared with 
directed networks. In addition, the joint distribution of two genes is binary normal dis-
tribution if and only if any linear combination of them follows a normal distribution. In 
general, the MIWE method helps to identify and detect critical states in complex bio-
logical systems, providing a theoretical basis for timely clinical intervention and disease 
modeling.

Conclusions
In this study, we propose a new method, mutual information weighted entropy (MIWE), 
which identifies critical states by quantifying the molecular dynamic differences at each 
stage by calculating the weighted differential entropy of each stage of the global network. 
The robustness of the proposed method under the influence of different noises is verified 
by numerical simulation. In addition, we identify two key transcription factors (TFs), 
CREB1 and CREB3, which are involved in cell proliferation and differentiation by regu-
lating downstream signaling genes. The dark genes in the single-cell expression dataset 
are mined to reveal the potential pathway regulation mechanisms involved.
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