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Abstract 

Background:  The prediction of drug sensitivity plays a crucial role in improving 
the therapeutic effect of drugs. However, testing the effectiveness of drugs is chal-
lenging due to the complex mechanism of drug reactions and the lack of interpret-
ability in most machine learning and deep learning methods. Therefore, it is imperative 
to establish an interpretable model that receives various cell line and drug feature data 
to learn drug response mechanisms and achieve stable predictions between available 
datasets.

Results:  This study proposes a new and interpretable deep learning model, 
DrugGene, which integrates gene expression, gene mutation, gene copy number 
variation of cancer cells, and chemical characteristics of anticancer drugs to predict 
their sensitivity. This model comprises two different branches of neural networks, 
where the first involves a hierarchical structure of biological subsystems that uses 
the biological processes of human cells to form a visual neural network (VNN) 
and an interpretable deep neural network for human cancer cells. DrugGene receives 
genotype input from the cell line and detects changes in the subsystem states. We 
also employ a traditional artificial neural network (ANN) to capture the chemical 
structural features of drugs. DrugGene generates final drug response predictions 
by combining VNN and ANN and integrating their outputs into a fully connected layer. 
The experimental results using drug sensitivity data extracted from the Cancer Drug 
Sensitivity Genome Database and the Cancer Treatment Response Portal v2 reveal 
that the proposed model is better than existing prediction methods. Therefore, our 
model achieves higher accuracy, learns the reaction mechanisms between anticancer 
drugs and cell lines from various features, and interprets the model’s predicted results.

Conclusions:  Our method utilizes biological pathways to construct neural networks, 
which can use genotypes to monitor changes in the state of network subsystems, 
thereby interpreting the prediction results in the model and achieving satisfactory 
prediction accuracy. This will help explore new directions in cancer treatment. More 
available code resources can be downloaded for free from GitHub (https://​github.​com/​
pangw​eixio​ng/​DrugG​ene).
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Background
Owing to the widespread application of machine learning and deep learning, biomedi-
cal science has also overcome several challenges with the help of artificial intelligence, 
such as cancer treatment and drug sensitivity prediction. Prediction of cancer treat-
ment response is an important topic in clinical and pharmacological research, as people 
expect it to customize effective treatment plans for individual patients. However, due to 
the heterogeneity of tumors, patients with the same tumor type may have different treat-
ment responses. Therefore, selecting effective drugs for patients is significant in cancer 
research. Since most deep learning models are black-box and lack a deep understanding 
of the rules behind the underlying network, drug therapy becomes more difficult [1]. 
Therefore, enhancing the interpretability of the model and understanding the molecu-
lar pathways that control or reflect drug sensitivity can help determine which cancer 
patients should receive treatment and which specific drugs have actual positive catalytic 
effects.

Mainstream biomedical image disease diagnosis and electronic medical record inter-
pretation are essential in drug treatment plans in biomedicine, with machine learning 
models also playing an auxiliary role in predicting drug reactions [2]. Researchers have 
already used genomic characteristics of cell lines or tissue samples as input to predict 
the cellular activity of drug responses. For example, Guo et  al. utilized regularization 
techniques based on Lasso regression to effectively control the model’s interpretability, 
improving its overall predictive performance [3]. Iorio et  al. [4] established an elastic 
network model to predict cancer cell line drug IC50 (a widely used classic indicator) 
based on gene mutation and expression levels to observe reasonable prediction levels. 
Note that the elastic network absorbs the advantages of Lasso regression. Thus, the 
model obtained by training the elastic network can be as sparse as Lasso regression and 
has excellent regularization ability. Corte et al. [5] proposed the random forest model, 
which is associated with the statistical confidence level and improves the prediction per-
formance based on elastic network prediction. Deep learning has achieved further suc-
cess based on machine learning, with deep neural networks (DNN) [6] and variational 
autoencoders (VAE) [7] already applied to predict drug treatment responses demonstrat-
ing significant performance improvements for different drugs and disease conditions.

Although black-box models are undoubtedly useful, they are insufficient when it 
is necessary to simulate system functionality and structure. In particular, many appli-
cations in biology and medicine attempt to model functional outcomes and their pro-
duction mechanisms to understand and manipulate these outcomes through drugs, 
genes, or the environment. However, black box models cannot be directly observed, and 
thus it is challenging to explain the relationship between network models and cellular 
molecular feature functions without understanding or paying attention to the biological 
mechanisms behind the predicted results. In order to overcome such limitations, model 
interpretability has become a research focus and a rapidly growing subfield in machine 
learning, with many models that achieve high prediction and description accuracy have 
begun to emerge [8]. Researchers have tried to use deep learning models in terms of 
interpretability. One of the main strategies is to add a modular structure to the model 
using prior knowledge or data and then interpret it. This strategy mapped thousands of 
measured cell molecular characteristics into functional modules to indicate the module’s 
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status through changes in the cell’s gene expression level [5, 9]. For instance, a recent 
study mapped primitive molecular characteristics to a defined set of metabolic path-
ways. The status of these pathways predicts antibiotic resistance in cellular tissues, and 
specific pathway characteristics become candidate mechanisms for drug resistance [9, 
10]. There are also other studies illustrating this approach, which analyzes a large set of 
leukemia expression profiles to extract these expression data as a set of functional gene 
modules, and these modules are used as interpretable features for drug response predic-
tion [11]. In addition to model-based approaches, the other major strategy for improv-
ing the interpretability of models is an in-depth analysis of model features or feature 
weights to explain potential drug response mechanisms [4, 8, 12]. For example, in a black 
box neural network model, each input gene is assigned a weight for gene set enrich-
ment analysis [13, 14], and then pathways that can regulate and predict drug reactions 
are identified [15]. However, these two strategies are not used in the modeling process, 
so there is insufficient experimental evidence to verify that drug response pathways can 
explain the internal drug response mechanisms.

In order to achieve transparency and visibility in deep neural networks, researchers 
have proposed some interpretable models, such as Ontotype, a universal system based 
on ontology for genotype to phenotype translation [16]. This study outlines the general 
strategies for developing computational unit models and demonstrates that ontology 
structures can be used functionally to explain genetic variations in phenotype predic-
tion. However, the potential risk of this model is that predicting in a dataset may lead 
to overfitting, which should be effectively avoided. Ma et  al. have proposed DCell, it 
can capture almost all phenotypic variations in cell growth and simulate the intermedi-
ate functional states of thousands of cellular subsystems. It can be further enhance the 
predictive results of drug sensitivity by drawing on the state analysis of this subsystem 
and improving the linear regression method of functional modules [17]. Recently, to 
perceive the inherent relationship between the network structure and biological func-
tion of deep learning models, researchers have developed DrugCell to address the lack 
of interpretability, which is an interpretable human cancer cell deep learning model [18]. 
Nevertheless, this model only inputs gene mutation data from cell lines. It should be 
noted that copy number variation and gene expression data have advantages compared 
to gene mutation data. First, gene copy number variation affects gene expression, phe-
notypic difference, and phenotypic adaptation by changing Gene dosage and Regula-
tor gene activity, thus leading to tumorigenesis. Copy number variation detection can 
detect large DNA sequence variations in the genome as early as possible, providing a 
basis for diagnosing and treating diseases. This is because copy number variation is asso-
ciated with the pathogenesis or susceptibility of many complex genetic diseases. Second, 
in most models involved in the DREAM challenge, gene expression microarrays pro-
vide greater predictive power than other data types. In approximately 90% of the mod-
els, gene expression is used alone or in combination with other feature types, including 
mutations, CNV, methylation, and RPPA. Therefore, we also consider adding data for 
these two genotypes.

This study develops DrugGene, a model that combines visible neural network (VNN) 
[17, 19, 20] embedded in the hierarchical structure of biological processes with tradi-
tional artificial neural network (ANN) [17, 21, 22], which simulates the reaction process 
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of human cancer cells to drug therapy. VNN receives gene mutations, gene expression, 
and gene copy number variation data from cell lines, generating an output in the neural 
network’s final layer. At the same time, the fingerprint-encoded data of the drug is input-
ted into ANN and outputted through a multi-layer network. Then the outputs of the two 
branches are integrated to obtain the predicted target value. The predicted values can 
be used to analyze the final drug reaction results. DrugGene predicts the response of 
genotype level changes to cell growth by mapping VNN neurons to pathways established 
by hierarchical structures while identifying highly correlated molecular pathways that 
drive these predictions, achieving mechanical and transparent interpretability. Finally, 
the experiment proves that the proposed model improves the predictive performance of 
drug sensitivity compared to DrugCell on the same test set.

Methods
Dataset filtering and preprocessing

In order to verify the proposed model, we screened four cancer resource databases: 
Cancer Treatment Response Portal (CTRP) [23] (http://​porta​ls.​broad​insti​tute.​org/​ctrp), 
Cancer Cell Line Encyclopedia (CCLE) [24–26] (https://​depmap.​org/​portal/​downl​oad/​
all), Cancer Drug Sensitivity Genome (GDSC) [18, 27] (https://​www.​cance​rrxge​ne.​org) 
and Gene Ontology (GO) [28] (https://​www.​infor​matics.​jax.​org/​vocab/​gene_​ontol​ogy) 
databases. We used CTRP, which links the genetic, lineage, and other cellular charac-
teristics of cancer cell lines with small molecule sensitivity, to accelerate the discovery 
of treatment methods that match cancer patients. The experiment included 684 drugs, 
942 cell lines, and 8969 cell line-drug pairs. The target value is the area under the dose–
response curve (AUC). We retrieved and screened compound data from GDSC and 
CTRP to obtain SMILES notation based on the drug names provided in the dataset. On 
the other hand, we extracted genomic data required for cancer cell lines from CCLE and 
GDSC as characteristic data for the cell line. Genomic data include gene mutation data, 
gene expression level data, and gene copy number data. The Gene Ontology (GO) data-
base contains information on molecular function, cellular components, and biological 
processes, from which 2086 biological process information was selected for our model 
branch modeling. The detailed information about experimental datasets can be found in 
Table 1.

In order to ensure that the data format conforms to the specifications of deep 
learning models, the data preprocessing is carried out here. For each drug, to facili-
tate data input into the neural network, we used the software alvaDesc (https://​chm.​
kode-​solut​ions.​net/​produ​cts_​alvad​esc.​php) to calculate the molecular descriptors of 

Table 1  Experimental datasets on cell lines, drugs, and gene ontology

Name Quantity Data form Database

Cell lines Cell line 684 gene mutation, gene expression, 
and gene copy number variation

CCLE
GDSC

Drugs SMILES 942 Morgan fingerprint GDSC, CTRP

Cell line-drug pairs AUC​ 8969 AUC​ CTRP

Gene ontology Biological process 2086 GO Term GO

http://portals.broadinstitute.org/ctrp
https://depmap.org/portal/download/all
https://depmap.org/portal/download/all
https://www.cancerrxgene.org
https://www.informatics.jax.org/vocab/gene_ontology
https://chm.kode-solutions.net/products_alvadesc.php
https://chm.kode-solutions.net/products_alvadesc.php
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compounds, and we used RDKit (http://​www.​rdkit.​org) to calculate the Morgan fin-
gerprint encoding of the drug, which iteratively obtains different pathways for each 
atom in the molecule and decomposes the chemical structure of the drug into molec-
ular fragments. Each fragment is represented as a 2048 vector containing 0 and 1 
(Fig. 1A). For genomic data of cell lines, and we selected the top 15% of genes most 
commonly mutated in human cancer based on CCLE and the genes annotated in the 
GO database. Thus, 3008 genes were screened, where each cell line corresponded to 
a vector of 3008 and each element to a gene (Fig.  1C). Due to the composition of 
gene mutations, gene expression, and gene copy number variation datasets extracted 
from public datasets, there are situations where one or more data features are miss-
ing. Therefore, we supplemented or performed special processing before conducting 
feature fusion for gene data that was not included. Our approach used the average 
genotype data corresponding to the cell line to replace missing gene data. The gene 
mutation data of cancer cell lines was in text format, encoded using one-hot encod-
ing, where 1 represented the gene mutation, and 0 represented no mutation. Simi-
larly, the gene expression level and gene copy number variation data of cancer cell 
lines were also in text format, and numerical encoding was performed using a maxi-
mum and minimum range normalization method. To be specific, the values are scaled 
to the range of 0–1 and then used as the characteristic values of the cell line. Finally, 
each data item in the screening data set is compared to form a characteristic tensor of 
medicinal chemistry characteristics and cancer cell lines. We differentiated between 
gene-tagged terms and non-gene-tagged terms from the Gene Ontology (GO) data-
sets and established a hierarchical connection between parent and child nodes based 
on the inclusion relationship in the biological ontology (Fig. 1B). The preprocessing 
results of the experimental dataset are shown in Additional file 1: Table S1.

Fig. 1  A The processing process of drug data. Obtain the SMILES symbol and Morgan fingerprint code with 
a length of 2048 for each drug, B Select available biological process information from Gene Ontology (GO), C 
The preprocessing process of cell line data, from which available gene mutation, gene expression, and gene 
copy number variation data can be obtained

http://www.rdkit.org
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Model architecture

Regarding the design of DrugGene, the model was designed as a neural network with 
two branches. One involved a visual neural network (VNN) that modeled the hierar-
chical organizational structure of molecular subsystems in human cancer cells, VNN 
receives inputs of gene mutation, gene expression, and gene copy number variation 
data from cell lines, all of which are matrices with the same dimensionality. We can fuse 
them into a new matrix through the superposition operation of tensors for input into 
VNN without changing the dimensions. The other branch was a traditional artificial 
neural network (ANN) that received the Morgan fingerprint encoding input for drugs. 
The VNN and ANN sub-models are trained independently during the training phase. 
Through the collaborative work of the branches, the two branch networks were con-
nected to combine their outputs into a layer of neurons and finally integrated to produce 
a predicted drug sensitivity response result (Fig. 2).

Description of VNN in the model

VNN models the hierarchical structure of human cell molecular subsystems based 
on the biological process information recorded in the Gene Ontology database. We 
extracted 2086 biological processes from them to construct the cellular subsystem of 
VNN.

The subsystems in these ontologies exist as nodes in neural networks and are inter-
connected through common node relationships or hierarchical parent–child node rela-
tionships. Each subsystem is assigned a set of neurons to represent its functional state, 
making the cellular subsystem multifunctional (Fig. 3B). Their connectivity is reflected 
in the hierarchical structure of organisms, e.g., from small complex reactions to larger 
signal pathways, ultimately reaching the overall function of the cell. Therefore, neurons 
only receive input information from the neurons of the child node and only send out-
put to the neurons of the parent node. The network weight is determined during the 
training process. A network structure consisting of 2086 subsystems was designed by 
layering the subsystems, with a maximum connection depth of six subsystems, to define 
VNN branches embedded in genotype information (Fig. 3A). This branch structure con-
structs a robust bridge from changes in genotype status to changes in cell activity or 
drug sensitivity.

Fig. 2  Workflow of DrugGene. DrugGene uses visible neural networks (VNN) and traditional artificial neural 
networks (ANN) as sub-modules and combines their outputs for drug response prediction
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The genomic data of human cell lines, including gene mutations, gene expression, 
and gene copy number variation, were used as the input of the VNN. The genomic 
data of these three types are represented by two-dimensional tensors of length 3008. 
We use the superposition operation of tensors to merge them into a new tensor, while 
normalizing the data and scaling the tensor values to between 0 and 1. Then VNN 
will generate a placeholder node to store and read this input tensor. The Gray code 
conversion is a reliable encoding method that minimizes errors [29, 30]. It effectively 
prevents the phenomenon of using binary encoding that may deviate from the opti-
mal solution and fail to achieve stability. Therefore, we converted the binary encoding 
of gene mutations into Gray codes. The output layer obtained the calculated geno-
type embedding data to represent the embedding state of the entire cell based on the 
genotype. In addition, the 3008 genes were organized into a hierarchical structure of 
nested gene sets based on terms extracted from the hierarchical structure of biologi-
cal processes to represent different functional cellular subsystems [17]. Given that 
gene perturbations propagate through the hierarchical structure of the subsystems 
they are contained, it may lead to functional changes in cellular subsystems, gener-
ating predictive responses to cell activity levels. In order to achieve transparent and 
visible biological explanations, we directly embed the structure of deep neural net-
works into the biological hierarchy. VNN can use the genotype of cell lines to monitor 
changes in the status of network subsystems and reflect the importance of pathways, 
thereby interpreting the prediction results in the model. By enhancing the analytical 
ability of VNN, the model performance can be better improved.

To train the model, the training process is performed by minimizing the objec-
tive function, randomly initializing all weights between -0.01 and 0.01, and using the 
Batch Normalization function to reduce the impact of internal covariate shifts caused 
by different weight scales. We set the training dataset to D = {(X1,Y1), . . . , (XN ,YN )} , 
where N  is the number of samples, for each sample i,Xi ∈ RM represents genotype 
through a binary vector of states on M genes, and Yi ∈ R is a numerical value repre-
senting the observed drug response. The multidimensional state of each subsystem t 

Fig. 3  A In visible neural networks, genotype inputs are transformed into genotype embedding through the 
hierarchical structure of cellular subsystems, B The subsystem nodes in a visual neural network are assigned 
a set of neurons, which are interconnected through parent–child node relationships, C Artificial neural 
networks receive input from fingerprint encoding of drug chemical structures and generate embedded 
representations of chemical structures
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is represented by the output vector Oi(t) , denoted by a linear function of all its sub-
systems and annotated gene states, connected to the input vector Vi(t):

In Formula (1), BatchNormalization is a regularization of model weights, which can 
solve gradient vanishing and reduces traditional drop out steps in deep learning [17] and 
Tanh is a nonlinear transformation hyperbolic tangent function. We perform the train-
ing process by minimizing the objective function:

In Formula (2), Loss is the squared error loss function, and r is the root of the hierarchy. 
Oi(r) denotes the output of the root and Oi(t) represents the output of other subsystems. 
By linear transformation function, each subsystem is optimized to feature its parent 
node and predict its action value. � is the regularization factor of L2 norm determined 
by four-fold cross validation. In addition, selecting appropriate learning rate parameters 
α can make the objective function converge to a local minimum in an appropriate time. 
For model optimization, ADAM is a popular random gradient descent algorithm com-
monly used to optimize the objective function during the training process [31–33], with 
a minimum batch size of 10,000. The learning rate is determined in the range of 10−1 , 
10−2 , 10−3 and 10−4 through grid search. The gradients related to model parameters are 
calculated using standard backpropagation.

Description of ANN in the model

The second branch system is constructed from a traditional hierarchical artificial neural 
network (ANN), which is inspired by the actual neural network and its processing pat-
terns in the brain. With the extremely powerful computing power of ANN, it can accu-
rately process high-dimensional data encoded by drug fingerprints without the extensive 
feature engineering [17]. Another advantage of ANN is that it can effectively avoid over-
fitting and achieve better prediction results. The function of ANN is created during the 
training phase, where model learning captures highly available information as accurately 
as possible and returns the correct output answers for each sample input. We use X to 
denote features or known conditions, and Y  to denote labels or results. Here is the basic 
formula:

The training of artificial neural networks is actually achieved by continuously modify-
ing the weight vector W  and bias b through algorithms to approximate the real model as 
much as possible, in order to achieve the best prediction performance of the entire neu-
ral network. A loss function has been defined:

In formula (4), p{Y } is a numerical value representing the predicted value of the sam-
ple, and t{Y } is a numerical value representing the true value. The goal is to make the 

(1)Oi(t) = BatchNormalization(Tanh(W (t)Vi(t)+ b(t)))

(2)1

N
�

N

i=1

Loss(linear(Oi(r),Yi))+ α�t �=rLoss(linear(Oi(t),Yi))+ ��W (t)�2

(3)Y = WX + b

(4)Loss = (p{Y } − t{Y })2
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predicted value p{Y } as close as possible to the true value t{Y } . The loss function is to 
minimize the sum of the loss values of a neural network as much as possible. The train-
ing should be terminated and the parameters of the trained neural network saved when 
the loss function reaches a certain convergence threshold.

We embedded the Morgan molecular fingerprint code of the chemical structure of 
drugs in the ANN branch system, which is a typical vector representation of the chemi-
cal structure [34]. Drugs are represented by SMILES symbols. The Morgan fingerprint 
code of each drug is represented by a binary vector with a length of 2048. Each element 
in the fingerprint represents a specific activation state (0 = inactive; 1 = activated), and 
the fingerprint carrier is represented by an average of 81 activation sites, with each site 
typically representing less than 10 molecular fragments. In the model, the ANN is set 
to three layers, each layer can be assigned a certain number of neurons (Fig. 3C). Mor-
gan fingerprint encoding serves as the input for the first hidden layer of ANN, and the 
data information propagates between layers in the network. The last layer of the network 
generates an embedded representation of the drug chemical structure, which is also the 
prediction result of ANN.

Full connection between VNN and ANN

The fully connected layer is responsible for converting the computed features of the 
network into a tensor, and its advantage is to reduce the influence of feature positions 
on the regression results. The genotypic embedding generated by VNN and medicinal 
chemistry structural embedding generated by ANN are fully connected to establish a 
complete model network structure, and the predicted response value is calculated to 
obtain the predicted response result of drug sensitivity. In general, the full connection 
form is employed by concatenating the output tensors of VNN and ANN along a speci-
fied dimension to generate a novel tensor. The utilization of this methodology is widely 
prevalent in the field of deep learning [18]. The area under the normalized dose response 
curve (AUC) is used as the target value. AUC = 0 indicates complete cell killing, and 
AUC = 1 indicates no effect.

Results
Performance evaluation of DrugGene in predicting drug sensitivity

This study used a tenfold cross-validation method to evaluate the predictive accuracy of 
DrugGene based on the average Pearson correlation coefficient between the predicted 
and the observed AUC values in the experimental data, which were employed as the pre-
diction result. In order to verify the predictive performance of the proposed method, 
DrugGene was compared with current models on the same dataset. Specifically, during 
the training phase, 684 drugs, 942 cell lines, and 8969 cell line-drug pairs were used to 
train models. In addition, during the testing phase, we still screened the reaction results 
of same cell line-drug pairs to test and evaluate these models separately. Compared to 
DrugCell, DrugGene has a significantly higher prediction accuracy for predicting the 
response of a single drug because DrugCell utilizes gene mutations and drug character-
istics for drug sensitivity prediction. On this basis, DrugGene can effectively improve 
the prediction results by integrating gene mutation, gene expression, gene copy number 
variation, and Medicinal chemistry characteristics (Fig. 4A).
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Moreover, we conducted two comparative experiments simultaneously, and specifi-
cally, we combined gene expression or gene copy number variation data with medici-
nal chemistry characteristics and then used that data to train two comparison models. 
The model which only uses gene expression and medicinal chemistry features as input 
are called expBox and the other model that only uses copy number variation and drug 
coding data as input are referred as cnvBox. The experimental results indicated that 
DrugGene has better predictive performance than these two models (Fig. 4B, C). Among 
them, the difference between DrugGene and expBox is smaller compared to cnvBox 
and DrugCell. For the elastic network (EN), this method is also often used to predict 
drug sensitivity because of its advanced regression technology. Elastic network is a lin-
ear regression models trained using L1 and L2 norms as prior regularization terms [35, 
36]. Additionally, we compared the prediction results of DrugGene and elastic network, 
demonstrating that DrugGene’s prediction accuracy is higher than in over 80% of drug 
reactions (Fig. 4D).

We created a box plot to compare the predictive performance of these four methods 
(Fig. 4F), and a tenfold cross-validation method was used to evaluate the Pearson cor-
relations of these models. Figure 4F highlights DrugGene’s predictive correlation is sig-
nificantly higher than the competitor models, which have relatively close median values. 

Fig. 4  A–D Comparison of drug sensitivity prediction performance between DrugGene and four existing 
models: A DrugCell, B expBox, C cnvBox, and D elastic net. The number of drugs participating in the 
reaction is 684, and the number of cell lines is variable. The points represent each drug, and the points 
above the diagonal show that DrugGene has a higher prediction accuracy than other models. E MSE 
comparison subgraph for prediction methods, F Box plot of drug reactions established in all experimental 
data demonstrating the predicted drug sensitivity intervals between DrugGene and three types of DrugCell 
models, G Scatter plot of predicted values for DrugGene and DrugCell, and H Waterfall chart revealing the 
ranking of the predictive performance of each drug. The red part distinguishes drugs with higher prediction 
accuracy (p > 0.5). The mapped bar chart shows the top 10 drugs with predicted correlation rankings
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Hence, feature fusion can achieve higher prediction accuracy than a single feature. The 
significant difference levels between DrugGene and DrugCell, expBox, and cnvBox are 
2.8e−08, 1.1e−08, and 1.2e−08, respectively.

We compared the prediction performance of seven models (Fig.  4E) and measured 
their regression performance using the Mean squared error (MSE) metric. MSE is the 
square of the difference between the predicted value and the true value, which is a com-
monly used performance indicator in regression problems [37]. Figure  4E shows the 
MSE comparison results of seven models on the test set. The MSE of regression per-
formance indicators of seven models, DrugGene, DrugCell, expBox, cnvBox, elastic 
network, Random forest (RF) [38] and Lasso regression [39, 40], were 0.11, 0.14, 0.17, 
0.21, 0.27, 0.23 and 0.33 respectively. The results infer that our method has the best pre-
dictive performance, followed by DrugCell, with a reduction rate of 21.4% compared to 
it. In addition to using Pearson correlation coefficient and MSE, we also consider using 
more regression evaluation indicators, including coefficient of determination (R2), mean 
absolute error (MAE), and root mean square error (RMSE), to comprehensively evalu-
ate the predictive performance of the model. As shown in Additional file 1: Table S2, the 
table displays the comparison results of all models based on the use of five regression 
evaluation indicators. It reveals that DrugGene’s predictive performance on Pearson 
correlation coefficient, MSE, MAE, and RMSE is superior to other models, second only 
to expBox in R2. Therefore, the proposed DrugGene model demonstrates an improved 
regression performance. Indeed, we plotted a visual scatter using the predicted values 
of DrugGene and DrugCell on the test set, revealing that DrugGene has a better fitting 
performance than DrugCell (Fig. 4G).

Finally, the waterfall chart illustrates the Pearson correlation of the predicted reactions 
of 684 drugs, with the predictive performance arranged from high to low, the horizontal 
axis representing the drugs, and the vertical axis representing the evaluation indicators 
(Fig. 4H). The red illustrations show the top ten drugs with the highest prediction accu-
racy, where the drug with the highest score is teniposide. Teniposide is a chemotherapy 
drug mainly used to treat acute lymphocytic leukemia in children. The second highest 
scoring is vincristine, which has good anti-tumor effects. Currently, its formulation is 
used as a clinical anti-tumor drug and is often used for the treatment of acute leuke-
mia, especially in children. For compounds that can be highly predicted by DrugGene, 
they often target different targeted therapies and can trigger a larger range of cellular 
reactions, indicating that the predicted results of the model can reflect the therapeutic 
effects of specific targeted drugs.

Learning the mechanisms of drug reactions through DrugGene

After evaluating DrugGene’s predictive ability based on the treatment response of each 
drug, we discuss the model’s interpretability. The transparency and mechanical inter-
pretability were aided by VNN and ANN in the model, respectively. For cell line’s drug 
response, we analyzed the impact of cells on drug sensitivity or resistance based on the 
expression levels of specific genes within the cells. Here, the two-dimensional visuali-
zation results of each cell line can be intuitively observed by extracting the two main 
components from all genotype data generated by VNN. The points in Fig. 5A are drawn 
based on the extracted principal components; each point is a cell line. Figure 5A reveals 
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the distribution of specific genotype expression levels that lead to different drug sen-
sitivities, such as coloring based on the expression level of BRAF, points with higher 
expression levels are set to red, otherwise set to gray. The results reveal that BRAF with 
high expression levels promotes sensitivity to the MEK inhibitor seluminib (Fig.  5B). 
This result is visualized on a two-dimensional plane where the AUC value of the drug 
reaction is color-coded. A smaller AUC value indicates sensitivity, while a higher one 
indicates resistance. Combining Fig. 5A and B reveals that most of the sensitive cell lines 
in Fig. 5B correspond to the red dots in Fig. 5A. Besides, we find that Seluminib is an 
inhibitor for BRAF mutations in clinical treatment [41]. We also analyze the interpret-
ability of the model when the cell lines exhibit drug resistance. Figure 5C distinguishes 
the distribution of EGFR or BRAF expression levels. Similarly, the points with higher 
expression levels are highlighted in red. For EGFR or BRAF, high expression levels can 
confer resistance to the BET family inhibitor JQ1 (Fig. 5D). The points presented as drug 
resistance mostly correspond to the red points in Fig. 5C. In clinical treatment, JQ1 is 
often used as an inhibitor for EGFR or BRAF mutations.

Regarding the medicinal chemistry structure embedding obtained from ANN, we 
selected two main components to visualize the targeted drugs two-dimensionally, where 
each point represents the drug (Fig. 6). The results indicate that in the drug targeting 

Fig. 5  A-B Genotype embedding of the cell line, with the x-axis and y-axis representing the first two main 
components selected. C-D Similar to Figures A and B, the color in Figure C distinguishes the expression level 
of BRAF or EGFR, while the color in Figure D distinguishes the sensitivity and resistance of drug reactions

Fig. 6  Drug structure embedding. Points are drugs, and colors represent specific targeted drugs
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category, drugs can be layered according to the different mechanisms of action of tar-
geted genes, and the drugs with different genes as targeted genes in the figure exhibit a 
clustering phenomenon. For example, the target genes that exhibit good clustering per-
formance in the graph include BRAF, BRD4, and PARP, which are labeled with different 
colors. In clinical trials, these targeted drugs have been proven to act as inhibitors tar-
geting these targeted genes [42]. In summary, DrugGene is able to distinguish key fea-
tures of genotypes that lead to drug sensitivity and resistance, as well as understand the 
chemical structural characteristics of drug biological activity.

The role of subsystems in neural networks

Due to the hierarchical structure of the subsystems extracted from biological processes 
in human cells, VNN’s genotypic output can reflect the state changes of specific sub-
systems in the network structure. Then we can distinguish important subsystems with 
prominent predictive functions through these state changes. Specifically, we used the 
relative local improvement in predictive power metric (RLIPP), which evaluates the per-
formance of these subsystems based on the degree of predicted drug response of the 
parent node relative to the child node in VNN. Thus RLIPP determines the subsystem 
with the best predictive performance [17, 18]. Additionally, we used neuron values rep-
resenting the states of the parent and child nodes to predict drug response, respectively. 
The performance evaluation indicator is the Pearson correlation coefficient between the 
predicted values of the parent or child nodes and the actual target values. Then RLIPP 
was defined as the degree to which the predicted value of the parent node improves rela-
tive to the predicted value of the child node:

where P1 represents the Pearson correlation coefficient predicted by the child node, and 
P2 represents the predicted result of the parent node. Specifically, for parent nodes con-
nected to multiple child nodes, we compare the predicted results of the parent node 
with the average of the predicted results of these child nodes. RLIPP > 0 indicates that 
the parent node has a more prominent predictive ability than the child node, while con-
versely, the child node has a stronger predictive ability. Therefore the RLIPP score indi-
cates the importance of the parent–child system during prediction.

We chose paclitaxel to react with cells and used the RLIPP score to evaluate the 
important subsystems in this reaction process (Fig. 7B). Figure 7B illustrates the subsys-
tems with the highest scores in the top 10% (including 200 subsystems). The red section 
indicates transport or metabolic pathways, and most of the first 200 subsystems belong 
to these two categories of pathways. The results indicate that these pathways have rela-
tively outstanding predictive abilities. In order to observe these pathways and the overall 
network architecture more clearly, Fig. 7A provided the two-dimensional visualization 
of a portion of VNN, and the important pathways are highlighted in red, including the 
Phagocytosis with the highest score and other pathways in Fig. 7B, such as Mitochon-
drial RNA processing, Organic substrance transport, and Dephysiological response.

In the reaction process of paclitaxel, we used the state changes of the subsystems with 
the highest scores to represent the predicted values of drug reactions and found that the 

(5)RLIPP =
P2 − P1

P1
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higher-ranked Phagocytosis subsystem could distinguish the sensitivity and resistance of 
cell lines reacting with paclitaxel (Fig. 7C). The lower the AUC value, the more sensitive 
the response, while the opposite indicates the drug resistance response.

Discussion
Machine learning and deep learning technologies effectively predict drug response, 
but due to the lack of interpret the predicted results of these methods, it is difficult to 
effectively explain the internal working mechanism of the model used and the role of 
its network. The proposed DrugGene combines the biological processes of human 
cells, artificial neural networks, and the working mechanisms within the model to form 
a complete network structure. DrugGene can receive encoded data from cell lines and 
drugs to predict the drug response in cancer cells and effectively design targeted drug 
therapy methods. Especially, DrugGene is able to read more abundant genotype data as 
data input. Compared to DrugCell which only uses gene expression data, our model has 
added gene expression and copy number variation data. Gene expression data contains 
information about gene activity, which can reflect the current physiological state of cells. 
It is helpful to elucidate the gene expression regulatory pathways and regulatory net-
works. Moreover, by calculating the copy number of genes, significant DNA sequence 
variations in the genome can be effectively discovered, thereby further understanding 

Fig. 7  A Subsystem network structure, with red branches representing transport and metabolic pathways. B 
Waterfall plot of the top 10% subsystems with significant RLIPP scores for paclitaxel response. The subsystems 
representing transport and metabolic pathways are highlighted in red. C The phagocytosis subsystem with 
the highest RLIPP score responds to paclitaxel. The point is the cell line. The smaller the AUC value, the more 
sensitive the cell response appears, and vice versa, the more resistant it appears
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the relationship between genes and diseases and providing important basis for disease 
diagnosis and treatment. In terms of network construction, the VNN in DrugGene has 
a greater neural network depth compared with DrugCell. For neural networks, the more 
hidden layers in neural networks and their derived types of networks, the higher the 
level of abstraction of input features. This means that neural networks can learn more 
feature representations of data on certain specific tasks, thus more accurately describing 
the essence of input data. During the model training phase, DrugGene uses the Batch 
Normalization and gradient accumulation functions to improve the speed of model 
training compared with DrugCell. This not only effectively avoids vanishing and explod-
ing gradients, but also allows for higher learning rates. Meanwhile, we further optimized 
our model. The ADAM optimizer can dynamically update parameters and be used to 
optimize the objective function. It is combined with stochastic gradient descent (SGD) 
to optimize function convergence. The experimental results indicate that our method 
has indeed improved predictive performance. Therefore, DrugGene’s VNN can effec-
tively reflect the interpretability of the model’s prediction results and the biological 
mechanisms behind drug reactions, providing a solution for constructing interpretable 
biomedical prediction models.

DrugGene can monitor changes in the network’s subsystems state using the genotype 
of the cell line, thereby explaining the predicted results in the model. Due to combining 
these biological pathways and deep neural networks, DrugGene achieves better predic-
tion results. In future research, researchers can reasonably use the continuously updated 
deep learning model and more prominent neural network and combine the biological 
pathway, the corresponding genotype characteristics, and medicinal chemistry charac-
teristics to achieve better performance on drug sensitivity prediction. Different feature 
preprocessing strategies may be used to improve the model’s predictive performance, 
such as encoding optimization and feature fusion methods. The model’s predictive per-
formance may be further improved through these operational methods. In addition, 
using heterogeneous bioinformatics network models can learn latent information from 
interaction networks and make more accurate predictions [43, 44]. This type of algo-
rithm can remove noise from biological data, extract functional information of drugs 
and genes, and improve prediction accuracy through feature learning algorithms.

Conclusion
The method DrugGene proposed in this article is based on partial reference informa-
tion, and its effectiveness is more in line with practical clinical practice. It not only effec-
tively integrates reference data from cell lines and drugs, but also constructs a portion 
of the network using gene ontology data, making the model interpretable and achieving 
satisfactory drug sensitivity prediction accuracy, which is beneficial for reducing medical 
costs, analyzing new strategies for cancer drug treatment, and providing certain assis-
tance for cancer immunotherapy.
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