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Abstract 

Background: The Drug–Target Interaction (DTI) prediction uses a drug molecule 
and a protein sequence as inputs to predict the binding affinity value. In recent years, 
deep learning-based models have gotten more attention. These methods have two 
modules: the feature extraction module and the task prediction module. In most deep 
learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy 
for the classification task and mean squared error for the regression task) is used 
to learn the model. In machine learning, contrastive-based loss functions are devel-
oped to learn more discriminative feature space. In a deep learning-based model, 
extracting more discriminative feature space leads to performance improvement 
for the task prediction module.

Results: In this paper, we have used multimodal knowledge as input and proposed 
an attention-based fusion technique to combine this knowledge. Also, we investi-
gate how utilizing contrastive loss function along the task prediction loss could help 
the approach to learn a more powerful model. Four contrastive loss functions are 
considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-
class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evalu-
ated using four well-known datasets: Wang et al. dataset, Luo’s dataset, Davis, and KIBA 
datasets.

Conclusions: Accordingly, after reviewing the state-of-the-art methods, we devel-
oped a multimodal feature extraction network by combining protein sequences 
and drug molecules, along with protein–protein interaction networks and drug–drug 
interaction networks. The results show it performs significantly better than the compa-
rable state-of-the-art approaches.

Keywords: Drug discovery, Multimodal deep learning, Drug–target interaction, 
Contrastive loss function

Introduction
Drug–target interactions (DTI) prediction is vital to drug discovery, as it helps to iden-
tify potential interactions between drugs and targets [1–4]. In particular, DTI prediction 
focuses on identifying whether the specific proteins interact with a drug compound or 
not [5]. Additionally, it offers guidance on drug repurposing, multi-drug pharmacology, 
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drug resistance, and side effect prediction [6, 7]. The traditional biomedical measure-
ment of DTI through in vitro experiments is considered reliable, but it is costly, time-
consuming, and inefficient, particularly when dealing with large-scale datasets [8–11]. 
However, computational methods for DTI prediction have been receiving increased 
attention [12–14]. The current techniques for predicting DTI can be categorized into 
three distinct groups: ligand-based [15], docking-based [16], and machine learning-
based approaches [10].

In recent years, DTI prediction has gotten more attention [17–19]. The introduced 
methods could be divided into two categories: feature-based methods and similarity-
based methods. Zhang and Xie [20] introduced a DTI model based on non-negative 
matrix factorization. They introduced a new L_2,1 regularization term to guarantee 
the sparsity of the feature matrices derived through non-negative matrix factoriza-
tion. They have proved that the obtained solution converges to the KKT point. Fea-
ture-based methods include two main modules: the feature extraction module and 
the task prediction module. In the feature extraction module, raw sequences of pro-
tein and drug molecules should be mapped to discriminative feature spaces. Ozturk 
et  al. [21] introduced a DeepDTA model, which utilizes two 1D convolution net-
works to learn feature space for drugs and proteins. Then, the drug and protein fea-
ture vectors are concatenated to be fed into the task prediction model. Karimi et al. 
[22] introduced a semi-supervised method that first learns two sequence-to-sequence 
models to learn an initial representation of a drug-target pair. Then, it is used as an 
initializer for the RNN-CNN network as a feature extractor of the pair. Li et al. [13] 
introduced a co-contrastive learning-based method for DTI prediction to learn more 
discriminative representation for drug target pairs. To do so, they have utilized inho-
mogeneous graph representation. Qian et al. [23] introduced an approach using the 
drug chemical text information and the drug 2D structure image as input. Moreo-
ver, they have utilized a bi-directional multi-head cross-attentional module to encode 
drug and target interaction features. Zhang et al. [24] have used a transformer based 
model containing graph-based layers to extract features from drug molecules and a 
convolutional network to extract features from protein sequences. Yazdani-Jahromi 
et al. [25] introduced a method called AttentionSiteDTI. They treat the drug–target 
complex as a sentence to identify the effective protein binding sites that contribute 
to the drug–target interaction. In the task prediction module, the goal is to take the 
feature descriptor of the drug-target pair to produce the task label as output. Many 
approaches use a simple multilayer perceptron as a task prediction network. Tayebi 
et  al. [26] introduced UnbiasedDTI, which focuses on the imbalance issue of the 
active/inactive classes in DTI. They have introduced an ensemble of deep-learning 
models to cope with this issue. He et  al. [27] extract cross-view knowledge, includ-
ing the sequence and network views for drugs and targets. They have utilized con-
trastive loss to learn better feature vectors for drugs and targets. To do so, they have 
defined auxiliary contrastive losses, including (1) contrasting similar and dissimilar 
drug feature vectors in sequence view, (2) contrasting similar and dissimilar drug fea-
ture vectors in network view, (3) contrasting similar and dissimilar target feature vec-
tors in sequence view and (4) contrasting similar and dissimilar target feature vector 
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in network views. Li et  al. [13] introduced a new Supervised Graph Co-contrastive 
Learning for Drug–Target Interaction Prediction called SGCL-DTI. Thay have defined 
two graphs: topological graph and semantic graph where in these graphs, nodes are 
the drug-target pairs. Then, supervised contrastive loss is defined over these fea-
ture representaions. Zhnag et al. [28] introduced a new method in DTI called MRB-
DTA. They have introduced a modified version of the transformer encoder with skip 
connections. Also, they have introduced an effective approach to better encode the 
knowledge of the interaction site between drug and protein. In [29], a graph convolu-
tional network (GCN) extracts features from proteins and drugs. To do so, they have 
extract protein 2D graph by using protein contact matrix and its physicochemical 
properties of residues. To extract the intra-molecular interactions, they have utilized 
cross-attention layers. Then, inter- and intra-molecular features are fused to feed into 
the MLP network.

In this paper, the research question is, "How do the different contrastive loss functions 
impact the drug target interaction prediction model’s performance?". To investigate this 
research question, we present a new approach with two stages: (1) the first stage consid-
ers architecture to extract appropriate features for proteins and drugs, and (2) the second 
stage, a combinational loss function that includes task prediction loss and contrastive 
loss. For the feature extractor network, the first stage, we have utilized multimodal 
knowledge as input, including the drug molecule, protein sequences, protein–protein 
interaction networks, and drug–drug interaction networks. To extract features from the 
protein–protein interaction graph and drug–drug interaction graph, we have used the 
Node2vec network. To extract features from protein sequences and drug molecules, the 
1D-convolution neural networks are used. We have used the two-sided attention mecha-
nism to fuse the knowledge of these different modalities. Finally, the outputs of these 
networks are concatenated and fed into a multi-layered perceptron (MLP) to predict the 
affinity value. To recap, this comprehensive approach allows for a more complete under-
standing of the complex relationship between drugs and their targets, potentially leading 
to more accurate predictions. To investigate the effect of different contrastive loss func-
tions, we have considered four important contrastive loss functions: (1) triplet loss func-
tion, (2) max-margin contrastive loss function, (3) Multi-class N-pair Loss Objective, 
and (4) NT-Xent loss function. The overall architecture of the proposed model is shown 
in Fig. 1. In the proposed approach, we have two loss functions to train the model: (1) 
the task prediction loss and (2) the contrastive loss function. In the training step, the 
model is first trained by the contrastive loss function, and then we train the model based 
on the prediction loss function. Next, this procedure is repeated until convergence is 
happened. It should be noted that providing data for contrastive loss functions is impor-
tant. Each input data includes two drug-target pairs in the max-margin contrastive loss 
function. In the triplet loss function, we need three drug-target pairs, including anchor, 
positive, and negative. In Multi-class N-pair Loss Objective and NT-Xent loss functions, 
each input sample contains N drug-target pairs.

We evaluated the proposed approach on four well-known datasets: Wang et al. [30], 
Luo’s dataset [31], KIBA [32], and Davis [33]. The results show significant improve-
ments compared to state-of-the-art approaches and the base approach. It confirms that 
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learning the discriminative feature space of the drug-target pair helps the task prediction 
model to predict the affinity value accurately.

To recap, the contributions of this paper are as follows:

1. We have utilized a multimodal feature extractor network. It means that the proposed 
method leverages various sources of information beyond considering the drug mole-

Fig. 1 An overview of the proposed approach
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cule and protein sequences. Specifically, it takes into account the drug–drug interac-
tion network and protein–protein interaction network, providing a broader perspec-
tive on the interplay between drugs and their targets.

2. We have proposed an attention-based fusion technique to combine the knowledge of 
the different modalities. To do so, we have utilized a two-sided attention mechanism.

3. We have used four powerful contrastive loss functions along the task prediction loss 
to learn more discriminative feature space.

4. We have done huge experiments to compare the contrastive loss functions in learn-
ing more discriminative feature space.

5. The results confirm the effectiveness of using contrastive loss functions along the 
task prediction loss function.

This paper is organized as follows: first, the problem formulation is given, and then, 
the proposed method is explained in detail. Next, the evaluations of the method’s perfor-
mance are presented. Finally, the paper highlights its effectiveness and suggests potential 
areas for further research.

Proposed method
In this section, we have given the details of the proposed method. The main contribu-
tions of this paper are to (1) fuse the multimodal knowledge using the attention-based 
module and (2) evaluate how different contrastive loss functions could impact drug–tar-
get interaction prediction. To do so, first, we have given the problem formulation. Next, 
the model’s architecture is given, and finally, we have defined the different contrastive 
loss functions.

Problem formulation

Given {
(

d(i), p(i)
)

, l(i))} where d(i), p(i)  is a drug-target pair and l(i) is its correspond-
ing affinity value or activity label (active or inactive). A drug, d(i) , is shown by Simpli-
fied Molecular Input Line Entry System (SMILES) sequence, and ith protein is shown by 
amino-acid sequence. SMILES is a language to translate a three-dimensional chemical 
molecule into a string of symbols. The main goal is to design a system that takes the 
drug-target pair as input and predicts affinity value as output.

Model architecture

The architecture of the proposed approach is presented in this section. It consists of 
three subnetworks: protein feature encoder, drug feature encoder, and affinity value pre-
dictor (as task predictor). This paper uses the protein–protein interaction, drug–drug 
interaction networks, and protein sequence and drug molecule as input. PPI network 
is fed into the node2vec to extract feature vectors, and the same procedure is done for 
DDI. For extracting features from drug molecules and protein sequences, two 1D CNN 
networks are utilized. To combine the knowledge of the drugs and proteins, we have 
utilized the attention mechanism. In this case, we have utilized a two-sided attention 
mechanism. First, the drug features are considered as a query, and protein features 
are considered as key and value. Conceptually, it weights each local substructure of 
the protein sequence contributing to the drug features. Then, the protein features are 
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considered as a query, and drug features are considered as key and value. It determines 
the contribution of each local substructure of the drug molecule in updating protein fea-
tures. Finally, the drug molecule features, drug–drug interaction graph features, protein 
sequence features, and protein–protein interaction graph features are concatenated and 
fed into the task prediction network. The task prediction network is a multilayer percep-
tron. A schematic view of the model architecture is shown in Fig. 1. In the following, the 
whole feature encoder is shown by NE . To recap, the network NE , takes drug SMILES, 
protein sequence, PPI, and DDI as input and returns the feature descriptor as output.

Contrastive loss function

In this section, the different types of loss functions are introduced and defined. In metric 
learning, metrics are learned to measure the similarity or dissimilarity between objects. 
Contrastive loss functions were introduced specifically for metric learning, aiming to 
optimize the parameters of these functions using deep neural networks. The resulting 
model can capture complex relationships between features and generate high-quality 
representations by embedding data points into a lower-dimensional space through deep 
neural networks. Ultimately, the objective is to create a model that renders a pair of 
examples with the same label more similar than a pair of examples with different labels. 
In this paper, four types of contrastive loss functions are used as auxiliary loss functions 
to learn a better model, and finally, in the experimental section, we evaluate these loss 
functions and explain how they perform.

Max‑margin contrastive loss

The max-margin contrastive loss function was initially introduced by Hadsell et al. [34]. 
This loss function aims to maximize the distance between the pair of samples that belong 
to different classes. The max-margin contrastive loss function is defined as follows:

where zi denotes the output of the feature encoder network for the ith sample 
zi = NE

(

d(i), p(i)
)

 . This loss function for samples with similar labels minimizes the 
Euclidean distance between their corresponding feature vector. The Euclidean distance 
between the dissimilar samples (with different class labels) should be greater than the 
predefined margin threshold m.

Triplet loss function

The triplet loss function was first introduced by Weinberger [35], then it was used as 
a loss function by Facenet to train the deep neural network [36]. This loss function 
operates on triplets. Given 

{

(d, p), (d, p)+, (d, p)−
}

 as a triplet include an anchor sam-
ple shown by (d, p) , positive sample shown by (d, p)+ which has a same class label with 
anchor sample, and negative sample shown by (d, p)− which has a different class label 
with an anchor sample. This loss function is defined as follows:

(1)Lmax−margin

(

zi, zj
)

= 1
l(i)=l(j)

∥

∥zi − zj
∥

∥

2

2
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∥
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where m shows the margin, this loss function aims to minimize the distance between 
the feature embedding of the anchor and positive samples and maximize the distance 
between the anchor and negative samples.

One of the most important disadvantages of the triplet loss function is that only one 
negative example in each sample is considered, and the relation of that negative example 
with other negative samples (especially from different negative classes) is not consid-
ered. This problem leads to slow convergence for the triplet loss function.

Multi‑class N‑pair loss objective

This loss function is introduced by Sohn [37] for the first time. Given 
{

(d, p), (d, p)+, (d, p)−,1, (d, p)−,2, . . . , (d, p)−,N−1
}

 as (N + 1)-tuple of the training sam-

ples where (d, p) is the anchor sample. Also, (d, p)+ denotes the positive samples to (d, p) 
and (d, p)−,i shows ith negative sample to (d, p) . Hence, the N-pair loss function is 
defined as follows:

where z and z+ denotes the output of the feature encoder network for anchor and posi-
tive sample. Also, zk denotes the output of the feature encoder network for kth negative 
sample. As it is clear, it is the generalized version of the triplet loss function, which con-
siders more than one negative example. It is shown that when N is set to two, it is identi-
cal to the triple loss function. One of the most important disadvantages of minimizing 
Eq. (3) loss function is that generating a batch is expensive. For each batch sample, we 
need (N + 1)-tuple. Sohn [37] considered this issue by introducing a new approach to 
generating batches.

NT‑Xent loss function

NT-Xent was first introduced by Chen et  al. [38] for normalized temperature-scaled 
cross-entropy loss. This loss function is similar to multi-class N-pair loss with the dif-
ference that a new variable called temperature is introduced to consider the scale of the 
similarity values. Chen et al. [38] introduced the NT-Xent loss function for semi-super-
vised learning. Khosla et  al. [39] modified this loss function for a supervised setting, 
which is defined as follows:

where τ denotes the temperature parameter, one of the most important findings about 
the temperature is that it could help the approach to learn a better model from hard 
samples. Chen et al. [38] showed that the value of the temperature parameter is depend-
ent on batch sizes and the number of training epochs. Also, A(i) shows all samples in 
the batch distinct from i , and P(i) is the set of all samples in the batch that they have the 
same label with ith sample.

(3)

LNT−Xent

({

(d, p), (d, p)+, (d, p)−,1, (d, p)−,2, . . . , (d, p)−,N−1
})

= log

(

1+

N−1
∑

k=1

exp
(

zT zk − zT z+
)

)

(4)LNT−Xent−supervised(zi) =
−1

2Nl(i) − 1

∑

j∈P(i)

log
exp

(

zizj/τ
)

∑

k∈A(i) exp(zizk/τ)
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The proposed approach uses these contrastive loss functions along the task-specific 
loss function to learn a better model. In other words, the overall loss function of the pro-
posed model is defined as follows:

where Lcontrastive is one of four introduced contrastive loss functions and Ltaskprediction is 
the task-specific loss function. If the affinity value is continuous, the task-specific loss 
function is the mean-squared error, and if it is discrete, the task-specific loss function 
is the categorical cross-entropy. It should be noted that all introduced contrastive loss 
functions are supervised, and they utilize the corresponding discrete class labels. Hence, 
we need to convert the continuous labels to discrete ones for the regression task to use 
in contrastive loss functions.

Experiments
In this section, the experimental results are given. Four well-known datasets are used 
to evaluate the proposed method: Wang et al. [30], Luo’s dataset [31], KIBA [32], and 
Davis[33]. In the following, we first introduce datasets; next, the experimental setting 
is explained. After that, evaluation metrics are introduced, and finally, the obtained 
results are given and analyzed.

Datasets

Wang et  al. dataset: there are six heterogeneous networks included in Wang et  al. 
[30]: (1) drug–drug interactions network, (2) protein–protein interactions network, 
(3) drug–protein interaction network, (4) drug–disease associations, (5) protein–dis-
ease associations, and (6) drug side effects associations. The drug–target interaction 
network contains 1923 edges extracted from Drugbank Version 3.0 [40–43]. In this 
paper, we have used only the drug–drug interactions network, protein–protein inter-
actions network, and drug–protein interaction network.

KIBA dataset: it is a well-known DTI dataset containing 117,657 interaction pairs. 
These pairs are from 2,068 unique drugs and 229 unique target proteins. The affinity 
value for each pair is measured by the KIBA score, which is an integration of  IC50, 
 K(i), and  K(d) scores [44]. KIBA is a large dataset, and there are many varieties in 
the unique number of drugs and proteins. For the KIBA dataset, similar to [44], the 
threshold value is set to 12.1 and it is used to convert the predicted continuous values 
into binary values.

Davis dataset: it is another well-known DTI dataset containing 25,772 interaction 
pairs. These pairs are from 68 unique drugs and 442 unique target proteins. In this 
dataset, the binding affinity is measured by kd value. To have a more stable learned 
model, the kd value should be transformed into the log space as follows:

(5)Loverall = Lcontrastive + Ltaskprediction

(6)pKd = −log10

(

Kd

109

)
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This study also converts the predicted continuous values into binary values by 
applying thresholds. Similar to [44], the selected threshold for Davis is set to 7.

Luo Dataset: This dataset is a heterogeneous graph [31] in which there are four differ-
ent types of nodes: proteins (1512 nodes), drugs (708 nodes), side-effects (4192 nodes), 
and diseases (5603 nodes). Also, there are eight types of edges (i.e., interaction), includ-
ing drug–protein interaction (1923 edges), protein–protein interaction (7363 edges), 
drug–drug interaction (10,036 edges), drug–disease interaction (199,214 edges), drug–
side effect interaction (80,164 nodes) and protein–disease interaction (1,596,745 edges).

Evaluation metrics

We must select important evaluation metrics for regression and classification tasks in 
the proposed approach. In the regression task, we choose two metrics to evaluate the 
performance: (1) The Concordance Index (CI) measures the degree of ranking agreement 
between the predicted and ground truth values. (2) The  R2 measure provides insight into 
the percentage of the dependent variable variance that the model can explain. For the 
classification task, we have considered five evaluation measures: (1) Recall, which meas-
ures the ratio of positive samples that are correctly classified from all positive samples; 
(2) Precision, which considers how good the classifier is at avoiding false alarms.; (3) 
Accuracy measures the ratio of correctly classified samples; (4) Area under the ROC 
curve (AUC-ROC), and (5) Area under the precision-recall curve (AUC-PR).

Results

This section presents the results obtained on four datasets. First, the results of the 
ablation study by Wang et al. are shown in Fig. 2. The ablation study evaluates six ver-
sions of the proposed method: (1) v1: the network is trained without attention-based 
fusion and contrastive loss functions. In this case, a simple concatenation is used to 

Fig. 2 The ablation study on the Wang et al. dataset
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fuse the multimodal knowledge. (2) v2: in this case, the architecture is the same as 
the proposed model, and the contrastive loss is not used. In the following models, the 
architecture is the same as the proposed architecture, and the effect of the different 
contrastive loss functions is evaluated. (3) Triplet loss: The overall loss function is 
equal to the sum of the task prediction loss and the triplet loss; (4) Max-margin loss: 
The loss function for this case is the sum of task prediction loss and max-margin loss; 
(5) Multi-class N-pair loss: the overall loss function is the sum of task prediction loss 
and Multi-class N-pair loss, and (6) NT-Xent loss: the overall loss function sums the 
task prediction loss and the NT-Xent loss. As is shown in the proposed approach, the 
contrastive loss function is set to one of the four mentioned losses, and the obtained 
results are reported.

A comparison of the proposed method with state-of-the-art methods is shown in 
Fig. 3. Our approach is compared to five state-of-the-art approaches, including Multi-
DTI [45], DTINet [31], NeoDTI [46], HNM [30], and TripletMultiDTI [3]. As shown 
in four metrics, the proposed method performs better than the other comparable 
approaches. It confirms that utilizing an appropriate contrastive loss function along 
the task prediction loss helps the model learn more discriminative feature space, lead-
ing to increased performance.

The obtained results on Luo’s dataset are given in Table  1. As shown in accuracy 
and AUROC, the proposed method performs better than the other approaches. Also, 
our approach achieves a comparable performance in other metrics compared to the 
best state-of-the-art approaches. It should be noted that MOVE utilizes a contrastive 
loss function [47], too, and our approach could improve three out of six measures 
over this approach.

Table  2 shows the results of the proposed method in the Davis dataset. For the 
Davis and KIBA datasets, we have compared the proposed method with the following 

Fig. 3 Results obtained from Wang et al. dataset and comparisons with state-of-the-art approaches
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approaches: KronRLS [48], SimBoost [44], DeepDTA [21], DeepCDA [1], SimCNN-
DTA [49], GraphDTA [50], NerLTR-DTA [51], and TripletMultiDTI [3]. As shown, 
the obtained results are reported for the four different contrastive loss functions and 
a model with only task prediction loss. The obtained results are significantly better 
than TripletMultiDTI when the NT-Xent loss function is used as a contrastive loss 
function [3]. To statistically evaluate the proposed method, we have used the paired 
t-test. In this test, the null hypothesis states that there is no significant difference 
between the proposed approach and the comparing methods. Based on the reported 
p-values in Table 2, we reject the null hypothesize with a p-value lower than 30% for 
all state-of-the-art methods except the TripletMultiDTI approach.

Table  3 shows the results obtained by applying the proposed method to the KIBA 
dataset. As presented, the proposed method effectively increases the performance with 
respect to the comparable approaches. It should be noted that the task is a regression 

Table 1 Luo’s dataset results and comparison with state-of-the-art methods

The bold ones mean that it is the best performance of that measure among the comparable methods

Acc Precision Recall F1-measure AUROC AUPR

State-of-the-art

DTINet 0.524 1.000 0.048 0.090 0.914 0.932

MultiDTI 0.536 0.649 0.538 0.417 0.822 0.842

NeoDTI 0.877 0.884 0.868 0.876 0.944 0.952

SGCL-DTI – – – – 0.977 0.977
MOVE 0.876 0.858 0.904 0.876 0.950 0.943

Our approach

Task prediction loss 0.728 0.994 0.597 0.746 0.854 0.861

Triplet loss 0.794 0.964 0.634 0.765 0.919 0.921

Max-margin loss 0.741 0.999 0.619 0.764 0.897 0.918

Multi-class N-pair loss 0.859 0.814 0.869 0.841 0.967 0.958

NT-Xent loss 0.878 0.847 0.873 0.860 0.978 0.964

Table 2 Davis dataset results and comparison with state-of-the-art methods

The bold ones mean that it is the best performance of that measure among the comparable methods

Approaches CI measure AU-PR p value

State-of-the-art KronRLS 0.871 ± 0.0008 0.661 ± 0.010 2.91 ×  10–1

SimBoost 0.872 ± 0.002 0.709 ± 0.008 2.41 ×  10–1

DeepDTA 0.878 ± 0.004 0.714 ± 0.010 2.54 ×  10–1

DeepCDA 0.891 ± 0.003 0.739 ± 0.006 2.65 ×  10–1

GraphDTA 0.893 – –

NerLTR-DTA 0.936 – –

SimCNN-DTA 0.855 ± 0.0027 0.657 ± 0.0076 2.54 ×  10–1

TripletMultiDTI 0.901 ± 0.001 0.902 ± 0.007 8.06 ×  10–1

Our approach Task prediction loss 0.874 ± 0.003 0.821 ± 0.004 6.39 ×  10–2

Triplet loss 0.901 ± 0.001 0.902 ± 0.007 8.06 ×  10–1

Max-margin loss 0.901 ± 0.004 0.842 ± 0.007 5.48 ×  10–2

Multi-class N-pair loss 0.928 ± 0.006 0.873 ± 0.004 2.83 ×  10–1

NT-Xent loss 0.945 ± 0.005 0.879 ± 0.004
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task for the Davis and KIBA datasets. It means that the model predicts a continuous 
value. This leads us to utilize CI measures for both of these datasets. Also, we have con-
verted the continuous affinity value to a binary label by thresholding like [1, 21, 44]. 
The CI measure and AUPR are increased by 2.9% and 5.6% over the best state-of-the-
art method. In other words, it means the model learns a strong model by utilizing both 
the appropriate contrastive loss function and the prediction loss function. Based on the 
reported p-values in Table 3, we reject the null hypothesis with a p-value lower than 20% 
for most state-of-the-art methods.

Conclusion
This paper focuses on this research question: "How contrastive loss function along the 
task prediction loss could help the approach to learn a more discriminative model?". 
We have selected four important contrastive loss functions to investigate and used 
them as auxiliary loss functions. However, we believe that a feature extraction net-
work may be beneficial in learning a strong model. Accordingly, after reviewing the 
state-of-the-art methods, we developed a multimodal feature extraction network by 
combining protein sequences and drug molecules, along with protein–protein inter-
action networks and drug–drug interaction networks. To fuse the multimodal knowl-
edge, we have proposed to use an attention-based fusion technique.

One of the advantages of the proposed method, which leads to performance 
improvement, is that it utilizes a powerful loss function. The loss function guides the 
optimization process during the backpropagation. Hence, using powerful loss func-
tions leads to an improvement in the performance and the generalization capabilities 
of trained models. The loss function in most DTI approaches is based on the error 
between the predicted outputs and the ground truth labels without considering the 
representation vector of the drug-target pair. As a result of this work, we introduce 
a novel loss function that combines the task prediction loss with a contrastive loss 
function.

Table 3 KIBA dataset results and comparison with state-of-the-art methods

The bold ones mean that it is the best performance of that measure among the comparable methods

Approaches CI measure AU-PR p value

State-of-the-art KronRLS 0.782 ± 0.0009 0.635 ± 0.004 1.82 ×  10–1

SimBoost 0.836 ± 0.001 0.760 ± 0.003 1.34 ×  10–1

DeepDTA 0.863 ± 0.002 0.788 ± 0.004 1.72 ×  10–1

DeepCDA 0.889 ± 0.002 0.812 ± 0.005 2.48 ×  10–1

GraphDTA 0.891 –

NerLTR-DTA 0.893 –

SimCNN-DTA 0.821 ± 0.0011 0.721 ± 0.0018 1.61 ×  10–1

TripletMultiDTI 0.895 ± 0.003 0.839 ± 0.007 2.00 ×  10–1

Our approach Task prediction loss 0.882 ± 0.005 0.798 ± 0.002 2.42 ×  10–1

Triplet loss 0.895 ± 0.003 0.839 ± 0.007 2.00 ×  10–1

Max-margin loss 0.901 ± 0.010 0.870 ± 0.009 3.89 ×  10–2

Multi-class N-pair loss 0.921 ± 0.006 0.881 ± 0.004 3.74 ×  10–1

NT-Xent loss 0.924 ± 0.003 0.896 ± 0.001
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To evaluate the proposed method, it is applied to four well-known datasets: Wang 
et al., Luo’s dataset, Davis, and KIBA datasets. A huge experiment is done to show the 
effectiveness of the proposed method. Based on the results obtained, the proposed 
method could improve the performance.

One of the limitations of the proposed method is the computational complex-
ity. In Multi-class N-pair Loss and NT-Xent loss functions, each batch sample needs 
(N + 1)-tuple, which is practically intractable. Although, we have utilized an intro-
duced approach by Sohn [32] to generate batches. Still, it needs more computing 
power. The other limitation is finding the best strategy to generate batches. In future 
work, providing more informative batches for DTI will be considered.

In recent years, ncRNAs are recognized as a new class of drug targets due to its effec-
tiveness evidence in gene expression and disease progression [52, 53]. In future work, by 
providing protein-disease and ncRNA-disease graphs as additional inputs, we can mod-
ify the approach to predict small molecule-ncRNA associations.
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