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Abstract 

Background:  Analysis of time-resolved postprandial metabolomics data can improve 
the understanding of metabolic mechanisms, potentially revealing biomarkers for early 
diagnosis of metabolic diseases and advancing precision nutrition and medicine. Post-
prandial metabolomics measurements at several time points from multiple subjects 
can be arranged as a subjects by metabolites by time points array. Traditional analysis 
methods are limited in terms of revealing subject groups, related metabolites, and tem-
poral patterns simultaneously from such three-way data.

Results:  We introduce an unsupervised multiway analysis approach based 
on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial 
metabolomics data guided by a simulation study. Because of the lack of ground 
truth in real data, we generate simulated data using a comprehensive human 
metabolic model. This allows us to assess the performance of CP models in terms 
of revealing subject groups and underlying metabolic processes. We study three 
analysis approaches: analysis of fasting-state data using principal component analy-
sis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using 
a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive 
simulations, we demonstrate that CP models capture meaningful and stable patterns 
from simulated meal challenge data, revealing underlying mechanisms and differences 
between diseased versus healthy groups.

Conclusions:  Our experiments show that it is crucial to analyze both fasting-state 
and T0-corrected data for understanding metabolic differences among subject groups. 
Depending on the nature of the subject group structure, the best group separa-
tion may be achieved by CP models of T0-corrected or full-dynamic data. This study 
introduces an improved analysis approach for postprandial metabolomics data 
while also shedding light on the debate about correcting baseline values in longitudi-
nal data analysis.
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Background
Postprandial metabolomics data (also referred to as meal challenge test data) includes 
the metabolic transition from the fasting to the fed state. Analysis of such data can reveal 
the underlying biological processes and improve the understanding of metabolic mecha-
nisms [1, 2]. Examples include the study of a high-fat meal response for over one thou-
sand subjects, which revealed subclass patterns in lipoprotein metabolism [3]. Analysis 
of postprandial metabolomics data also holds the promise to reveal new biomarkers 
especially for cardiometabolic diseases [4, 5]. In addition to detecting biomarkers and 
advancing prediagnosis, studying the postprandial state has proven useful in designing 
personalized nutrition [6]. Because of the high variability between individuals in terms 
of their post-meal glucose and triglyceride levels, personalized dietary interventions can 
be considered to lower individual post-meal glucose, thus may help decrease the risk of 
diseases such as prediabetes [6, 7].

There are various methods available for analyzing meal challenge test data. These are 
mainly supervised approaches, i.e., assuming that the group information (e.g., labels such 
as healthy and diseased) is known and incorporated into the analysis. In the aforemen-
tioned and other related work, univariate analyses are the most used tools for analyz-
ing postprandial metabolism, e.g., the repeated measures analysis of variance (ANOVA) 
method is used to test group differences [3, 5]; a linear mixed model (LMM), which adds 
the random effect in the analysis, is used to explore the time and group interaction effect 
[8]. Univariate methods are simple and powerful in terms of studying group differences; 
however, such analyses are performed per metabolite, thus unable to reveal the relation 
between metabolites. Since metabolites are interlinked via pathways and hold dependent 
or independent relations with other metabolites, multivariate methods are promising 
in terms of capturing the underlying patterns in the data [4, 9]. Supervised multivari-
ate methods used to analyze metabolomics data from challenge tests often combine 
ANOVA or LMM with principal component analysis (PCA). Such methods include 
ANOVA-Simultaneous Component Analysis (ASCA)[10], ANOVA-PCA [11], ANOVA-
Partial Least Squares (PLS) [12], and their extensions [13, 14]. While these methods are 
suitable for time-resolved data, they rely on a priori known group information.

When the goal is exploratory analysis to reveal unknown stratification of subjects 
such as subgroups among healthy or diseased subjects, the workhorse data analysis 
approaches are unsupervised methods based on PCA and clustering [9]. However, these 
approaches cannot exploit the three-way structure of postprandial metabolomics data. 
They rely on either measurements at one time point or summaries such as clusters of 
time profiles obtained using data averaged across subjects [2, 15]. An effective way to 
preserve the multiway nature of the data and extract the underlying patterns is to use 
tensor factorizations [16–18], which are extensions of matrix factorizations such as PCA 
to multiway arrays (also referred to as higher-order data sets).

In this paper, we arrange time-resolved metabolomics data as a three-way array 
with modes: subjects, metabolites, and time, and use the CANDECOMP/PARA-
FAC (CP) [19, 20] tensor model to reveal the underlying patterns. The CP model 
summarizes the three-way array as a sum of a small number of factor triplets as in 
Fig.  1. Among various tensor factorization methods, we use the CP model because 
of its uniqueness properties [16, 21], which facilitate interpretability of the extracted 
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factors. In addition, the CP model is less sensitive to noise due to the concise struc-
ture (parsimony) of the model [22]. The CP model has previously been mentioned as a 
promising analysis tool for meal challenge test data [4, 9], but no analysis results have 
been presented for the three-way data arranged as in Fig. 1. Recently, the effective-
ness of the CP model in terms of analyzing other types of longitudinal data has been 
studied, e.g., using gut microbiome data from infants studying microbial changes and 
how those relate to the birth mode [23], urine metabolomics data from newborns 
exploring the use of the CP model for compositional data [24] and simulated dynamic 
metabolomics data relying on small-scale metabolic pathway models [25]. Unlike 
previous studies, we provide a comprehensive study of the CP model for analyzing 
time-resolved metabolomics data, in particular, focusing on the human metabolism 
in response to a meal challenge test and studying metabolic changes from a baseline 
state to dynamic states.

In the literature, analysis of full-dynamic data (i.e., full postprandial data without 
baseline correction) as well as T0-corrected data (i.e., the data corrected by subtract-
ing the fasting state, similar to the method of analysis of changes [26]) have been con-
sidered [1, 2, 5, 27, 28]. Note that the full-dynamic data has information from the 
fasting as well as the T0-corrected (pure-dynamic) state. Understanding metabolic 
differences between these two states can help understand the metabolic mechanisms 
for postprandial metabolomics data. In this paper, we explore whether the CP model 
should be applied to T0-corrected data or full-dynamic data for postprandial metabo-
lomics data analysis. Furthermore, we investigate the added value of analysis of the 
postprandial state compared to the fasting state.

In order to assess the performance of analysis approaches in terms of revealing the 
underlying patterns in the data, we generate simulated postprandial metabolomics 
data with known ground-truth information. To mimic the evolution of metabolite 
concentrations during a meal challenge, we used a human metabolic model [29] that 
describes metabolic pathways in eight organs in mechanistic detail by enzyme kinetic 
equations. Variation of disease-relevant parameters generated different subject 
groups (i.e., control versus diseased). Through extensive computational experiments, 
we assess the performance of analysis of fasting-state data using PCA, T0-corrected 
data using a CP model and full-dynamic data also using a CP model. We demonstrate 
that (i) CP models of postprandial metabolomics data reveal meaningful underly-
ing patterns, (ii) for understanding metabolic differences among subject groups, it 

Fig. 1  An R-component CP model of a three-way array with modes: subjects, metabolites, and time. Vectors 
ar , br and cr correspond to the patterns in the subjects, metabolites, and time modes
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is crucial to analyze both fasting-state and T0-corrected data, (iii) depending on the 
nature of the subject group structure, the best performance in terms of revealing sub-
ject groups may be achieved by CP models of T0-corrected or full-dynamic data, and 
(iv) patterns extracted by CP models are reliable (i.e., consistently observed in a num-
ber of different settings such as when subsets of subjects are left-out, in the presence 
of a higher level of within-group variation, and with an unbalanced number of control 
and diseased subjects).

Materials and methods
Simulated postprandial metabolomics data

Human whole‑body metabolic model

To generate simulated postprandial metabolomics data, we consider a human whole-
body metabolic model proposed by Kurata [29]. The model is defined by a set of 
ordinary differential equations, with metabolites as variables and kinetic constants 
as parameters. Consisting of 202 metabolites, 217 reaction rates and 1,140 kinetic 
parameters, this multi-scale and multi-organ model is the largest, comprehensive, 
and highly predictive kinetic model of the whole-body metabolism [29]. It describes 
each reaction with a reversible Michaelis-Menten type rate equation and includes 
the action of insulin and glucagon, key hormones that govern the response to a meal 
(Fig. 2). The metabolic model considers both intracellular and extracellular metabo-
lites. The meal in this simulated model only considers glucose and fat, where 87 grams 
(g) carbohydrate and 33 g fat is given after a 10-hour fasting. Although the metabolic 
model provides two parameters to regulate glucose and fat intake, we observe no 
apparent improvement in comparison with the real data for different amounts of glu-
cose and fat intake.

Fig. 2  Metabolic network considered in each organ in the human whole-body model except for the 
pancreas; see [29] for more details
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Generation of the simulated data

To test whether our proposed unsupervised approach is able to reveal different sub-
ject groups, we generate simulated blood metabolite concentrations using two types 
of variation: (i) between-group variation and (ii) within-group variation. The between-
group variation is introduced by changing a specific parameter, i.e., Km_Ins_B_M or 
Km_inssyn_Glc_B, in the differential equations, as demonstrated in [29]. These two 
parameters are used to regulate the insulin-stimulated glucose uptake in skeletal mus-
cle or the glucose-stimulated insulin secretion by the pancreas, respectively. Each 
type of between-group variation mimics one disease, which is as follows [29]:

•	 Insulin resistance in skeletal muscle: It is used for the study of type 2 diabetes mel-
litus and simulated by multiplying the default Km_Ins_B_M with 1.5,

•	 Beta-cell dysfunction: Its extreme case is type 1 diabetes mellitus and it is simu-
lated by multiplying the default Km_inssyn_Glc_B with 1.1.

For the within-group variation, i.e., individual variation, we randomly perturb the 
kinetic constants in the liver (see Additional file 1 for a list of perturbed parameters). 
The perturbation level is denoted by α . For example, α = 0.2 indicates that related 
kinetic constants are set to be random parameters ranging from (100− 20)% to 
(100+ 20)% of their default values.

Based on these definitions of between and within-group variations, we generate 
data for each subject as follows: 

1.	 Get the 10-hour fasting concentrations for each individual (one individual has one 
set of random kinetic constants) by running the human whole-body metabolic model 
with the default initial values of model variables in [29], with an exception of the ini-
tial concentrations for particular metabolites presented in the next paragraph;

2.	 Start the meal challenge, i.e., run the human whole-body model using each individ-
ual’s 10-hour fasting state, and take the concentrations of metabolites at time points 
t = [0, 0.25, 0.5, 1, 1.5, 2, 2.5, 4] hours (with T0 = 0 h, T1 = 0.25 h, · · · , T7 = 4h).

We choose the above time points to match the time samples in the real data, which 
we use to assess how realistic the simulations are (see section “Simulated postprandial 
metabolomics data are realistic”). In step one, we set initial values of Insulin (Ins) 
and blood metabolites Glucose (Glc), Pyruvate (Pyr), Lactate (Lac), Alanine (Ala), β
-hydroxybutyrate (Bhb), Triglyceride and total Cholesterol to the median of fasting 
concentrations in the real data. Although the metabolic model involves 202 metab-
olites (including hormones) in different organs, we only consider hormone Ins and 
blood metabolites Glc, Pyr, Lac, Ala and Bhb since they are also measured in the real 
data. In addition, they are involved in the same metabolic network (see Fig. 2), which 
makes the comparison of real and simulated data easier. When simulating data for a 
diseased subject, we use the parameter values given for insulin resistance and beta-
cell dysfunction; otherwise, default values for parameters Km_Ins_B_M and Km_ins-
syn_Glc_B are used to simulate data for control subjects.
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The simulated data from multiple subjects is arranged as a three-way array ( # subjects 
× 6 metabolites × # time points) as in Fig. 1.

Simulated postprandial metabolomics data are realistic

We compare the simulated data with the real data to demonstrate how realistic the sim-
ulations are. We use the real data corresponding to Nuclear Magnetic Resonance (NMR) 
spectroscopy measurements of plasma samples collected during a meal challenge test 
from the COPSAC2000 cohort [30]. The real data is not publicly available but may be 
shared by COPSAC through a collaboration agreement. The study was conducted 
in accordance with the Declaration of Helsinki and was approved by The Copenha-
gen Ethics Committee (KF 01-289/96 and H-16039498) and The Danish Data Protec-
tion Agency (2015-41-3696).  Written consent was obtained from the participants. The 
cohort considered in this work consists of 299 healthy 18-year-old subjects (144 males 
and 155 females). The blood samples were collected at eight time points following an 
overnight (at least 9-hour) fasting during the fasting and postprandial states, i.e., at 
t = [0, 0.25, 0.5, 1, 1.5, 2, 2.5, 4] h. Over two hundred features were measured. We select 
the six features mentioned in section “Generation of the simulated data” since these are 
the ones available in both real and simulated data.

Time profiles of metabolites in simulated and real data match well for most metabolites 
except for Pyr and Lac, where we noticed deviations (See Additional file 2: Fig. S2.1). The 
simulated Pyr differed most from the standard reference range [0.04, 0.1]mmol/L. To get 
a better correspondence for the initial concentrations, we performed a sensitivity analy-
sis on the model and tuned the parameters related to Pyr and Lac (see Additional file 2: 
Fig. S2.2). After parameter tuning, all initial (fasting) concentrations, except Lac, corre-
sponded well between the real and simulated data (see Fig. 3). For Lac, we note that also 
in [29] the measured concentration of Lac is higher than the simulated value (1 versus 

Fig. 3  Median concentrations across all subjects following a meal challenge test. The standard meal in the 
real data includes 60 g palm olein, 75 g glucose and 20 g protein [31] and is given after overnight fasting, 
while the meal in simulations contains 87 g glucose and 33 g fat after 10-hour fasting
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0.5 mM). In our subjects, the Lac concentration is even higher, suggesting a difference 
between the cohorts. We do not necessarily expect a perfect correspondence between 
the real and simulated data throughout the time course since the simulated meal (taken 
from [29]) differs from the real meal (see Additional file 2: Table S2.1). In addition, the 
large individual variability in the real data puts the discrepancy between the real and 
simulated data in perspective, as demonstrated in Fig. 3. The simulated model is realistic 
for our study in the sense that we observe that responses of key metabolites upon the 
meal challenge are in the physiological range, which is what we are interested in. Chang-
ing the metabolic model to simulate a meal-intake similar to the real data is outside the 
scope of this study.

CANDECOMP/PARAFAC (CP) model

The CP model, which stands for Canonical Decomposition (CANDECOMP) [20] and 
Parallel Factor Analysis (PARAFAC) [19], stems from the polyadic form of a tensor [32]. 
Similar to the matrix Singular Value Decomposition (SVD), the main idea of the CP 
model is to represent a tensor as the sum of a minimum number of rank-one tensors 
(Fig.  1). The CP model has been successfully used in many disciplines, including data 
mining [17, 33], neuroscience [34, 35], chemometrics [22], and recently also in longitudi-
nal omics data analysis [23] in terms of revealing the underlying patterns from complex 
data sets.

For a third-order tensor X ∈ R
I×J×K  , an R-component CP model represents the ten-

sor as follows:

where ◦ denotes the vector outer product, A = [a1 ... aR] ∈ R
I×R , B = [b1 ... bR] ∈ R

J×R , 
and C = [c1 ... cR] ∈ R

K×R are the factor matrices corresponding to each mode. Col-
umns of the factor matrices, e.g., ar ,br , and cr corresponding to the rth component, 
reveal the underlying patterns in the data. When assessing how well the CP model fits 
the data, we use the explained variance (also referred to as model fit):

where X̂ = R
r=1 ar ◦ br ◦ cr is the data approximation based on the CP model, and ‖.‖ 

denotes the Frobenius norm. A fit value close to 100% indicates that data X is explained 
well by the model; otherwise, there is an unexplained part left in the residuals.

The CP model has been widely used in applications as a result of its uniqueness prop-
erty, i.e., factors are unique up to permutation and scaling ambiguities under mild con-
ditions, without imposing additional constraints such as orthogonality [16, 21]. This 
uniqueness property facilitates interpretation. In the CP model, each rank-one compo-
nent ( ar ,br , cr ), i.e., rth column of factor matrices in all modes, can be interpreted, for 
instance, in terms of identifying groups of subjects (subjects with similar coefficients in 
ar ) positively or negatively related to specific sets of metabolites (metabolites with large 
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R
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coefficients in br ) following certain temporal profiles (given by cr ). We normalize vectors 
( ar ,br , cr ) to unit norm when we interpret the factors. Due to the scaling ambiguity in 
the CP model, the norms can be absorbed arbitrarily by the vectors as long as the prod-
uct of the norms of the vectors stays the same. In the presence of missing entries, which 
is common in applications, it is still possible to analyze such incomplete data using a CP 
model [36, 37].

The selection of the number of components (i.e., R) when fitting a CP model is a chal-
lenging task [16, 38], and an active research topic [39]. Among existing approaches, 
we make use of the model fit and the core consistency diagnostic [40]. In addition, we 
choose the number of components based on the interpretability of the model and rep-
licability of the factors [39, 41] in subsets of the data (see Additional file 3: for details 
about the selection of number of components).

The performance of the CP model does not depend on the data size, i.e., the num-
ber of dimensions in each mode: I, J, K. If the data follows a CP structure, i.e., a sum of 
rank-one tensors, the CP model can reveal the underlying patterns even with data from 
a few subjects. For instance, fluorescence spectroscopy measurements of mixtures can 
be arranged as a third-order tensor with modes: mixtures, emission wavelengths, and 
excitation wavelengths. When such data is analyzed using a CP model, each rank-one 
component can capture one of the chemicals in the mixtures, and has done so success-
fully with only few, e.g., five, mixtures [22]. However, there are still challenges that will 
be encountered in the case of small data set size in any mode. First, the number of fac-
tors that can be uniquely extracted from the data will be limited [16, 21] as uniqueness 
conditions depend on the number of dimensions in each mode. Furthermore, using rep-
licability to determine the number of components will not be possible with a small num-
ber of samples (that holds for a resampling strategy for any model). Finally, in the time 
mode, it is important to have enough time points to get temporal profiles.

Analysis approach

We analyze each postprandial metabolomics data set using three methods: (i) PCA of 
the fasting-state data, (ii) CP model of the T0-corrected data, and (iii) CP model of the 
full-dynamic data. We compare the fasting-state analysis with T0-corrected analysis to 
understand metabolic differences between these two states. We compare these three 
approaches to obtain a better picture in terms of subject group differences and under-
lying metabolic mechanisms. When assessing subject group differences, we apply the 
unpaired (two-sample) t-test to each subject component and the null hypothesis is that 
the two groups come from independent random samples from normal distributions with 
equal means, without the assumption of equal variances. The main focus of the paper is 
to investigate metabolic differences associated with subject group differences during the 
fasting and pure-dynamic states, rather than striving for the best group separation.

Experimental set‑up and implementation details

In our experiments with simulated data, we consider the analysis of eight data sets gener-
ated using different types of between-group variation, different levels of individual varia-
tions, and balanced or unbalanced groups (see Table 1 for a complete list of data sets). In 
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the balanced case, there are 50 controls and 50 diseased subjects; in the unbalanced case, 
there are 70 control and 30 diseased subjects.

Before the CP analyses, the three-way data is preprocessed by centering across the sub-
jects mode (to remove the common intercept from all subjects) and then scaling within the 
metabolites mode (to adjust for scale differences in different metabolites), i.e., dividing by 
the root mean squared value of each slice in the metabolites mode (see [42] for details about 
preprocessing multiway arrays). Before PCA, the fasting-state data is preprocessed simi-
larly, i.e., centered and scaled.

For fitting CP models, we use cp-opt [43] and cp-wopt [37] from the Tensor Tool-
box version 3.1 [44] with the Limited Memory BFGS optimization algorithm. cp-wopt 
uses weighted optimization [37] for fitting CP to incomplete data. For PCA, we use the 
svd function from MATLAB. Multiple random initializations are used to avoid local min-
ima when fitting CP models. For the unpaired t-test, we use the ttest2 function from 
MATLAB.

When comparing CP models for different data sets, we use the factor match score (FMS) 
to quantify the similarity of factors in specific modes, e.g., the metabolites and time modes. 
FMS is defined as follows:

where br , cr and b̂r , ĉr denote the rth column of factor matrices in the metabolites and 
time modes extracted by CP models from two different data sets (after finding the best 
permutation of the columns). FMS values are between 0 and 1, and an FMS value close 
to 1 indicates high similarity between the CP factors extracted from two different data 
sets.

All experiments are performed in MATLAB 2020a. Simulated data sets in Table 1 and 
example scripts are available in the GitHub repository for the paper: https://​github.​com/​
Lu-​source/​proje​ct-​of-​chall​enge-​test-​data.

FMS =
1

R

R
∑

r=1

|br
T
b̂r |

�br��b̂r�

|cr
T
ĉr |

�cr��ĉr�

Table 1  Eight simulated data sets generated using different settings.

Here, α denotes the level of individual variation, where a smaller number indicates a lower level of individual variation. See 
the definition of α in section “Generation of the simulated data”

Individual variation

Insulin resistance α = 0.2 Balanced

Unbalanced

α = 0.4 Balanced

Unbalanced

Beta-cell dysfunction α = 0.2 Balanced

Unbalanced

α = 0.4 Balanced

Unbalanced

https://github.com/Lu-source/project-of-challenge-test-data
https://github.com/Lu-source/project-of-challenge-test-data


Page 10 of 22Li et al. BMC Bioinformatics           (2024) 25:94 

Results
CP models extract similar factors from the simulated versus real meal challenge data

Since subjects in the real data are considered healthy, we expect that the CP model 
extracts similar patterns in the metabolites and time modes from real data (299 sub-
jects) versus the simulated data with only the 50 control subjects ( α = 0.2 ). Patterns 
extracted from the subjects mode are omitted since the subjects mode corresponds 
to different individuals in simulated versus real data. Fig. 4 shows that the 3-compo-
nent CP model of each data set reveals similar patterns from the metabolites and time 
modes, to a certain extent.

The first component ( b1 and c1 ) in Fig. 4 mainly models metabolites Pyr, Lac and 
Ala (i.e., metabolites with large coefficients) which share similar dynamic patterns, 
i.e., being accumulated and then consumed. It makes sense that these three metabo-
lites stay close since they are tied to each other with reactions Pyr↔Lac and Pyr↔Ala 
as shown in the pathway in Fig.  2. However, we observe different peak heights and 
different time points for the highest peak in the time mode in real versus simulated 
data. The different peak heights are possibly because meal compositions are different 
in real versus simulated data. The different time points at the highest peak may be due 
to the fact that different individuals reach the highest peak at different time in the real 
data, and the first component of real data (with c1 ) captures the temporal profiles of a 
group of subjects with the highest peak appearing at around 0.5h in metabolites Lac, 
Ala and Pyr (see Additional file 4 for details).

The second component (see b2 and c2 in Fig. 4) mainly captures Ins and Glc, which 
are accumulated and then consumed, after the meal challenge but at a different speed 
than Lac and Ala. However, we observe that the coefficient for Pyr is significantly dif-
ferent in real versus simulated data. For the simulated data, the coefficient of Pyr is 
almost zero since the time point at the highest peak for all individuals in the simulated 

Fig. 4  Factors in the metabolites (top plots) and time (bottom plots) modes extracted from the real versus 
simulated data using a 3-component CP model. The vectors b1 , b2 and b3 are the components in the 
metabolites mode, and vectors c1 , c2 and c3 are the temporal patterns extracted by the CP model. Model fits 
for the real and simulated data are 50.3% and 71.6%, respectively
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data is the same for each metabolite, and Pyr reaches to the highest peak at different 
time point compared with Ins and Glc. On the other hand, in real data, there are sev-
eral subjects with dynamic patterns of Pyr reaching the highest peak at the same time 
point compared with Ins and Glc (see Additional file 4 for more details). This results 
in a positive coefficient for Pyr in b2 in real data.

The third component ( b3 and c3 in Fig. 4) mainly models Bhb, which behaves differ-
ently from other metabolites after a meal challenge, i.e., being consumed first and then 
getting accumulated. This behaviour has been observed in a consistent way in both real 
and simulated data.

Insulin‑resistant versus control group with low within‑group variation

In this section, we show that fasting and T0-corrected analysis together reveal the meta-
bolic differences between the fasting and dynamic states. Furthermore, we demonstrate 
that T0-corrected analysis performs better than full-dynamic analysis in terms of reveal-
ing subject group differences.

Fasting‑state analysis

PCA of the fasting-state data captures the subject group difference. The scatter plot of 
PC3 (the unpaired t-test using PC3 gives a p-value of 2× 10−9 ) and PC5 (p-value of 
2× 10−7 ) in Fig. 5 shows the best group separation. Note that PC3 and PC5 together 
explain only 21% of the data, indicating that the individual variation may dominate the 
total variation in the data. Figure 5 demonstrates that all metabolites except Ins and Glc 
are related to the subject group separation at the fasting state. Among them, Pyr con-
tributes the most and is negatively related to the insulin-resistant group (i.e., the insu-
lin-resistant group has mainly positive (negative) score values, and Pyr has a negative 
(positive) coefficient on PC3 (PC5)). This negative association indicates that the insulin-
resistant group has lower concentration of Pyr at the fasting state. This results from a 
lower insulin-stimulated glucose uptake into the skeletal muscle in the insulin-resistant 
group, leading to less conversion of glucose into pyruvate, which may be supported by 
the observations in the literature [45, 46].

Fig. 5  PCA scatter plot with the best group separation for the fasting-state data with insulin-resistant and 
control groups. The individual variation is introduced by setting the random perturbation level as α = 0.2
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T0‑corrected analysis

We choose the 4-component CP model for the T0-corrected data (see Additional file 3 
for the selection of number of components). This model reveals the subject group 
difference, as shown in Fig.  6 (subjects mode). Among all components, the fourth 
component gives the best subject group separation (see the comparison of a4 with 
a1 , a2 and a3 ). In the metabolites mode (see b4 ), metabolite Pyr has the largest coef-
ficient, followed by Glc, while others have almost zero coefficients. In the time mode, 
c4 captures the dynamic behavior of mainly Pyr, i.e., it increases first and then slightly 
decreases. The increase of Pyr may be due to the glycolysis after the meal intake and 
its decrease afterwards may result from its conversion to other metabolites, e.g., Bhb, 
Lac and Ala, as shown in the pathway plot (Fig.  2). a4 , b4 and c4 together indicate 
that the concentration of Pyr increases more in the insulin-resistant group than in the 
control group; this suggests that the T0-corrected Pyr is positively related to the insu-
lin-resistant group. Compared with a4 , a1 and a2 reveal a weaker subject group sepa-
ration due to the dynamic behavior of Lac & Ala (see b1 and c1 ) and Ins & Glc (see 
b2 and c2 ), respectively. Without capturing any group separation (see a3 ), the third 
component reveals that metabolite Bhb (it has the largest coefficient on b3 while oth-
ers have almost zero coefficients) responds differently compared to other metabolites 
after the meal intake (see c3 versus c1 , c2 and c4 ), i.e., it decreases first and then slowly 
increases, as also shown in an earlier study [47].

Fig. 6  Factors of the 4-component CP model extracted from the T0-corrected data with insulin-resistant and 
control groups. The individual variation is set by using the random perturbation level α = 0.2 . The vectors ar , 
br and cr , r = 1, . . . , 4 , are the components in the subjects, metabolites and time modes extracted by the CP 
model.
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Full‑dynamic analysis

Figure  7 demonstrates the 4-component CP model of the full-dynamic data. This 
model captures both the fasting-state information ( c4 reveals a constant temporal 
profile) and the T0-corrected information (i.e., the first and second components). The 
first component, i.e., a1 , b1 and c1 , and the second component, i.e., a2 , b2 and c2 , reveal 
the positive relation of Lac, Ala & Pyr and Ins & Glc with the insulin-resistant group 
and their dynamic response after the meal intake, respectively. The fourth compo-
nent mainly captures the information from the fasting state, as evidenced by a nearly 
constant time profile in the time mode c4 . At the fasting state, insulin-resistant sub-
jects have higher glucose concentrations [45, 46], which may result in lower concen-
trations of pyruvate since the conversion of glucose to pyruvate is less efficient due to 
insulin resistance. Such a negative association between pyruvate and insulin-resistant 
subjects is captured by the fourth component, where we see negative coefficients for 
insulin-resistant subjects on a4 and a positive coefficient for pyruvate on b4.

Comparison of three analysis approaches

Through three analysis approaches, we observe four underlying mechanisms related to 
(i) Pyr, (ii) Ins & Glc, (iii) Lac, Ala & Pyr, and (iv) Bhb.

Pyr is identified by all methods as an essential metabolite related to the subject group 
separation. However, fasting-state versus T0-corrected analysis reveals a different rela-
tion between Pyr and the insulin-resistant group. This, in turn, results in T0-corrected 

Fig. 7  Factors of the 4-component CP model extracted from the full-dynamic data with insulin-resistant and 
control groups. The individual variation is set by using the random perturbation level α = 0.2 . The vectors ar , 
br and cr , r = 1, . . . , 4 , are the components in the subjects, metabolites and time modes extracted by the CP 
model
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analysis performing better than full-dynamic analysis in terms of revealing group dif-
ferences (see the comparison of the subjects mode in Fig. 6 and 7). The best separation 
in T0-corrected analysis is given by the fourth component, where Pyr has the dominant 
coefficient in the metabolites mode. The left panel of Fig. 8 shows that although the insu-
lin-resistant group has a lower concentration of Pyr at the fasting state, Pyr accumulates 
much faster in the insulin-resistant group during the postprandial state (especially from 
0.5h to 2 h). In this sense, subtracting the fasting-state data from each time slice of the 
full-dynamic data leads to a more evident group difference between control versus insu-
lin-resistant subjects, as demonstrated in the right panel of Fig. 8.

The other mechanisms, (ii) Ins & Glc, (iii) Lac, Ala & Pyr, and (iv) Bhb, are captured 
through similar patterns in both T0-corrected and full-dynamic analysis.

Beta‑cell dysfunction versus control group with low within‑group variation

In this section, we demonstrate that fasting and T0-corrected analysis together reveal the 
metabolic differences between the fasting and dynamic states. In addition, our analysis 
results indicate that full-dynamic analysis performs better than T0-corrected analysis in 
terms of separating subject groups.

Fasting‑state analysis

The fasting-state analysis captures the subject group difference. The scatter plot of PC3 
(with p-value of 8× 10−7 from the unpaired t-test) and PC5 (with p-value of 2× 10−8 ) 
gives the best separation between the groups (Fig. 9). Figure 9 also shows that metabo-
lites Glc and Pyr contribute the most since they have large absolute coefficients along 
the discrimination direction (line y = −x ). In addition, it is shown that metabolite Glc 
(Pyr) is positively (negatively) related to the beta-cell dysfunction group. This is consist-
ent with Additional file  2: Fig.  S2.3, which shows that the beta-cell dysfunction group 
has a higher concentration of Glc and a lower concentration of Pyr at the fasting state 
compared with the control group. The higher plasma Glc in the beta-cell dysfunction 
group results from inadequate glucose sensing to stimulate insulin secretion. Due to this 

Fig. 8  Median time profiles of Pyr for the raw full-dynamic data (Left panel) and T0-corrected data (Right 
panel) with insulin-resistant versus control groups. The random perturbation level for generating individuals 
is α = 0.2
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inefficient secretion, glycolysis becomes less efficient, and less Pyr is produced, leading 
to a lower level of plasma Pyr in the beta-cell dysfunction group.

T0‑corrected analysis

We choose the 4-component CP model for the T0-corrected data. This model captures 
the subject group separation, and the best separation is achieved by a2 (see Fig. 10). In 
the metabolites mode ( b2 ), Ins has the largest coefficient followed by Glc, while other 
metabolites almost have no contribution. This indicates that the dynamic changes of Ins 

Fig. 9  PCA scatter plot with the best group separation for the data set with beta-cell dysfunction and control 
groups. The individual variation is introduced by setting the random perturbation level to α = 0.2

Fig. 10  Factors of the 4-component CP model of T0-corrected data with beta-cell dysfunction and control 
groups. The individual variation is given by setting the random perturbation level to α = 0.2 . The vectors ar , 
br and cr , r = 1, . . . , 4 , are the components in the subjects, metabolites and time modes extracted by the CP 
model
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and Glc contribute to the subject group separation, and Ins is the most significant one. 
Ins is shown to be negatively associated with the beta-cell dysfunction group. It makes 
sense that Glc stays close to Ins and shares a similar dynamic pattern as Ins (see Addi-
tional file 2: Fig. S2.4) since Ins and Glc regulate each other. In the time mode, c2 cap-
tures the dynamic pattern shared by Ins and Glc, i.e., an increase after the meal intake 
and then a decrease due to the glycolysis. a1 (with p-value of 8× 10−5 ) and a4 (with 
p-value of 2× 10−4 ) capture weak group separation in the subjects mode. In the metabo-
lites mode, b1 captures the fact that Pyr, Lac and Ala respond to the meal challenge simi-
larly, and this makes sense since they are close to each other, as shown in the pathway in 
Fig. 2.

Full‑dynamic analysis

We choose the 4-component CP model to analyze the full-dynamic data, with factor 
plots shown in Fig. 11. a4 reveals the subject group differences best. In the metabolites 
mode ( b4 ), metabolites Glc and Pyr have the largest coefficients in terms of absolute 
values. This component also reveals the positive (negative) relation of metabolite Glc 
(Pyr) with the beta-cell dysfunction group (i.e., the beta-cell dysfunction group has nega-
tive coefficients in the subjects mode while metabolite Glc (Pyr) has a positive (nega-
tive) coefficient in the metabolites mode). In the time mode, we observe a non-constant 
dynamic profile ( c4 ) with a large coefficient at t = 0 comparable to the coefficients of 

Fig. 11  Factors of the 4-component CP model for full-dynamic data with beta-cell dysfunction and control 
groups. The individual variation is given by setting the random perturbation level to α = 0.2 . The vectors ar , 
br and cr , r = 1, . . . , 4 , are the components in the subjects, metabolites and time modes extracted by the CP 
model
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other time points. This indicates that the fourth component captures a mixture of infor-
mation from the fasting and T0-corrected states, and the fasting-state signal is relatively 
strong. The model also captures the pattern (the second component) in T0-corrected 
analysis (see a2 , b2 and c2 in Fig. 11), which shows that the beta-cell dysfunction group is 
negatively related with Ins.

Comparison of three analysis approaches

In this case, we observe four underlying mechanisms related to (i) Glc & Pyr, (ii) Ins & 
Glc, (iii) Lac, Ala & Pyr, and (iv) Bhb.

While both fasting-state analysis and T0-corrected analysis can separate subject 
groups, the mechanisms responsible for group separation are different, with Glc & Pyr 
playing a role at the fasting-state analysis while Ins & Glc playing the main role in the 
T0-corrected analysis. We also observe that full-dynamic analysis outperforms the other 
two approaches in terms of capturing the subject groups (see the comparison of Figs. 10 
and 11). The best separation in the full-dynamic analysis is provided by the fourth com-
ponent, which captures a mixture of the information from the fasting and T0-corrected 
states. The Glc & Pyr signal at the fasting state gets stronger through the dynamic infor-
mation. This is consistent with the more evident group difference observed at the post-
prandial state from the time profiles of Glc (see Additional file 2: Fig. S2.3).

The other mechanisms (iii) Lac, Ala & Pyr, and (iv) Bhb are captured similarly using 
both T0-corrected and full-dynamic data analysis.

The proposed analysis approach reveals metabolic aberrations

The crucial question in an unsupervised analysis is whether such an analysis can find 
groups among subjects pointing to metabolic differences or even metabolic deficiencies. 
The two studied metabolic deficiencies clearly show different patterns for the metabo-
lites Ins, Glc and Pyr in the different analyses. These different patterns can be under-
stood using the underlying metabolic network, thereby validating the power of the data 
analysis approach in terms of its ability to discriminate between different types of meta-
bolic differences. More specifically, insulin-resistant subjects are expected to have higher 
fasting Glc levels, lower fasting Pyr levels, and higher pure-dynamic Ins levels. On the 
other hand, beta-cell dysfunction subjects are expected to have higher fasting Glc levels, 
lower fasting Pyr levels, and lower pure-dynamic Ins levels ([29] and references therein). 
The primary metabolic differences between these two metabolic deficiencies are related 
to Ins levels, with insulin-resistant group having a reduced ability to respond to Ins, 
resulting in higher Glc levels, which in turn stimulate further insulin secretion by the 
pancreas; conversely, those with beta-cell dysfunction have impaired insulin production, 
resulting in lower Ins levels. Figure 5 together with Fig. 6, and Fig. 9 together with Fig. 10 
indicate that our analyses can capture such metabolic differences between these two dif-
ferent types of metabolic deficiencies. Although we considered here only two metabolic 
deficiencies, we expect this property to hold also for other types of metabolic differ-
ences, especially when - in real data - there are more than six metabolites.
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CP models reveal stable patterns

Within-group variation can be enormous in real data making data analysis more chal-
lenging. For example, large within-group variations in healthy subjects might mask the 
changes of metabolites in response to diseases when exploring biomarker candidates 
[48]. Our numerical experiments demonstrate that CP models reveal stable patterns 
even when the level of individual variation is higher. Figure  12 shows the CP factors 
extracted using T0-corrected analysis from data sets generated with insulin-resistant and 
control groups using two different levels of individual variation, i.e., α = 0.2 and α = 0.4 . 
We observe very similar factors in the metabolites and time modes even with differ-
ent levels of individual variation. In addition, we consider data sets with an unbalanced 
number of control and diseased subjects. Table S2.2 and Table S2.3 in Additional file 2 
show that CP factors are similar for data sets using balanced versus unbalanced samples, 
and using different levels of individual variations, with the smallest FMS value of 0.90.

The behaviours of CP models are also tested on data sets with random Gaussian noise 
mimicking the measurement error. The relative standard deviation (RSD) of the meas-
urements encountered in this study can range from 4% to 15% , which aligns closely with 
the range mentioned in [49]. Our experimental findings indicate that the CP models are 
robust to noise when RSD of a replicate measurement is moderate. For example, when 
the RSD is 10% or 6% for the data set with insulin-resistant versus control groups or the 
data set with beta-cell dysfunction versus control groups, respectively, the deconvoluted 
CP patterns are very similar compared to their noise-free versions with the FMS values 
(noisy versus noiseless patterns) greater than 0.92. With a further increase in RSD, the 
added noise may have an impact on the number of components in the CP models and the 
extracted patterns. More detailed results about comparisons of the patterns extracted by 
the CP models from noisy versus noiseless data can be found in Additional file 5.

Fig. 12  Comparison of the factors in the metabolites and time modes extracted from the T0-corrected data of 
two data sets with different levels of individual variation. Both data sets have 50 insulin-resistant subjects and 
50 control subjects. Individual variations are introduced by setting the random perturbation level to α = 0.2 
in one data set versus α = 0.4 in the other data set. The vectors ar , br and cr , r = 1, . . . , 4 , correspond the 
components in the subjects, metabolites and time modes extracted by the CP models
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Discussion
In this paper, we have proposed an unsupervised approach based on the CP model to 
improve the analysis of the postprandial metabolomics data. The main focus is to dem-
onstrate how the proposed method can effectively capture the differences in metabolic 
responses among different subject groups during a meal challenge test (in particular, a 
priori unknown stratifications rather than the setting where there are a priori labels as in, 
e.g., clinical interventions). Using the simulated data with known ground truth, we have 
demonstrated several benefits of the proposed approach: One benefit is the extraction 
of the underlying patterns in all modes simultaneously, which reveals subjects groups, 
related metabolites as well as corresponding temporal patterns from time-resolved 
postprandial data. In addition, we have shown that CP models can extract reliable pat-
terns under various settings, e.g., even for data with considerable within-group varia-
tion. Another benefit is an overall picture of metabolic differences at the fasting versus 
T0-corrected state, which can be obtained by using PCA for the fasting-state data and the 
CP model for the T0-corrected data analysis. Understanding such metabolic differences 
helps to explore the added value in the postprandial state due to metabolites’ dynamic 
responses. This, in turn, provides insightful guidance on why the full-dynamic analysis 
may capture a stronger or weaker group difference compared to the separate analyses 
of the fasting-state data and T0-corrected data in longitudinal analysis. The simulation 
studies indicate that such metabolic differences depend on the nature of the between-
group variation, i.e., the data itself, which may be related to metabolic deficiency or aber-
ration due to genetic variations in different groups of subjects. Therefore, to gain a more 
comprehensive understanding of the underlying metabolic mechanisms, particularly the 
interplay between the fasting and T0-corrected signals, we recommend using these three 
analyses together. Also, note that while our experiments rely on data sets consisting of 
a control and a diseased group, the proposed analysis approach holds the promise to 
reveal subject group differences due to different diseases, e.g., insulin-resistant versus 
beta-cell dysfunction versus control group, as well as subgroups of diseases, e.g., insulin-
resistant versus less insulin-resistant versus control group.

We expect the proposed approach to be useful also for other applications of time-
resolved data analysis, for example, other types of challenge test data such as exercise 
challenge tests [50]. A common feature of such data is that they are time-resolved and 
hold both the baseline and pure-dynamic information. The essential idea is to analyze 
the baseline data together with the baseline-corrected data to understand their differ-
ences. If group structures are detected, understanding such differences will facilitate bet-
ter utilization of the time-resolved information.

A side product of our study is an approach to generate meaningful simulated post-
prandial metabolomics data. We use a comprehensive metabolic model to create such 
data. While the metabolic model was previously proposed, we tuned the model based 
on a comparison with our real data set including hundreds of subjects. Such simulated 
models may also be beneficial in terms of the optimal design of meal challenge tests.

Nevertheless, there are also several limitations in this study. Using the metabolic model, 
we have only generated data where the concentration of each metabolite reaches the high-
est peak at the same time points for all subjects. However, in reality, time points at the high-
est peak vary from one subject to another. The main difficulty in generating such data is 



Page 20 of 22Li et al. BMC Bioinformatics           (2024) 25:94 

tuning the parameters while keeping the concentrations in reasonable ranges. Since the 
mathematical metabolic model involves 1140 parameters and 202 metabolites in eight dif-
ferent organs, parameter tuning is not trivial. Other limitations come from assumptions 
of the data analysis method. The CP model assumes that temporal patterns (i.e., cr ) are 
the same across subjects as we have in the simulated data; therefore, it may not be able to 
capture the individual differences such as shifted temporal profiles. Furthermore, another 
assumption in the CP model is that the factor matrix in the metabolites modes is the same 
across all time slices. However, those factor matrices may change over time. To account for 
such individual-specific temporal profiles or time-evolving factors in the metabolites mode, 
alternative multiway methods such as the PARAFAC2 model [51] may prove useful as in 
the analysis of neuroimaging signals [52–54] and in chemometrics [55]. We plan to study 
the performance of PARAFAC2 model in terms of analyzing dynamic metabolomics data 
as well as joint analysis of dynamic metabolomics data together with other omics measure-
ments [56].
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