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Abstract 

Background: In recent years, the extensive use of drugs and antibiotics has led 
to increasing microbial resistance. Therefore, it becomes crucial to explore deep con-
nections between drugs and microbes. However, traditional biological experiments are 
very expensive and time-consuming. Therefore, it is meaningful to develop efficient 
computational models to forecast potential microbe-drug associations.

Results: In this manuscript, we proposed a novel prediction model called GARFMDA 
by combining graph attention networks and bilayer random forest to infer probable 
microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-
disease correlation indices, we constructed two different microbe-drug networks 
first. And then, based on multiple measures of similarity, we constructed a unique 
feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained 
microbe-drug networks together with feature matrices into the graph attention net-
work to extract the low-dimensional feature representations for drugs and microbes 
separately. Thereafter, these low-dimensional feature representations, along with the 
feature matrices, would be further inputted into the first layer of the Bilayer random 
forest model to obtain the contribution values of all features. And then, after remov-
ing features with low contribution values, these contribution values would be 
fed into the second layer of the Bilayer random forest to detect potential links 
between microbes and drugs.

Conclusions: Experimental results and case studies show that GARFMDA can achieve 
better prediction performance than state-of-the-art approaches, which means 
that GARFMDA may be a useful tool in the field of microbe-drug association prediction 
in the future. Besides, the source code of GARFMDA is available at https:// github. com/ 
Kuang HaiYue/ GARFM DA. git
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Background
A multitude of microbial communities, including bacteria, fungi, viruses, and other 
microbes, have been found in the human body, which are intimately linked to human 
health and are crucial to numerous physiological processes, including immune regu-
lation, vitamin production, and the maintenance of digestive function [1, 2]. However, 
some microorganisms may be associated with the development of disease under spe-
cific circumstances. For instance, an imbalance of human gut bacteria can lead to the 
risk of high blood pressure [3].

In recent years, the misuse and irrational use of antibiotics, mutation and horizon-
tal gene transfer of microbial genes, and the spread of microorganisms in the medical 
and social environments have led to microbial resistance to antibiotics, which makes 
effective antibiotic treatment ineffective and poses a serious challenge to clinical 
treatment [4]. Therefore, in order to address the problem of microbial resistance, it 
is meaningful to develop efficient computational models to detect microbial resist-
ance and find new antibiotics, because these computational models can infer latent 
microbe-drug associations and thus provide a simple and efficient way to address 
microbial resistance.

For the last few years, a number of databases of microbial-drug associations, includ-
ing MDAD [5], aBiofilm [6], and Drugvirus [7], have been adopted by researchers 
to construct an abundance of calculation models to identify possible microbe-drug 
associations. For example, in 2019, Zhu et  al. [8] created a prediction model named 
HMDAKATZ based on the KATZ measure. In 2021, Deng et al. [9] devised a method 
called Graph2MDA by constructing multimodal attribute graphs as inputs of variogram 
autoencoders to discover details about every node and the complete graph. Long et al. 
[10] introduced the metapath2vec scheme for learning low-dimensional embedded rep-
resentations of microorganisms and drugs and designed a partial dichotomous network 
projection recommendation algorithm and proposed a novel calculation method named 
HNERMDA. In 2023, Ma et al. [11] combined graph attention networks and CNN-based 
classifiers to construct a model called GACNNMDA. Huang et al. [12] designed a model 
named GNAEMDA based on graph normalized convolutional networks. Cheng et  al. 
[13] designed a model called NIRBMMDA based on the neighbourhood-based inference 
and the restricted Boltzmann machine. Li et  al. [14] combined matrix decomposition 
and a three-layer heterogeneous network to create a model called MFTLHNMDA to 
infer microbe-drug associations.

In this article, in order to improve the performance of prediction models, we designed 
a new prediction model named GARFMDA by combining graph attention network 
(GAT) and two-layer random forest (RF). In GARFMDA, a two-layer GAT was adopted 
first to learn the low-dimensional feature representations of microbes and drugs. And 
then, a two-layer random forest model was introduced to obtain the contribution values 
of all features as well as predict possible associations between microorganisms and drugs 
after eliminating those low-contribution features. Additionally, we conducted extensive 
case studies and comparison experiments to assess the prediction performance of GAR-
FMDA. And as a result, GARFMDA achieved satisfactory results in the field of possible 
microbe-drug relationship prediction and outperformed existing representative compet-
ing methods.
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Data sources

In this section, we will first download known microbe-drug associations from the 
MDAD database (https:// figsh are. com/ search? q= 10. 6084% 2Fm9. figsh are. 24798 456), 
which consists of 2470 validated microbe-drug associations, including 1373 drugs and 
173 microbes. Subsequently, we will download additional data on microbe, drug and 
disease associations from the database proposed by Wang et  al. [14], which contains 
70,315 reported drug-disease connections and 15,633 reported microbe-disease con-
nections. Following a rigorous screening procedure to eliminate disease-related correla-
tions for which there is no known association between medications or microorganisms 
in the MDAD database, we finally obtain 109 unique drug-disease connections cover-
ing 1,121 drugs and 233 diseases, and 109 unique microbe-disease connections covering 
402 microbes and 73 diseases from the database proposed by Wang et al. Furthermore, 
we have also gathered 138 known microbe-microbe interactions, encompassing 123 
microbe in MDAD, and 5586 known drug-drug relationships, from the data collection 
created by Deng et al. [9], which covers 1228 drugs in MDAD. Additional files 1, 2, 3, 4, 
5, 6, 7, 8 and Table 1 below provides information on the aforementioned facts.

Methods
As shown in Fig. 1, GARFMDA is composed of the following three main parts:

Part 1: Firstly, based on the newly-downloaded datasets on microbes, drugs and 
diseases, two different heterogeneous microbe-drug networks HN1 and HN2 will be 
constructed.

Part 2: And then, based on multiple similarity metrics of microbe and drug, a feature 
matrix will be created for microbes and drugs separately, which will be then fed into the 
GAT along with HN1 and HN2 to learn the low-dimensional feature representations for 
microbes and drugs respectively.

Part 3: Finally, these two newly-obtained low-dimensional feature representations, 
along with two feature matrices, will be inputted into a two-layer random forest model 
to compute the probability scores of drug-microbe relationships.

Construction of two heterogeneous microbe‑drug networks

For any given database D, let nr and nm stand for the numbers of drugs and microorgan-
isms newly downloaded from D respectively, then we can construct a adjacency matrix 
D1 ∈ Rnr∗nm between microbes and drugs as follows: for any given microbe mj and drug 
ri , if there is a known relationship between them in D, there is D1 i, j = 1 , otherwise 
there is D1

(

i, j
)

= 0.

Table 1 Specifics of the newly-downloaded dataset

Type Associations Microbes Drugs Disease

Microbe-disease associations 402 73 – 109

Microbe-drug associations 2470 173 1373 –

Drug-disease associations 1121 – 233 109

Drug-drug interactions 5586 – 1228 –

Microbe-microbe interactions 138 123 – –

https://figshare.com/search?q=10.6084%2Fm9.figshare.24798456
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Similarly, based on the newly-downloaded datasets of known connections between 
microbes and drugs, microbes and diseases, and drugs and diseases, we may create 
another microbe-drug adjacency matrix D2 ∈ Rnr∗nm as follows: for a given microbe 
mj , drug ri and disease dk , if there exist a known relationship between mj and dk , as 
well as a known association between ri and dk , then there is D2

(

i, j
)

= 1 , otherwise 
there is D2

(

i, j
)

= 0.
Hence, based on above two adjacency matrices D1 and D2 , it is simple to build two 

heterogeneous microbe-drug networks HN1 and HN2 according to the following way:

Fig.1 Flowchart of GARFMDA
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Firstly, in Dv(v = 1, 2) , let Dv(ri) and Dv
(

mj

)

 denote the i-th row and j-th column 
of Dv separately, then for any two given drugs ri and rj , we will calculate the Gaussian 
Interaction Profile (GIP) kernel similarity between them as follows:

where ‖·‖ denotes the Frobenius norm.
Obviously, based on above Eq.  (1), we can obtain a GIP kernel similarity matrix 

Av
rg ∈ Rnr∗nr for drugs.
In a similar way, for any two given microbes mi and mj , we can also calculate the 

GIP kernel similarity between them as follows:

Obviously, based on above Eq.  (3), we can obtain a GIP kernel similarity matrix 
Av
mg ∈ Rnm∗nm for microbes as well.
Next, based on the assumption that when two nodes have highly dissimilar interac-

tion characteristics, they are less comparable to each other [15], for any two given 
drugs ri and rj , we will calculate the Hamming Interaction Profile (HIP) similarity 
between them as follows:

Here, | Dv(ri) | represents the number of elements in Dv(ri) , and |Dv(ri)! = Dv
(

rj
)

| 
indicates the number of distinct elements between Dv(ri) and Dv

(

rj
)

.
Similarly, for any two given microbe mi and mj , the HIP similarity between them 

can be determined as follows:

Here, |Dv(mi)! = Dv
(

mj

)

| indicates the number of distinct elements between Dv(mi) 
and Dv

(

mj

)

 , and |Dv(m)| denotes the number of elements in Dv(m).
Hence, based on above Eqs. (5) and (6), we can obtain two HIP similarity matrices 

Av
rh ∈ Rnr∗nr and Av

mh ∈ Rnm∗nm for drugs and microbes separately.
Finally, for any two given drugs ri and rj , it is evident that we can construct an inte-

grated similarity between them by integrating Av
rg and Av

rh as follows:

(1)Av
rg

(

ri, rj
)

= exp
(

−γ 1�Dv(ri)− Dv
(

rj
)

�2
)

(2)γ 1 = 1/

(

1

nr

nr
∑

i=1

�Dv(ri)�
2

)

(3)Av
mg

(

mi,mj

)

= exp
(

−γ 2�Dv(mi)− Dv
(

mj

)

�2
)

(4)γ 2 = 1/

(

1

nm

nm
∑

i=1

�Dv(mi)�
2

)

(5)Av
rh

(

ri, rj
)

= 1−
|Dv(ri)! = Dv

(

rj
)

|

|Dv(ri)|

(6)Av
mh

(

mi,mj

)

= 1−
|Dv(mi)! = Dv

(

mj

)

|

|Dv(m)|



Page 6 of 16Kuang et al. BMC Bioinformatics           (2024) 25:78 

Similarly, for any two given microbes mi and mj , we can construct an integrated similarity 
between them by integrating Av

mg and Av
mh as follows:

Hence, based on above Eqs.  (7) and (8), we can finally obtain two new matrices 
H1 ∈ R(nr+nm)∗(nr+nm) and H2 ∈ R(nr+nm)∗(nr+nm) as follows:

Obviously, based on the above two matrices H1 and H2, two heterogeneous microbe-drug 
networks HN1 and HN2 can be constructed respectively.

Extracting low‑dimensional feature representations for microbes and drugs by GAT 

Constructing unique feature matrix for microbes and drugs

In this section, we will first adopt the SIMCOMP2 [16] to determine the structural simi-
larity between any two given drugs ri and rj , and obtain a new drug structural similarity 
matrix Arc . Next, we will utilize the method presented by Kamneva [17] to determine the 
functional similarity between any two given microorganisms mi and mj , and create a new 
microbe functional similarity matrix Amf  . And then, we will further perform RWR [39] on 
Av
r and Av

m separately in the following way:

In above equations, Q is the matrix of transition probabilities, qli is the likelihood of node 
i transferring to the node l, and βi ∈ R1∗n is the starting odds vector for the node i, and the 
j-th element in βi is defined as follows:

Obviously, based on above Eqs. (11) and (12), we can obtain two different matrices Av
rr 

and Av
mm based on Av

r and Av
m respectively.

Thereafter, based on above newly obtained matrices, we can construct a unique feature 
matrix to preserve more original features of microbes and drugs as follows:

(7)

Av
r

(

ri, rj
)

=

{

1 : if there is a known association between ri and rj
Av
rg(ri ,rj)+Av

rh(ri ,rj)
2

: therwise

(8)

Av
m

(

mi,mj

)

=

{

1 : if there is a known association between mi and mj
Av
mg(mi ,mj)+Av

mh(mi ,mj)
2

: otherwise

(9)H1 =

[

A1
r D1

(

D1
)T

A1
m

]

(10)H2 =

[

A2
r D2

(

D2
)T

A2
m

]

(11)ql+1
i = �Qqli + (1− �)βi

(12)βi,j =

{

1 : if i = j
0 : otherwise

(13)Sv =

[

Fv
r

Fv
m

]
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where,

From above Eqs. (13), (14) and (15), it is clear that there is Sv ∈ R(nr+nm)∗k1 (v = 1, 2) , 
where, k1 represents the number of columns in Sv.

The structure of the two‑layer GAT 

Encoder: To determine the degree of similarity between any given node i and one of 
its neighboring node j in Hv(v = 1, 2) , we will compute the similarity coefficient eij 
between them as follows:

where Sv(i) denotes the i-th row of Sv , α is an operation for feature mapping, Wv is a 
trainable weight matrix, ϕv

i  is the collection of nodes that are adjacent to i in Hv , and µ is 
a hyper-parameter varying between 0 and 1.

Based on above Eq. (16), for any two given nodes i and j, then the attention score ρij 
between them can be calculated as follows:

Obviously, based on above attention score ρij , a new feature of node i, representing 
the weighted sum of the features of its neighboring nodes, can be obtained as follows:

Hence, we can construct a new feature representation matrix Mv as follows:

Here, k2 represents the nunber of columns in Mv.
Decoder: Te decoder adopts the same structure as the encoder, and is defined as 

follows::

(14)Fv
r =

[

Arc;D
v;Av

rr;D
v
]

(15)Fv
m =

[

(

Av
)T

; Smf ;
(

Av
)T

; Svmm

]

(16)eij = LeakyRelu
(

α
[

WvSv(i);WvSv
(

j
)])

, j ∈ ϕv
i

(17)LeakyRelu(x) =

{

x x > 0

µx otherwise

(18)ρij =
exp

(

eij
)

∑

k∈ϕvi
exp(eik)

(19)Mv(i) = Relu





�

j∈ϕvi

ρijW
vSv

�

j
�





(20)Relu(x) =

{

x x > 0

0 otherwise

(21)Mv =

[

Rv
r

Rv
m

]

∈ R(nr+nm)∗k2
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Optimization: Taking into account the fact that the reconstructed matrix differs 
from the raw matrix, we adopt the MSE loss factor to determine the average of the 
sum of differences squared between M′v and Hv . The MSE loss function is defined as 
follows:

where M′v(i) and Hv(i) denote the i-th row of M′v and Hv respectively.
Finally, Finally, the Adam optimizer [40] will be further used to optimize the loss 

function in the model training process.
Furthermore, we present the workflow of the two-layer GAT in the following Fig. 2 

for better understanding the implementation of the above two-layer GAT.

The structure of the two‑layer random forest

Traditional machine learning, when faced with complex nonlinear patterns, may suf-
fer from drawbacks such as overfitting problems and the inability to provide uncer-
tainty estimates of the predicted outcomes [18]. In order to calculate the potential 
scores of unknown drug-microbe relationships, we will create a two-layer random 
forest model in this section and treat the drug-microbe problem as a binary classifica-
tion problem, which can improve the model effect and reduces the risk of overfitting 
through the selection of features in the first layer of the random forest. For the input 
of the first layer of the two-layer random forest, we will respectively construct two 
feature matrices Bv

r and Bv
m according to the following equations:

And then, for any given drug ri and microbe mj , let Bv
r (i) and Bv

m

(

j
)

 represent the 
i-th row of Bv

r and the j-th column of Bv
m respectively, and 

(22)M′v = sigmoid
(

Mv ·
(

Mv
)T

)

(23)sigmoid(x) =
1

1+ e−x

(24)Loss =
1

nr + nm

nr+nm
∑

i=1

M′v(i)−Hv(i)2

(25)Bv
r =

[

Rv
r ; F

v
r

]

(26)Bv
m =

[

Rv
m,; F

v
m

]

Fig. 2 workflow of the two-layer GAT in GARFMDA
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Fv
(

i, j
)

=

[

Bv
r (i)

Bv
m

(

j
)

]

∈ R(nr×nm)∗2∗k3 , where k3 represents the number of columns in Fv , 

then we will feed Fv into the first layer of the bilayer random forest.
Moreover, in the first layer of the bilayer random forest, we will assume that the num-

ber of decision trees is p and the maximum depth is s. And after training, we will com-
pare the magnitude of the contribution made by each feature during the growth of each 
decision tree in the bilayer random forest by calculating the sum of the Gini index [19] 
changes of each feature over all the decision trees in the forest G(tr) to represent the 
contribution made by the feature C(tr) , which is defined as follows:

where tr denotes the feature index, h represents the decision tree index, and m is the 
total number of features. Gini

(

Fv
h (tr)

)

 denotes the Gini index on the decision tree h con-
ditional on the feature tr.

After that, we will eliminate the features with contribution value less than L, and 
obtain a new feature matrix F ′v , which will be fed into the second layer of the bilayer 
random forest for training and prediction. Hence, we can obtain a score matrix finally.

Obviously, based on the matrices H1 and H2 , we can obtain two different score matri-
ces Score1 and Score2 respectively. Therefore, we can construct an integrated score 
matrix S ∈ Rnr∗nm as follows:

Results
In this section, we will first examine the impact of parameters on the prediction perfor-
mance of GARFMDA. And then, we will compare GARFMDA with five cutting-edge 
competitive prediction techniques. Finally, in order to illustrate the efficiency of GAR-
FMDA, we will introduce some well-known drugs and microbes for case studies.

Sensitivity analysis of hyperparameters

From above descriptions, it is clear that there are some important parameters in GAR-
FMDA, including the GAT learning rate, the GAT dropout rate, the maximum depth of 
the decision tree in the bilayer random forest, and the contribution value of these cho-
sen features. In this section, we will execute 10 times of fivefold Cross Validation (CV) 
on MDAD to assess impact of these parameters on the effectiveness of GARFMDA for 
determining the best values of these parameters.

For simplicity, in experiments, we will use the abbreviations lr, dp, s and l to stand for 
the learning rate and the dropout rate of GAT, the maximum depth of the first and sec-
ond layers of the decision tree in the bilayer random forest, and the contribution value 
of these chosen features, respectively. Firstly, we will evaluate the impact of lr on the 
prediction performance of GARFMDA while it varies in the range of {0.0001, 0.001, 0.01, 

(27)G(tr) =
∑

Gini
(

Fv(tr)
)

− Gini
(

Fv
h (tr)

)

(28)C(tr) =
(

G(tr)/
∑

G(k)
)

∗ 100%, where k ∈ (1,m)

(29)S
(

i, j
)

=
Score1

(

i, j
)

+ Score2
(

i, j
)

2
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0.05, 0.1}. From observing the following Fig.  3a, it is clear that when lr is set to 0,01, 
GARFMDA can achieve the highest value of AUC. Next, we will limit the value of dp to 
a range of {0.2, 0.4, 0.5, 0.7}, and as shown in Fig. 3b, it is obvious that when dp is set to 
0.4, GARFMDA can achieve the highest value of AUC. Additionally, we will restrict the 
value of s to the range of {1, 3, 5, 7, 9} and as illustrated in Fig. 3c, it is evident that when 
s is set to 7, GARFMDA can achieve the highest value of AUC. Finally, we will limit the 
value of l to a range of {0.0001, 0.0005, 0.001, 0.0012, 0.0015}, and as shown in Fig. 3d, 
the performance of GARFMDA will reach to the best when l is set to 0.0012.

As for the parameter pf of the number of random forest trees in the bilayer random 
forest, we found through comparative experiments that the effect of the value of pf on 
the prediction performance of GARFMDA is not significant, but the computational effi-
ciency of GARFMDA will be reduced when pf is set to a large number, therefore, we will 
set the size of decision trees in both layers of the bilayer random forest to 250 during 
experiments. Similarly, for the parameter of the number of training rounds of GAT, we 
found through experiments that its numerical size has little effect on the prediction per-
formance of GARFMDA, so we will set it to 10. Furthermore, to make our model better, 
we will use these parameters that work best to evaluate GARFMDA, i.e., we will set lr to 
0.01, dp to 0.4, s to 7 and l to 0.0012 in subsequent comparison experiments.

Comparison with state‑of‑the‑art methods

To validate the predictive performance of GARFMDA, we will compare it with the fol-
lowing five representative approaches separately:

(a) (b)

(c) (d)

0.972
0.974
0.976
0.978
0.98

A
U

C
 v

al
ue

lr

0.9765
0.977

0.9775
0.978

0.9785
0.979

0.2 0.4 0.5 0.7

A
U

C
 v

al
u

dp

0.93
0.94
0.95
0.96
0.97
0.98
0.99

1 3 5 7 9

A
U

C
 v

al
ue

s

0.92

0.94

0.96

0.98

1

0.00010.0005 0.001 0.00120.0015

A
U

C
 v

al
ue

l

Fig. 3 Effects of parameters on performance of GARFMDA. a and b show the AUC values achieved by 
GARFMDA with different learning and abandonment rates of GAT, respectively. c and d illustrate the AUC 
values achieved by GARFMDA under different maximum depths of decision trees and contribution values of 
selected features in the bilayer random forest, separately
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(1) LAGCN [20]: which is a computational model for inferring unknown drug-disease 
associations based on graph convolutional networks and attention mechanisms

(2) GSAMDA [21]: which is a microbe-drug association prediction model based on 
graph attention networks and sparse autoencoders

(3) SCSMDA [22]: which aims to predict microbe-drug associations based on the 
structure-enhanced contrast learning and self-paced negative sampling strategies.

(4) MDASAE [23]: which is a calculation method based on fusing multi-attention 
mechanisms with stacked autoencoders to detect possible microbial drug associa-
tions.

(5) LRLSHMDA [24]: which is a computational scheme by exploiting Laplace Regular-
ised Least Squares to predict microbe-disease associations.

During experiments, we will adopt the AUC values, the Accuracy values and the 
F1-score values as performance indicators and compare all of these rival approaches 
under the framework of tenfold cross validation. Experimental results are shown in the 
following Table 2 and Fig. 4 respectively. From observing the Table 2, it is easy to see 
that GARFMDA can reach to the highest AUC value of 0.9794 ± 0.0012, while MDASAE 
comes in second with an AUC value of 0.9701 ± 0.0023, and LAGCN has the lowest 

Table 2 AUC values, Accuracy values and F1-score values obtained by GARFMDA and five 
competing methods under the framework of tenfold CV on MDAD

Methods AUC(tenfold) Accuracy F1‑score

LAGCN 0.8544 ± 0.0042 0.9413 0.1838

GSAMDA 0.9493 ± 0.0003 0.9896 0.6433

MDASAE 0.9701 ± 0.0023 0.9876 0.6959

SCSMDA 0.9546 ± 0.0037 0.9884 0.7016

LRLSHMDA 0.9259 ± 0.0031 0.9365 0.2594

GARFMDA(our model) 0.9794 ± 0.0012 0.9955 0.7106

Fig. 4 ROC curves achieved by competing techniques on MDAD
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AUC value of 0.8544 ± 0.0042. As For the Accuracy values and F1-score values, GAR-
FMDA can as well obtain the highest values of 0.9955 and 0.7106 respectively. Therefore, 
It is obvious that GARFMDA can achieve the best prediction performance among all 
these five competing models.

Case study

In this section, we will undertake case studies of two well-known medications and one 
well-known microbe to better illustrate the efficacy of GARFMDA. In experiments, we 
will choose the top 20 candidate microbes or drugs predicted by GARFMDA and search 
in PubMed (https:// pubmed. ncbi. nlm. nih. gov) for these candidate microbes or drugs to 
see if any publications had reported about them. Among them, the first drug we have 
chosen is ciprofloxacin, which is a synthetic second-generation quinolone antimicrobial 
drug with broad-spectrum antimicrobial activity and bactericidal efficacy, and can be 
used to treat illnesses caused by mycobacterium influenzae, escherichia coli, and pneu-
mococcus specific polysaccharide [25]. In both vitro and vivo studies of ciprofloxacin, a 
very low incidence of resistant microorganisms has been reported [26].

In addition, Alhajj et al. [27] developed a dry powder of ciprofloxacin for inhalation for 
treating cystic fibrosis lung infections. Golapudi et al. demonstrated that ciprofloxacin 
inhibits TNF-(α)-induced HIV secretion in U1 cells [28]. Table 3 illustrates that there are 
19 out of those top 20 predicted potential bacteria having been confirmed by published 
journals to be related to ciprofloxacin.

The second drug we have selected is moxifloxacin, a quinolone broad-spectrum anti-
microbial that treats adults (≥ 18 years of age) suffering from respiratory tract infections, 
both upper and lower [29], as well as acute sinusitis [30], acute exacerbations of chronic 
bronchitis [31], community-acquired pneumonia [32], and skin and soft tissue infections 
[33]. Januel et al. [34] studied the use of moxifloxacin to treat the genetic disorder spinal 
muscular atrophy (SMA). However, Inada et al. [35] found that moxifloxacin can induce 
aortic aneurysms and clips by increasing bone bridging proteins in mice.

Table 4 shows that there are 15 out of the top 20 predicted candidate microorgan-
isms have been confirmed by published journals to be associated with moxifloxacin, 

Table 3 The top 20 predicted candidate ciprofloxacin-associated bacteria. In this table, the first 
column lists the top 10 predicted microbes, while the third column lists the top 11 to 20 predicted 
microbes

Microbe Evidence Microbe Evidence

Streptococcus sanguis PMID:8192181 Fusarium solani PMID:19751392

Stenotrophomonas maltophilia PMID:30448331 Bacteroides fragilis PMID:2939556

Enterococcus faecalis PMID:23789048 Proteus mirabilis PMID:27303616

Firmicutes PMID:37047789 Burkholderia multivorans PMID:34524889

Salmonella Typhi PMID:31877141 Cryptococcus neoformans PMID:29858266

Streptococcus parasanguinis PMID:21193474 Pseudoalteromonas sp. PMID:31137680

Streptococcus mitis PMID:10348783 Halomonas pacifica Unconfirmed

Enterobacter aerogenes PMID:22106222 Pseudomonas japonica PMID:30550842

Baker’s yeast PMID:29346617 Hepatitis B virus F PMID:15365265

Candida parapsilosis PMID:32576753 Staphylococcus chromogenes PMID:17475456

https://pubmed.ncbi.nlm.nih.gov
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demonstrating the value of GARFMDA for clinical drug application and the identifi-
cation of possible drug-related bacteria.

The microorganism that we have selected is E. coli, a conditionally pathogenic bacte-
rium that under certain conditions can cause gastrointestinal infections or a variety of 
localised tissue and organ infections such as urogenital infections in humans and a wide 
range of animals [36]. Pathogenic E. coli can cause more than 16.01 billion cases of dys-
entery [37] and 1 million deaths annually, whereas non-pathogenic E. coli are part of the 
normal gut flora of healthy mammals and birds. For example, it is anticipated that the E. 
coli strain nissle will be utilized to cure human illnesses in addition to being utilized as a 
probiotic and therapeutic agent [38]. As shown in Table 5, 15 out of the top 20 predicted 
drugs have been confirmed by published journals to be associated with the E. coli.

Table 4 The top 20 predicted candidate moxifloxacin-associated bacteria. In this table, the first 
column lists the top10 predicted microbes, while the third column lists the top 11 to 20 predicted 
microbes

Microbe Evidence Microbe Evidence

Human respiratory syncytial virus B PMID:30723301 Arthrobacter sp. PMID:33675087

Aeromonas hydrophila PMID:26588876 Kocuria rhizophila Unconfirmed

Clostridium leptum Unconfirmed Porphyromonas gingivalis PMID:30048853

Staphylococcus saprophyticus PMID:24982521 Hepatitis C virus PMID:19420309

Enterobacteria phage T4 Unconfirmed Klebsiella pneumoniae PMID:16936293

Streptococcus pyogenes PMID:12019138 Hepatitis B virus F PMID:34593159

Candida tropicalis PMID:20455400 Human herpesvirus 5 PMID:32021322

Klebsiella variicola PMID:30060219 Candida albicans PMID:28409362

Actinobacillus actinomycetemcomitans PMID:26538521 Listeria ivanovii PMID:36981047

Actinomyces oris Unconfirmed Marinobacter hydrocarbonoclasticus Unconfirmed

Table 5 The top 20 forecasted drugs linked to E. coli. In this table, the first column lists the top 10 
predicted drugs, while the third column lists the top 11 to 20 predicted drugs

Drug Evidence Drug Evidence

(10R,11R)-Hydnocarpin PMID:26273725 14-alpha-lipoyl andrographolide PMID:19,652,378

3,5-Diiodotyrosine PMID:36323433 2-(4,5-dibromo-1-methyl-1H-pyrrol-
2-yl)-5-(2,4-dichlorophenyl)-1,3,4-
oxadiazole

Unconfirmed

Cefditoren PMID:17651945 3-[(prop-2-ene-1-sulfinyl)sulfanyl]
prop-1-ene

Unconfirmed

Cefalonium PMID:36065056 3,5-Dimethyl benzyl dodecyl beta-
maltoside

Unconfirmed

para-Benzoquinone PMID:27134027 Magainin-I PMID:30,277,857

Hinokitiol PMID:17927050 (1E)-1-{[(1E)-prop-1-ene-1-sulfinyl]
sulfanyl}prop-1-ene

Unconfirmed

Hexameric peptide PMID:20097816 Dicyclohexylamine PMID:6,508,744

para-ethylaniline PMID:28383815 (10R,11R)-Hydnocarpin D PMID:26,273,725

3-{2-[(1S,2R,4aR,8aR)-1,2,4a,5-
tetramethyl-1,2,3,4,4a,7,8,8a-
octahydronaphthalen-1-yl]
ethyl}-5-methylidene-N-phenyl-
2,5-dihydrofuran-2-amine

Unconfirmed 3,4-Dichloro-cinnamaldehyde PMID:27,939,874

hLF1-11 PMID:24631659 Paromomycin PMID:60,235
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Conclusion and discussion
In this paper, we developed a new prediction model called GARFMDA by combin-
ing a two-layer GAT with a two-layer random forest to detect possible drug-microbe 
correlations. Results of both comparison experiments and case studies showed that 
GARFMDA exceeded these state-of-the-art competitive prediction models. Naturally, 
GARDFMDA can also be adopted to solve other problems involving the association 
prediction of biological entities, such as the prediction of associations between dis-
eases and circRNA and microbes. Of course, GARFMDA can yet be improved. For 
instance, we can add more biological data, like microbial sequencing information, to 
the feature selection section [9]. Additionally, because the dataset is sparse, the model 
frequently results in the overfitting phenomena. To address this issue, we can also 
think about data augmentation. Moreover, the public database is not updated in real 
time, which may affect the way that the model is used in practice, therefore, we might 
consider to reconstruct an extensive database in the future.
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