
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Alessandri et al. BMC Bioinformatics (2024) 25:110
https://doi.org/10.1186/s12859-024-05695-9

BMC Bioinformatics

CREDO: a friendly Customizable,
REproducible, DOcker file generator
for bioinformatics applications
Simone Alessandri1, Maria L. Ratto2, Sergio Rabellino3, Gabriele Piacenti2, Sandro Gepiro Contaldo3,
Simone Pernice3, Marco Beccuti3, Raffaele A. Calogero2* and Luca Alessandri2,4 

Abstract 

Background:  The analysis of large and complex biological datasets in bioinformat-
ics poses a significant challenge to achieving reproducible research outcomes due
to inconsistencies and the lack of standardization in the analysis process. These issues
can lead to discrepancies in results, undermining the credibility and impact of bio-
informatics research and creating mistrust in the scientific process. To address these
challenges, open science practices such as sharing data, code, and methods have been
encouraged.

Results:  CREDO, a Customizable, REproducible, DOcker file generator for bioinfor-
matics applications, has been developed as a tool to moderate reproducibility issues
by building and distributing docker containers with embedded bioinformatics tools.
CREDO simplifies the process of generating Docker images, facilitating reproducibility
and efficient research in bioinformatics. The crucial step in generating a Docker image
is creating the Dockerfile, which requires incorporating heterogeneous packages
and environments such as Bioconductor and Conda. CREDO stores all required pack-
age information and dependencies in a Github-compatible format to enhance Docker
image reproducibility, allowing easy image creation from scratch. The user-friendly
GUI and CREDO’s ability to generate modular Docker images make it an ideal tool
for life scientists to efficiently create Docker images. Overall, CREDO is a valuable tool
for addressing reproducibility issues in bioinformatics research and promoting open
science practices.

Keywords:  Reproducibility, Bioinformatics, Docker, Open science, Software sharing

Background
Reproducibility is a critical problem in the Bioinformatics field [1]. Bioinformatics
research often involves analyzing large and complex biological datasets using several
computational tools, algorithms, and models [2]. The results of these analyses are used to
draw important conclusions about the underlying biology. However, the issue of repro-
ducibility arises when other researchers try to replicate an analysis. One major factor

*Correspondence:
raffaele.calogero@unito.it

1 Polytechnic of Turin, Turin, Italy
2 Department of Molecular
Biotechnology and Health
Sciences, University of Torino,
Turin, Italy
3 Department of Computer
Science, University of Torino,
Turin, Italy
4 Department of Pathology,
Boston Children’s Hospital,
Harvard Medical School, Boston,
MA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05695-9&domain=pdf

Page 2 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

is the sheer complexity and variability of biological data [3]. In addition, the choice of
methods and algorithms can also have a significant impact on the results, leading to dif-
ferent outcomes for the same data [4]. Another factor is the lack of standardization and
documentation in the field [5]. In bioinformatics, many specialized tools and pipelines
are developed by individual researchers or small teams, however, these tools may not
be well-documented or easily accessible to others, which can make it difficult for other
researchers to understand, reproduce and verify the analysis, as well as identify poten-
tial errors or biases. Last but not least factor affecting reproducibility in bioinformatics
research is the complexity of installing and managing libraries and packages. This pro-
cess can be challenging due to the use of multiple tools and packages, each with its own
set of dependencies. Sometimes, different packages may even share the same depend-
ence but require different versions, making it difficult to ensure compatibility. Conse-
quently, it is crucial to carefully document and share the specific versions of libraries and
dependencies used in the analysis to improve the reproducibility of the study. To address
these challenges, the scientific community has been focusing on improving reproducibil-
ity in bioinformatics research [1, 6, 7].

One effective strategy for improving reproducibility is to adopt open science practices,
such as sharing data, code, and methods with others, as well as publishing detailed and
transparent descriptions of the analysis. Among various tools and platforms available
for code sharing and collaboration, GitHub is widely used by researchers in the field of
bioinformatics.

Github is a platform for hosting and sharing code, which makes it easier for other
researchers to access and use the same tools and workflows. GitHub provides several
features that are particularly useful for bioinformatics, such as version control, which
ensures that the code remains consistent and can be tracked over time. In this way,
GitHub facilitates collaboration and improves the reproducibility of bioinformatics
research.

Many bioinformatics tools and workflows are already shared on GitHub, including
the Bioconductor project [8], a repository of R packages for bioinformatics [9], and the
Snakemake workflow management system, which provides a robust platform for shar-
ing workflows and improving reproducibility [10]. By utilizing GitHub to host and share
these tools, researchers can collaborate more easily and ensure that their work is repro-
ducible and accessible to others in the field. Therefore, GitHub has become an essential
platform for advancing open science and reproducibility in bioinformatics research. It’s
important to note that while GitHub is a popular choice for hosting and sharing files,
users have the freedom to upload their files to any file-sharing service of their choice.

In addition to code sharing and collaboration, another crucial aspect of improving
reproducibility in bioinformatics research is the use of containerization technologies like
Docker. Docker provides a way to package software and its dependencies into standard-
ized, portable containers. These containers encapsulate the entire computational envi-
ronment required to run a specific analysis, including the operating system, libraries,
and tools.

The use of this technology offers several benefits for reproducibility:

Page 3 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

(1)	 It ensures that the analysis can be executed in the same environment regardless of
the underlying system or infrastructure. This eliminates the common issue of soft-
ware compatibility and dependency conflicts that often hinder the reproducibility
of bioinformatics analyses. By sharing the Docker container alongside the code and
data, researchers can provide a consistent and self-contained environment, ena-
bling others to reproduce the analysis with ease.

(2)	 Docker enables the preservation of the software stack used in the analysis, includ-
ing specific versions of libraries and dependencies. This information is crucial for
accurately reproducing analytical results, as different versions of software can pro-
duce different outcomes. By specifying the exact versions of software in the Docker
image, researchers can ensure that others can replicate the analysis precisely, even if
the original software versions become outdated or unavailable.

Moreover, Docker containers facilitate the distribution and deployment of complex
bioinformatics workflows and researchers with it, can create portable and executable
workflow descriptions, known as Dockerfiles, which define the steps required to build
a container with the necessary software and dependencies. These Dockerfiles can be
shared on platforms like GitHub, allowing others to easily reproduce the entire analysis
workflow and obtain consistent results.

The adoption of Docker in bioinformatics has gained momentum, with numerous
bioinformatics tools and pipelines now available as Docker images on platforms like
Docker Hub and BioContainers. By leveraging Docker alongside platforms like GitHub,
researchers can enhance the reproducibility of their bioinformatics analyses by provid-
ing a complete and reproducible computational environment for others to utilize.

Reproducibility is a crucial aspect of scientific research, serving two main purposes:
ensuring the accuracy and truthfulness of the findings and facilitating the reuse and
adaptation of existing analyses.

The ability to reproduce analyses allows for the verification and validation of research
results. Reproducibility enables other researchers to independently assess the methods,
data, and conclusions of a study, thereby enhancing the transparency and reliability of
scientific findings. By providing detailed documentation and clear instructions, includ-
ing the specific software versions, data preprocessing steps, and parameter settings,
researchers can enable others to replicate their experiments and validate the reported
outcomes. This process of verification is essential for building a robust scientific knowl-
edge base and establishing a solid foundation for further research and discovery.

Moreover, reproducibility allows the reuse and adaptation of existing analyses, which
can save time, effort, and resources for researchers. Often, a new study builds upon pre-
vious work or seeks to apply similar methods to a different dataset or research question.
In such cases, having access to reproducible analyses provides a starting point and refer-
ence framework that can be readily adapted and customized. Researchers can leverage
the knowledge and expertise embedded within reproducible analyses to accelerate their
investigations, explore new hypotheses, and make further scientific advancements.

However, achieving reproducibility in bioinformatics analyses is not without chal-
lenges. The complexity of the bioinformatics landscape, with diverse architectures,
operating systems, and software environments, poses significant hurdles since different

Page 4 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

operating systems or hardware configurations may result in variations in the analysis
outcomes. Moreover, the dependency on specific software packages and their versions
further complicates reproducibility, as different versions may introduce changes or com-
patibility issues that can affect the results.

Docker is an open-source containerization platform that allows developers to package
applications and their dependencies into portable, lightweight containers. These con-
tainers can be easily deployed across different computing environments, including local
machines, cloud servers, and clusters. Docker provides a standardized way to create,
share, and run software applications in isolated environments, without worrying about
conflicts or dependencies on the underlying system. Docker containers are based on a
layered file system, which makes them efficient, flexible, and easy to manage. Docker has
become a popular tool in many fields of computer science, including software develop-
ment, data science, and bioinformatics [11].

Ensuring the reproducibility of Docker images remains a significant challenge in
the software development community. While Dockerfiles provide a series of instruc-
tions for constructing Docker containers, they do not always guarantee the container’s
reproducibility.

Docker plays a vital role in addressing the reproducibility challenge, providing a stand-
ardized and isolated environment where researchers can pack their entire pipeline,
including the software tools, libraries, and dependencies, into portable containers. These
containers encapsulate the entire computational environment, eliminating conflicts with
the underlying system and enabling consistent and reproducible analyses across differ-
ent platforms. By using Docker, researchers can ensure that their analyses are not only
reproducible on their machines but also on other systems, including local computers,
cloud servers, and high-performance computing clusters.

However, it is important to note that Docker’s reproducibility is reliant on the avail-
ability of Docker images, which are typically uploaded to platforms like Docker Hub.
While Docker Hub is the official repository for sharing and accessing Docker images,
it does have limitations, particularly for non-premium users who may face time restric-
tions on the availability of their images. This can pose challenges in the long-term repro-
ducibility of analyses. Additionally, the Dockerfile’s dependencies and package versions
may be insufficiently specified, leading to broken links during the container building
process or containers that differ from those created months earlier. A precise and build-
able Dockerfile is critical to ensuring container reproducibility at any time, enabling
personalized and customizable containers. Therefore, best practices for Docker image
creation and distribution should prioritize precise and well-defined Dockerfiles. This
involves incorporating heterogeneous packages and environments, such as Bioconduc-
tor [8] and Conda [9].

Here, we present CREDO, a friendly Customizable, REproducible, DOcker file gen-
erator for bioinformatics applications, which represents a tool moderating the repro-
ducibility issue encountered by building and distributing docker containers embedding
bioinformatics tools.

Page 5 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

Results
CREDO features

CREDO focuses on achieving 100% reproducibility by emphasizing offline building of
Docker images, reducing reliance on external platforms such as Docker Hub. This pro-
cess involves two distinct parts within the tool. The first part, known as "docker image
assembly", downloads all the necessary components required for the second part. The
second part can be executed offline, as it has all the required files for the complete build-
ing process. This offline capability ensures that researchers have full control over the
reproducibility of their analyses, regardless of the availability or limitations of external
resources. By providing a customizable and personalized Dockerfile generation tool,
CREDO enables researchers to include explicit versioning and dependency specifica-
tions, mitigating the risk of variations and inconsistencies in the resulting environment.

Moreover it facilitates the process of constructing and personalizing a Dockerfile,
enabling users to choose between a command line interface or a user-friendly graphi-
cal interface. Docker is undoubtedly the most effective choice for building a tool like
CREDO to achieve reproducibility, while maintaining ease of use since it is widely
adopted for virtualizing environments and is available on all major operating systems
under the Apache license, which reinforces our belief that backward compatibility will
not be compromised in future updates. Furthermore, the commands utilized in our tool
are built upon the Docker engine, and upon reviewing the Docker deprecated features
page (https://​docs.​docker.​com/​engine/​depre​cated/), none of these essential commands
have ever been modified. In the unlikely event of a backward compatibility issues, we
will take the responsibility of developing a porting tool to ensure a smooth transition of
Dockerfiles to newer versions.

The output generated by CREDO includes a comprehensive folder that contains
both the Dockerfile and all the required files that have been pre-downloaded for build-
ing the Docker image. This meticulous approach guarantees that the Docker image
can be constructed reliably and consistently, eliminating the potential issues of broken
links or missing library versions that may introduce variations in the resulting environ-
ment. By encapsulating all necessary components within the folder, CREDO ensures
that researchers can effortlessly construct the Docker image at any given time, thereby
enhancing reproducibility and minimizing discrepancies in the analysis environment.

In this context, it is worth mentioning BioContainers, which is a community-driven
project aiming to provide bioinformatics software in ready-to-use images. BioContainers
offers a curated collection of Docker and Singularity images for popular bioinformatics
tools, ensuring reproducibility and ease of use for researchers, providing pre-configured
environments with the necessary dependencies, making it easier to run bioinformatics
software consistently across different systems.

Another relevant platform in the bioinformatic field is usegalaxy.eu. UseGalaxy is an
online platform that offers a user-friendly interface and a vast collection of bioinformat-
ics tools and workflows. It leverages Docker images to provide a seamless and repro-
ducible environment for performing bioinformatics analyses. By utilizing Docker-based
tools and workflows available on usegalaxy.eu, researchers can benefit from a unified
and reproducible computational environment for their analyses.

https://docs.docker.com/engine/deprecated/

Page 6 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

However, it is essential to consider the limitations of the above mentioned infrastruc-
tures when evaluating their suitability for reproducibility and customization. While bio-
containers.pro and usegalaxy.eu offer a vast collection of pre-built images, one notable
limitation is the restricted ability to modify and customize them according to specific
research requirements. Indeed they are typically provided as downloadable images,
along with their respective Dockerfiles. However, due to the nature of their construction
and deployment, modifying them, to incorporate additional tools or tailor them to spe-
cific experimental setups, can be challenging. Moreover, the reliance on online libraries
and dependencies within these pre-built images poses additional concerns. Frequently,
the versions of libraries and dependencies are not explicitly specified in the Dockerfile,
leading to potential inconsistencies and variations during the building process. This
lack of version control can result in different docker images being generated, deviating
from the ones hosted on biocontainers.pro or usegalaxy.eu. Consequently, reproducing
an experiment exactly as intended becomes more challenging, as even slight differences
in library versions can have significant implications on the final results. In contrast,
CREDO addresses these limitations by providing a framework that allows for the crea-
tion of fully customizable and reproducible Docker images. By utilizing Docker’s flex-
ible and robust containerization technology, researchers have complete control over
the images composition, including the selection of specific tools, libraries, and versions.
Our tool emphasizes the inclusion of explicit versioning and dependency specifications
within the Dockerfile, ensuring transparency and reproducibility.

Not only does CREDO provide a reproducible infrastructure, but it also offers a con-
venient method for distributing complete computing analysis workflows. The compat-
ibility of files generated by CREDO extends beyond GitHub and can be used with any
preferred file-sharing platform. This flexibility allows researchers to select the most suit-
able file-sharing service based on their specific needs and preferences. Additionally, the
CREDO output is compatible with GitHub’s guidelines and can be directly uploaded to
the platform, as all files are split into archives smaller than 25 MB. The Dockerfile built
by CREDO is programmed to unpack these archives and reuse them, ensuring seamless
integration and ease of use for researchers.

Implementation
To ensure reproducibility and avoid issues related to broken links or missing package
versions, CREDO employs a two-step process, Fig. 1.

Step 1, Fig. 1.2, (docker image assembly): In this initial step, CREDO installs all the
required libraries and dependencies in a temporary Docker container, which serves as a
“dummy” environment. During this installation process, CREDO captures crucial infor-
mation about the dependencies, their installation order, and the associated files. This
information is then saved and used to generate a script.

Step 2, Fig. 1.3, (docker image offline building): The generated script from Step 1 is
integrated into the Dockerfile. This script contains the necessary instructions to install
the files offline, based on the acquired information. By incorporating this script into the
Dockerfile, CREDO ensures that the Docker image can be built without encountering
any issues related to outdated or missing packages. This offline installation feature is par-
ticularly significant in scientific applications where reproducibility is crucial.

Page 7 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

In summary, CREDO’s process involves first downloading and installing all the
dependencies in a temporary Docker container to capture the necessary information
such as dependencies and to collect all the files in an organized archive. Using these
information CREDO generates a script that will be integrated in the dockerfile for the
second step. This approach guarantees reproducibility and mitigates issues arising from
broken links or missing package versions.

Repository structure

The CREDO project is divided into two repositories, CREDOengine and CREDOgui, to
address the specific requirements of its user communities. CREDOengine is designed
for developers and bioinformaticians, demanding deep control and customization capa-
bilities, offering backend code essential for sophisticated Dockerfile generation and man-
agement. CREDOgui is designed for users who prefer a more user-friendly entry point,
featuring a graphical interface that simplifies Docker image management and creation.
This is particularly advantageous for researchers with different levels of computational
expertise. Within the Docker build for CREDOgui, users have the option to change the
repository path of CREDOengine. This feature allows for the creation of a personalized
CREDO instance, enabling users to adapt the tool according to their specific project
requirements or preferences, pointing to their forked github page.

Fig. 1  CREDO workflow. CREDO embraces the principles of FAIR, which stand for Findable, Accessible,
Interoperable, and Reusable. These principles serve as a framework to promote data and resource sharing
in a way that maximizes their usability and impact. (1) User Customization: Represents the first step where
users can customize the contents of the Docker image according to their specific requirements. (2) Docker
Image Assembly: Represents the second step where a dummy Docker container is downloaded, archiving all
the necessary files for offline building, and generating an installation script. (3) Offline Building: Represents
the third step where a new Docker image is created using the recorded instructions from the Docker
Image Assembly step and the downloaded files. This step ensures reproducibility and independence from
internet connectivity, allowing users to build Docker images offline with all the necessary dependencies and
configurations

Page 8 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

CREDOengine

The architecture of CREDOengine employs a layered approach, which provides a flexible
and customizable environment, Fig. 2. Layer 0 is designed to establish the basic envi-
ronment and settings the necessary elements for the other layers. It includes essential
packages and setups, such as pre-installed Python or R packages, creating a ready-to-use
infrastructure for further customization and tools integration.

Each additional layer adds further capabilities and options for customization. For
instance, Layer 1 integrates multiple languages (R and Python in the same docker), while
Layer 2 adds user interfaces or additional functionalities. This hierarchical structure
allows users to precisely tailor the CREDO enviroment according to their specific needs
and technical expertise.

•	 Layer 0 generates Docker images that include pre-installed Python packages
(0_PythonPackages) or R packages (0_RPackages). This approach provides flex-
ibility in selecting the programming language for developing bioinformatics tools.
In Fig. 3, various commands for installing the libraries are shown. To modify the
installation process, users can access the configurationFile.sh file for Python or
configurationFile.R for R within the CREDO engine. In the user-friendly CREDO
GUI, customization can be achieved simply by clicking on the "config" button. These
options allow researchers to tailor the Docker image to their specific requirements,
ensuring a personalized and reproducible environment for bioinformatics analyses.

•	 Layer 1 (1_mergeDocker) allows users to merge the Python Dockerfile with the R
Dockerfile, previously generated at Layer 0.

•	 Layer 2 provides a range of programming graphical interfaces (Jupyter lab, Jupyter
notebook, Rstudio, and Visual Studio), all of which can be accessed through a web
application (http://​local​host:​8888).

Fig. 2  CREDOengine’s structured flow across layers. Each layer builds upon the previous one, creating a
sequential enhancement of the docker object: Layer 0 provides the basic environment, requiring either
Python or R modules. Layer 1 builds on this, adding combined Python and R support, and each subsequent
layer extends the capabilities. Layer 2 allows the implementation of a graphical interface. Layer 3 implements
the ability to run docker in docker. Layer 4 provides the infrastructure for the installation of additional
software beyond Python and R. This sequential flow ensures a coherent build-up of features, allowing users to
develop a Dockerfile progressively tailored to their needs

http://localhost:8888

Page 9 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

•	 Layer 3 (3_VMInDocker) configures the virtual environment to execute docker or
singularity instances within a docker container. This specific feature is useful in case
the running docker container requires executing the software embedded in another
docker or in a singularity instance, e.g. the docker used to generate the dockerfiles in
CREDO.

•	 Layer 4 (4_ExternalSoftware) addresses the need for installing additional software
beyond Python and R packages in the CREDO framework. Similar to the first layer
(layer 0), this one utilizes a configuration file where the names of the software to be
installed, e.g. BWA, SAMtools, etc., can be specified as comma-separated values.
Currently, this layer only supports the installation of software through the apt pack-
age manager.

CREDO offers a more reliable and robust approach for building and distributing
Docker images, which is particularly important for bioinformatics applications and
other complex workflows. An essential feature of CREDO is its capability to install not
only libraries available on standard archives such as CRAN for R and pip for Python, but
it can also handle other repositories like GitHub, Bioconductor, Conda, and Bioconda.
This ability provides researchers with greater flexibility in installing and utilizing a wide
range of libraries and packages relevant to their scientific research. By supporting multi-
ple installation sources, CREDO enhances the usability and efficiency of research work-
flows, which is crucial in the bioinformatics field, which requires complex workflows and
specialized libraries. As previously explained CREDO, saves all information related to
the dependency tree and downloads all necessary dependency packages,packages are
then divided into files that are sized appropriately for uploading to a GitHub reposi-
tory, i.e. max 25 MB/each. In a future update, we will let the user customize this value
to extend the compatibility beyond Github. Once the dependencies have been detected
and downloaded, the temporary Docker container is deleted. A Dockerfile is then gener-
ated using the complete list of previously downloaded packages. By creating a folder that
contains all necessary files, CREDOengine enables a Docker build to be performed from

Fig. 3  Examples of config files

Page 10 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

scratch without requiring any new downloads. This eliminates the risks associated with
broken links, changes in package names, and uncontrolled changes in library versions.
Python and R are compiled from their source code.

To perform a Docker build, user can run the script.sh/ script.cmd file, which is
included in the folder created by CREDOengine. This folder contains all the necessary
elements to build the Docker image that was defined.

After the Docker image has been built, the script.sh/script.cmd can be transferred to
the designated folder that will be mounted as “shared folder” in the Docker container.
This shared folder is located at /sharedFolder within the Docker container, but its loca-
tion can be easily modified by adjusting the script.sh/ script.cmd file.

The output generated by CREDO is organized into separate folders, each containing a
script.sh/script.cmd file responsible for building and running the corresponding Docker
image layer. After running the script.sh/script.cmd for the initial two layers (0 and 1), the
user is directed to the Docker instance through a bash command line. For layers 2 and 3,
the user can access the running container via a web application, at http://localhost:8888,
following the execution of the script.sh/script.cmd. This output organization approach
enhances the accessibility of the running container and facilitates user interaction, mak-
ing it an essential feature for scientific applications.

CREDOengine can also be modified, adding or modifying layers, or changing software
versions. Each layer is indeed identified by a number followed by an underscore, such
that all folders referring to layer 0 start with "0_". In each folder, the script that gener-
ates the Docker image must be called "runMe.sh". This is the script that runs the dummy
container and downloads and installs all the required packages. In the "0_RPackages"
folder of CREDOengine, there is a skeleton file that provides an example of how to add
layers for new programming languages or add new versions of R or Python. The con-
figurationFile.txt contains the hostPath, where the results of the CREDOengine will be
stored.

Accessing to Conda/Bioconda environments

Conda Environment are stored into /snowflakes/condaName folder of the docker con-
tainers and can be activated with the following code:

source /snowflakes/condapackageName/bin/activate.
Bioconda environment is stored into /snowflakes/biocondaName folder of the docker

container and to activate it is enough to run the following code:
source /snowflakes/biocondapackageName/bin/activate.

Accessing to programming environment GUIs

The programming environment GUIs, which can be added to the Docker image, are: i.
Jupyter (Lab or notebook), ii. Rstudio or iii. visual studio. Only one of these program-
ming environment GUIs can be added to the final Docker image.

CREDOgui

CREDOgui streamlines the configuration of the different layers in CREDOen-
gine, as depicted in Fig. 4. It can be accessed through a web application, http://local-
host:3000, by running the dockerFileGenerator.sh script for Linux/OSX users or the

Page 11 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

dockerFileGenerator.cmd script for Windows users, which are both available on the
CREDOgui GitHub page. For layer 0, Python and R libraries, to be installed, can be spec-
ified using the "Config" button. In layer 1, the user must designate the folder name for the
merged Dockerfiles. In layer 2, the user must choose the final name of the Docker image,
which is mandatory to be in lowercase and cannot contain any numbers or special char-
acters, and should select a preferred GUI. The name of the output folder for Layer 2 will
incorporate the name of the selected GUI. Once the Docker image is built and running,
the embedded GUI can be accessed via a web application, http://localhost:8888. In layer
3, it is feasible to install either a Docker or a Singularity instance in the created Docker
image and Layer 4, as for layer 0 let the user choose to install other software through apt
ubuntu command. In CREDOgui, each layer is reliant on the previous layer, implying
that layer 3 cannot be selected unless layers 0, 1, and 2 have been previously configured.

Each layer is self-contained, which means that a user can create a docker image with
just layer 0 and layer 1, without selecting layers 2 and/or 3. Once the configuration files
are edited and the settings are completed, the generation of the Dockerfile can be initi-
ated by clicking on the "Start Docker Generation" button. The output console provides
a summary of the ongoing steps, while a detailed description is available in the log file
saved in the folder where the dockerFileGeneration.sh (for Linux and MacOS) or dock-
erFileGeneration.cmd (for Windows) script is executed.

To enhance the user-friendliness of CREDOgui, we provide a video tutorial that dem-
onstrates how to use the GUI. The link to the tutorial is available in CREDOgui, as shown
in Fig. 4 and in the GitHub CREDO readMe. In addition, CREDOgui has two buttons
that allow users to access the GitHub pages of the CREDOengine and CREDOgui. There
is also a button to download the latest version of CREDOgui (update GitHub) and a but-
ton (Remove DockerFiles) that deletes the temporary layers created during the creation
of the final Dockerfile.

Fig. 4  Screenshot of the CREDOgui. In CREDOgui, the dependencies among the different layers are more
stringent than in CREDOengine. Specifically, any layer depends on the previous one

Page 12 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

Add layers

As pointed out in the previous section, CREDOengine can be modified and those
changes are connected to the user interface. These are the steps to follow to add layers to
CREDOengine and connect them to the user interface:

(1)	 Create a fork of the repository alessandriLuca/CREDOengine (github.com) and
alessandriLuca/CREDOgui (github.com)

(2)	 In the CREDOengine repository, add a new folder for each layer you want to cre-
ate. Each folder should be named with the corresponding layer number (e.g., 0_
pythonPackage, 1_mergeDocker, 2_GUI).

(3)	 Each layer folder can have subfolders to provide options, as seen in layer 2_GUI.
(4)	 In the main layer folder an “inputconfig.txt” file is required. The file needs to have

the following structure:

Temp Docker:H+R
Result Folder Name:U+empty
sharedpath:H+/sharedFolder/
configpath:H+/sharedFolder/configurationFile.txt

Each line of this file represents an input parameter passed to the runMe.sh script. For
each parameter, it is necessary to specify the parameter name and its characteristics
using the following structure:

•	 H: the parameter is not shown in CREDOgui
•	 R: the parameter is assigned randomly from a list of names (see the /nodejs/support/

inizialize.js file)
•	 U: the parameter appears as a box on CREDOgui
•	 empty: the parameter box will be empty

If the parameter is not random or empty, you can add new values using the “ + ” sign.
Note that CREDOgui runs a Docker in Docker, where the shared folder of the physi-
cal host and the shared folder of CREDOengine must have the same name but different
paths.

(5)	 Each subfolder (or main folder if there are no subfolders) should contain a "runMe.
sh" script, which is responsible for creating the Docker image. The script performs
the following steps:

(a)	 Installs the programs in a temporary Docker container, downloading all the
necessary files.

(b)	 Saves the files and generates a script that will be integrated into the Dockerfile.
This script installs the chosen packages/software from the previously down-
loaded files.

(6)	 Modify the Dockerfile in the CREDOgui repository by changing the GitHub clone
path to use your forked version of the CREDOengine repository.

Page 13 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

These steps allow to add new layers to CREDOengine and connect them to the user
interface in CREDOgui.

FAIR principles

CREDO embraces the principles of FAIR data and promotes reproducibility in bioinfor-
matics research. The FAIR principles advocate for data and methods that are Findable,
Accessible, Interoperable, and Reusable. By following these principles, CREDO ensures
that the generated Dockerfiles and associated files are easily discoverable and accessible,
facilitating their reuse and enabling researchers to build upon existing work. The use of
standardized and well-defined Dockerfiles in CREDO enhances interoperability, allow-
ing researchers to seamlessly integrate and combine different bioinformatics tools and
workflows. Furthermore, CREDO’s approach of incorporating diverse package reposi-
tories, such as GitHub, Bioconductor, Conda, Bioconda and apt ubuntu packages, con-
tributes to the availability and accessibility of a wide range of libraries and packages. By
adhering to the FAIR principles, CREDO promotes transparency, collaboration, and the
advancement of scientific knowledge in the field of bioinformatics.

•	 Findability: To enhance the findability of our research, we have implemented GitHub
as a central platform for hosting our images and software. This consolidation simpli-
fies the research process by providing a unified location for researchers to access,
install, and utilize their software. In addition, we plan to introduce a user-friendly
structure that allows efficient CREDO utilization and enables DOI associations for
Dockerfiles, further enhancing the findability aspect.

•	 Accessibility: We recognize that the installation of bioinformatics tools or pipelines
can be a complex task. In addressing this challenge, CREDO aims to simplify the
process by creating Docker images that are accessible even to individuals without
extensive bioinformatics expertise. This approach ensures that the code is easily
downloadable and usable for both reviewers and researchers interested in utilizing
the tool.

•	 Interoperability: In order to achieve optimal interoperability, CREDO is fully com-
mitted in providing Docker images which are compatible with diverse operating
systems and platforms. CREDO’s Docker images are carefully crafted to seamlessly
function across different environments, enabling researchers to utilize them regard-
less of their specific setup. To accomplish this, we have implemented various meas-
ures, such as incorporating the "–platform linux/amd64" option in the Docker run
command. This option ensures that all Docker containers operate with the same
architecture, thereby enhancing compatibility across systems. Moreover, CREDO
generates a script that automates the building and execution of the Docker image.
This script streamlines the process for users, making it transparent and seamless. By
encapsulating these compatibility considerations within the script, users can focus
on their research tasks without being burdened by technical complexities. Our dedi-
cation to interoperability extends beyond technical aspects. We acknowledge the sig-
nificance of integrating our research tool into existing workflows and collaborations.
By ensuring compatibility and interoperability, our future releases aim to facilitate

Page 14 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

the effortless integration of CREDO into various research environments, enabling
researchers to effectively leverage its capabilities.

•	 Reusability: CREDO focuses on creating Docker images that are rebuildable and
reproducible over time. By capturing detailed installation instructions within the
Dockerfile, we facilitate modifications and customization of the Docker image. This
flexibility allows users to adapt the Docker image to their specific needs and ensures
that even if certain libraries become inaccessible online, the Docker image remains
self-contained and reproducible. Moreover is it possible to easily customize even the
GUI, since it automatically detects any changes in the folder.

Conclusions
Reproducibility is critical in bioinformatics research to ensure the integrity of findings
and facilitate knowledge transfer and collaboration. Docker images, with their standard-
ized and isolated environments, offer an optimal solution for achieving reproducibility.
However, challenges such as diverse architectures, different software versions, and reli-
ance on external platforms need to be addressed. Tools like CREDO aim to overcome
these challenges by providing customizable and reproducible Docker image generation,
promoting transparency, collaboration, and long-term reproducibility in bioinformatics
research field. Using CREDO, researchers can easily install the docker image through a
graphical interface and only requiring a web browser, providing a seamless experience
for working with Docker images and their associated computational environments.

Moreover, CREDO also offers compatibility with GitHub, allowing users to store, ver-
sion control, and share their Dockerfiles and associated files. This integration enhances
collaboration and simplifies the process of sharing reproducible bioinformatics work-
flows among researchers.

Overall, CREDO empowers bioinformaticians to achieve a high level of reproducibil-
ity in their research by generating Dockerfiles that accurately capture the computational
environment.

CREDO is indeed a valuable tool in bioinformatics, providing a high level of reproduc-
ibility with its Dockerfile generation. Currently, CREDO relies on the availability of the
Ubuntu image in the cloud to achieve this level of reproducibility. With the upcoming
update even higher reproducibility will be provided by including the base ubuntu image
as part of CREDO. In this way, CREDO will provide researchers with greater control and
reliability in building Docker images. Combined with its compatibility with GitHub (and
similar services) and its user-friendly GUI, CREDO streamlines the process of sharing
reproducible bioinformatics workflows, advancing research in the field.

In an upcoming update, we are planning to enhance reproducibility even further. We
are actively working on integrating the slim toolkit into CREDO, aiming to optimize
the size of the Docker images. This optimization will enhance the efficiency and perfor-
mance of the generated images, reducing their overall footprint. We are actively explor-
ing the possibility of integrating CREDO with Dataverse, a data repository platform.
This integration will provide researchers with the capability to register and publish the
Docker images generated by CREDO directly within Dataverse. By enabling this inte-
gration, we aim to facilitate the sharing and reproducibility of bioinformatics analyses,
fostering collaboration and data accessibility within the scientific community.

Page 15 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110 	

As part of the future perspective, we plan to transform CREDO into a hosted service
on our University cloud. In the cloud configuration CREDO will provide a multi-user
interface, allowing researchers to collaborate seamlessly within the CREDO platform.

Furthermore, we are also exploring the opportunity to integrate CREDO within the
European Open Science Cloud (EOSC https://​www.​eosc-​life.​eu/) in https://​workf​low-
hub.​eu/. This integration would enable CREDO users to share and upload the gener-
ated Docker images directly to EOSC, facilitating access and resource sharing within a
broader research community.

Availability and requirements

Project name: CREDO.
Project home page: https://​github.​com/​aless​andri​Luca/​CREDO​engine; https://​github.​
com/​aless​andri​Luca/​CREDO​gui.
Operating system(s): Linux, MAC OSX, Windows 10/11.
Programming language: R, Python, Bash.
Other requirements: Docker desktop.
License: GNU GPL.
Restrictions to use by non-academics: licence needed, please contact raffaele.calogero@
unito.it.
Video tutorial: https://​youtu.​be/​92RvJ​e6qqHQ.

Acknowledgements
Not applicable.

Author contributions
AS developed the CREDOgui; RML and PG tested the building of docker embedding R tools; CSG, PS and RS tested the
building of docker embedding python tools; AL developed the CREDOengine. AL, BM, and CRA supervised the overall
project.

Funding
Research program CN00000013 “National Centre for HPC, Big Data and Quantum Computing”, D. D. n.1031, 17.06.2022
PNRR MUR—M4C2—Investiment 1.4-Notification “National Centers”-D.D. n. 3138, 16.12.2021. Spoke 8: Insilico medicine
and omics data.

Availability of data and materials
All data are available as part of the github repositories: https://​github.​com/​aless​andri​Luca/​CREDO​engine; https://​github.​
com/​aless​andri​Luca/​CREDO​gui.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 March 2023 Accepted: 9 February 2024

References
	1.	 Kulkarni N, Alessandri L, Panero R, Arigoni M, Olivero M, Ferrero G, Cordero F, Beccuti M, Calogero RA. Reproduc-

ible bioinformatics project: a community for reproducible bioinformatics analysis pipelines. BMC Bioinform.
2018;19(Suppl 10):349. https://​doi.​org/​10.​1186/​s12859-​018-​2296-x.

https://www.eosc-life.eu/
https://workflowhub.eu/
https://workflowhub.eu/
https://github.com/alessandriLuca/CREDOengine
https://github.com/alessandriLuca/CREDOgui
https://github.com/alessandriLuca/CREDOgui
https://youtu.be/92RvJe6qqHQ
https://github.com/alessandriLuca/CREDOengine
https://github.com/alessandriLuca/CREDOgui
https://github.com/alessandriLuca/CREDOgui
https://doi.org/10.1186/s12859-018-2296-x

Page 16 of 16Alessandri et al. BMC Bioinformatics (2024) 25:110

	2.	 Bayat A. Science, medicine, and the future: bioinformatics. BMJ. 2002;324(7344):1018–22. https://​doi.​org/​10.​1136/​
bmj.​324.​7344.​1018.

	3.	 Dall’Alba G, Casa PL, Abreu FP, Notari DL, de Avila ESS. A survey of biological data in a big data perspective. Big Data.
2022;10(4):279–97. https://​doi.​org/​10.​1089/​big.​2020.​0383.

	4.	 Sun W, Nasraoui O, Shafto P. Evolution and impact of bias in human and machine learning algorithm interaction.
PLoS ONE. 2020;15(8):e0235502. https://​doi.​org/​10.​1371/​journ​al.​pone.​02355​02.

	5.	 Hollmann S, Kremer A, Baebler S, Trefois C, Gruden K, Rudnicki WR, Tong W, Gruca A, Bongcam-Rudloff E, Evelo CT,
Nechyporenko A, Frohme M, Safranek D, Regierer B, D’Elia D. The need for standardisation in life science research—
an approach to excellence and trust. F1000Res. 2020;9:1398. https://​doi.​org/​10.​12688/​f1000​resea​rch.​27500.2.

	6.	 Brito JJ, Li J, Moore JH, Greene CS, Nogoy NA, Garmire LX, Mangul S. Recommendations to enhance rigor and repro-
ducibility in biomedical research. Gigascience. 2020. https://​doi.​org/​10.​1093/​gigas​cience/​giaa0​56.

	7.	 Nust D, Sochat V, Marwick B, Eglen SJ, Head T, Hirst T, Evans BD. Ten simple rules for writing Dockerfiles for reproduc-
ible data science. PLoS Comput Biol. 2020;16(11):e1008316. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10083​16.

	8.	 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn
T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY,
Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol.
2004;5(10):R80. https://​doi.​org/​10.​1186/​gb-​2004-5-​10-​r80.

	9.	 https://​docs.​conda.​io/​en/​latest/.
	10.	 Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.

https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts480.
	11.	 Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux J.

2014;2014(239):2–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1136/bmj.324.7344.1018
https://doi.org/10.1136/bmj.324.7344.1018
https://doi.org/10.1089/big.2020.0383
https://doi.org/10.1371/journal.pone.0235502
https://doi.org/10.12688/f1000research.27500.2
https://doi.org/10.1093/gigascience/giaa056
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.1186/gb-2004-5-10-r80
https://docs.conda.io/en/latest/
https://doi.org/10.1093/bioinformatics/bts480

	CREDO: a friendly Customizable, REproducible, DOcker file generator for bioinformatics applications
	Abstract
	Background:
	Results:

	Background
	Results
	CREDO features

	Implementation
	Repository structure
	CREDOengine
	Accessing to CondaBioconda environments
	Accessing to programming environment GUIs
	CREDOgui
	Add layers
	FAIR principles

	Conclusions
	Availability and requirements
	Acknowledgements
	References

