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Abstract 

Bacteria in the human body, particularly in the large intestine, are known to be associ-
ated with various diseases. To identify disease-associated bacteria (markers), a typical 
method is to statistically compare the relative abundance of bacteria between healthy 
subjects and diseased patients. However, since bacteria do not necessarily cause 
diseases in isolation, it is also important to focus on the interactions and relationships 
among bacteria when examining their association with diseases. In fact, although there 
are common approaches to represent and analyze bacterial interaction relationships 
as networks, there are limited methods to find bacteria associated with diseases 
through network-driven analysis. In this paper, we focus on rewiring of the bacte-
rial network and propose a new method for quantifying the rewiring. We then apply 
the proposed method to a group of colorectal cancer patients. We show that it can 
identify and detect bacteria that cannot be detected by conventional methods such 
as abundance comparison. Furthermore, the proposed method is implemented 
as a general-purpose tool and made available to the general public.

Keywords:  Bacterial correlation network, Elimination of false correlations, Feature 
selection, Metagenomics, Microbiome, Network rewiring

Introduction
Bacteria in the human body have various effects on human health. In particular, identi-
fying the intestinal bacteria associated with human diseases is considered to be effective 
for elucidating the mechanisms of disease development and developing diagnostic tools 
for early detection of diseases. For example, the relationship between intestinal bacteria 
and colorectal cancer is well known [1, 2], and it has been reported that the abundance 
of bacteria such as Fusobacterium and Solobacterium increases with the progression of 
colorectal cancer [3]. In addition, diabetes, atherosclerosis, autism, dementia, Alzhei-
mer’s disease and inflammatory bowel disease have also been linked to intestinal bacte-
ria [4–10].

The most common method of investigating bacteria associated with diseases is to 
calculate the bacterial composition derived from DNA extracted from stool samples 
and compare the abundance of each bacteria in the healthy and diseased groups and 
the changes in abundance. Furthermore, for each of the healthy and diseased groups, a 
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network (bacterial correlation network), in which the bacteria are the nodes (vertices) 
and the correlation coefficients obtained by quantifying the co-occurrence relationship 
of the bacteria in each group are the links (edges), is constructed. Then the structure of 
each network is compared, allowing an analysis that takes into account the population 
structure of the bacteria.

The idea of using bacterial correlation networks to uncover disease features has 
already been reported [11–14]. For example, there are studies that have confirmed the 
network changes in the microbiome analysis of diabetes or gastrectomy [4, 15]. How-
ever, the information obtained from network dynamics has been used as supplementary 
information along with comparisons of bacterial abundance. Identifying bacteria using 
network dynamics is currently very limited.

In general, when the structure of the bacterial communities change, the bacterial 
correlation network is also considered to be affected. Rewiring, where certain bacteria 
change their co-occurrence relationships with other bacteria, is one of the best-known 
examples [3, 15, 16]. Bacteria involved in rewiring may be related to the development or 
progression of the disease. However, quite few methods and tools exist to focus on and 
quantify such rewiring.

In conducting metagenomic analyses based on the network structure of bacterial com-
munities and the dynamics, one of the significant issues is the noise that arises in con-
structing bacterial correlation networks. Typically, this noise is caused by an imbalance 
in the abundances of each one of the bacterial pairs constructing network edges. For 
such noise, tools such as SparCC [17] are available to reduce it.

On the other hand, in metagenomic analysis, a single DNA read may map to several 
closely related bacteria with the same score. In this case, standard mapping tools (e.g., 
bowtie2 and bwa) will either distribute a single read equally to each of all closely related 
bacteria or randomly map it to one of the closely related bacteria with equal probability. 
In both cases, the abundance of closely related bacteria will become similar. When the 
correlation between bacteria is calculated for such data, the correlation of closely related 
bacteria may be much higher than they actually are, but such false correlations cannot be 
avoided for closely related bacteria. However, there is no practical or effective way has 
been established for dealing with this noise.

In this paper, we propose a method for extracting characteristic bacteria by quanti-
fying the rewiring between two bacterial correlation networks, to discover and iden-
tify bacteria that are likely to be associated with diseases but cannot be detected from 
changes in abundance alone. At the same time, we propose a new method to reduce 
and remove noise caused by false correlations, and use this method to preprocess the 
data. The effectiveness of the proposed method is verified by constructing and applying 
a human intestinal bacteria correlation network based on the metagenomic data from 
colorectal cancer patients [18]. A Python script that implements a series of processes 
including above noise removal due to the false correlations and quantification of rewir-
ing is available on GitHub [19].
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Method
This paper proposes a method for presenting candidate bacteria as possible causes of 
attribute value changes by exploiting structural changes in the bacterial correlation net-
work between two groups with different attribute values. The attribute values are typi-
cally a healthy group or a diseased group. When comparing two groups, we focus not 
only on primary statistics such as the abundance of bacteria or the increase or decrease 
in the abundance of bacteria, but also on secondary data such as the correlation between 
bacteria to analyze the network and present candidate bacteria as possible causes of the 
change in attribute values. To this end, we quantify the network rewiring, in which a 
particular bacterium changes its co-occurrence relationship with other bacteria.

As a concrete example, we illustrate the method by presenting candidate bacteria that 
might have strong association with colorectal cancer, when we are given the data of 
bacterial abundance from the stool samples. Here, we use human colorectal cancer and 

Table 1  Specification of inputs and outputs of the proposed method

*Bacterial phylogenetic annotation consists of the levels of phylum → class → order → family → genus → species → 
strain. In the example of this paper, bacterial names are given at the genus level. This method is applicable if information of 
two consecutive levels are given

Input (1) Counts per sample in X and Y of bacteria observed in two groups X and Y.

(2) Phylogenetic annotation of bacteria*.

(3) Whether the bacteria of interest is increased in either X or Y (we assume it to be Y, without loss of 
generality).

Option (a) Threshold value of the correlation coefficient to be used as the edge weights of the network (default 
value is 0.4).

(b) Threshold p value for testing whether each bacteria increased in the group specified in input (3) 
(default value is 0.005).

Output The rewiring index (QNetDiff score) of the bacteria that constitute the core of the bacterial correlation 
network and its associated bacteria, as well as the degree, mean abundance in each group of X and Y, 
and p value of the change from group X to Y.

(In addition, the list of bacteria that significantly increased from group X to Y, the list of bacteria belong-
ing to each bacterial group unified for the elimination of false correlations, and its representative.)

Fig. 1  Conceptual diagram of the process performed by the method proposed in this paper. a The input 
is the data of two groups X and Y representing the abundance of bacteria. In this figure, we assume that 
there are 20 kinds of bacteria (indicated by the filled-in circles), and distinguish the classification of each 
bacteria by phylogenetic annotation using colors (6 colors in this figure). The abundance of each bacteria 
for each sample is originally given as a count (count_table), which is normalized to a relative abundance 
(abundance_table) in Step 0. b In Step 1, a bacterial correlation network based on the co-occurrence 
of bacteria is constructed for each group, by removing noise using existing tools based on the relative 
abundance of bacteria. In Step 2, in order to eliminate noise due to false correlations, we perform clustering 
for each of the two groups to unify (contract) the same bacterial groups, and unify the bacterial groups 
whose phylogenetic annotation classification matches within the same cluster. c Then, for each unified 
group, the bacteria with the largest average abundance among all the bacteria in that unified group is 
selected as the representative bacteria of the unified group. The process of contraction to remove false 
correlations up to this point is the first feature of the proposed method. d Then, in Step 3, the bacteria that 
significantly increase in group Y compared to group X among the representative bacteria are identified as the 
core bacteria. In Step 4, a network consisting of core bacteria and their related bacteria is constructed. In the 
figure, the core bacteria and their related bacteria in the group are shown in yellow background circles, and 
those in the other group are shown in gray background circles. Their combined network is the final network. 
e In Step 5, the two networks constructed in Step 4 are compared, and identify bacteria with large QNetDiff 
scores, which represent the level of rewiring of the links. Then output them together with various statistical 
values. The process that focuses on rewiring is the second feature of the proposed method

(See figure on next page.)
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bacteria as examples, however, we assume that this is a general-purpose method that can 
be applied to two groups of similar data in general.

An overview of our proposed method is presented in Fig. 1, and the detail of each step 
will be discussed in the subsequent subsections.

Fig. 1  (See legend on previous page.)
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Overview

In this subsection, we give an outline of the process performed by the method pro-
posed in this paper. This method first constructs a bacterial correlation network 
(hereafter this is also referred to simply as “network”) for each group based on the co-
occurrence relationship of bacteria, from the counts of bacteria in each fecal sample. 
Then, in each network, we remove false correlations by unifying the nodes (bacteria). 
Then, we first identify the bacteria that significantly increase in one group and recon-
struct a network consisting of only highly related bacteria and then list the important 
nodes in such a network. The inputs and outputs of the entire method are given in the 
following Table 1. Here, the definitions of the rewiring index (QNetDiff score) in the 
table will be given in the subsequent explanations.

The proposed method carries out the following six steps (Steps 0 to 5) in sequence. 

Step 0	� Conversion of bacterial counts to relative abundance
Step 1	� Construction of bacterial correlation networks based on bacterial co-occur-

rence relationships
Step 2	� Unification of similar bacteria (elimination of false correlations) and selection 

of representative bacteria
Step 3	� Selection of core bacteria for bacterial correlation network
Step 4	� Construction of a network consisting of core bacteria and related bacteria
Step 5	� Calculation of rewiring index and other features of each bacteria

In Detailed descriptions of processes in each step section, we provide a more 
detailed step-by-step explanation.

Detailed descriptions of processes in each step

In this subsection, we describe the process performed in each step in detail. The input 
data is as follows: The list of all bacteria in input (1), each of which is referred to as a 
name at some level of phylogenetic annotation, such as genus, species, and so on. The 
counts of bacteria per sample in the two groups X and Y are given as two-dimensional 
arrays, respectively, of size [#distinct bacteria name]×[#samples]. As input (2), the 
name of one level higher in the phylogenetic annotation of the bacteria is given. Also 
in the subsequent explanations, we assume that Y is specified as input (3) without loss 
of generality.

Step 0: Conversion of bacterial counts to relative abundance

Since the total number of bacteria detected in each sample is different, it is necessary 
to normalize the counts to relative abundance data for each sample to allow compari-
sons between samples. Since the same process is applied for two groups, we describe 
the detailed process only with group X.

We normalize the counts ( count_tableX ) for each sample and obtain their rela-
tive abundance ( abundance_tableX ). Specifically, for the ith bacteria and kth sam-
ple, we obtain the relative abundance by the following calculation:
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where the count of the ith bacteria (in the list bacteria of all bacteria) in the kth sam-
ple of group X (in the list sample of group X samples) is expressed by count_tableX
[bacteria[i]][sample[k]].

If the label “unclassifed” is included in bacteria, it is removed from bacteria 
after the above calculation. This process may result in the sum of the relative abundances 
for each sample not being equal to 1.

Step 1: Construction of bacterial correlation networks based on bacterial co‑occurrence 

relationships

In this step, correlation coefficients based on the co-occurrence relation between all 
bacteria are calculated for each of the two groups X and Y, and two networks are con-
structed using them as edge weights. To calculate correlation coefficients between bac-
teria, we use the tool called SparCC [20], which is a tool for calculating the correlation 
among all bacteria based on the counts of each bacteria. SparCC is able to calculate cor-
relation coefficients with eliminating the incorrect correlations caused by bacteria that 
are present only in small numbers. The SparCC used in this study is an improved ver-
sion, which is known as SparCC3 [17].

By giving a two-dimensional array count_tableX of counts of group X as an input 
to SparCC, we obtain as output a two-dimensional array correlationX of correla-
tion coefficients of size [#distinct bacteria]×[#distinct bacteria]. For the coefficient table 
correlationX obtained in this way, if each element is greater than the designated 
threshold (edge_threshold), the value is taken as the weight of the corresponding 
edge of the network (element of the adjacency matrix); otherwise, that is if it is less than 
or equal to the threshold value, the value of the element of the adjacency matrix corre-
sponding to it is set to 0. By the above process, we obtain two bacterial correlation net-
works (their adjacency matrices) corresponding to groups X and Y, respectively. Here, 
the default value of edge_threshold is set to the standard 0.4.

Next, isolated nodes in both networks are removed from the network. For this, we first 
remove them from the list of bacteria (bacteria) to obtain the list of effective bacteria 
(bacteria_effective). Then we prepare the adjacency matrix whose rows and col-
umns consist only of those in bacteria_effective. That is, it is a two-dimensional 
array ( correlation_effectiveX(Y) ) whose (i, j)-element is the edge weight between 
the nodes corresponding to bacteria_effective[i] and bacteria_effective[j] in 
the group X(Y).

We show a pseudo-code of the process of this step in Listing  1 in Additional file  1: 
Section 1.1.

Step 2: Unification of similar bacteria (elimination of false correlations) and selection 

of representative bacteria

In metagenome analysis, a DNA read may map to multiple closely related bacte-
rial genomes with the almost same score. In such a case, there could happen a false 

abundance_tableX[bacteria[i]][sample[k]]

=

count_tableX[bacteria[i]][sample[k]]
|bacteria|

h=1 count_tableX[bacteria[h]][sample[k]]
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correlation in which the correlation between closely related bacteria appears much 
higher than its actual state due to the similarity in the abundance of the closely related 
bacteria. Therefore, in order to prevent such illegal correlations from making actually 
meaningless bacteria (nodes) appear to be important bacteria by having large degrees 
on the network, we remove the illegal edges by unifying such groups of closely related 
bacteria. On the network, this is achieved by clustering of nodes corresponding to 
such bacteria and replacing multiple nodes corresponding to closely related bacteria 
with a single representative node (i.e., contraction). Specifically, clustering of nodes 
is done for each of the two networks obtained in Step  1, and bacterial clusters are 
collapsed such that the corresponding nodes belong to the same classification at one 
level higher (i.e., species for strain, genus for species, etc.) of the bacterial name in the 
phylogenetic annotation of input (2) and the corresponding nodes belong to the same 
cluster in each of the two groups.

In the following, we will explain the process of this Step 2 process in more detailed 
three steps (2.1 to 2.3).

Step 2.1. Identification of bacteria that may be affected by noise (clustering of nodes)
We perform clustering of nodes using the Louvain method [21], which is known 

as a general clustering method applicable to weighted networks. Due to the random-
ness of the Louvain method, we apply it with fixed random seed values by default. For 
actual calculations, we use the python-louvain library.

By giving the adjacency matrix ( correlation_effectiveX ) as an 
input to the Louvain method, we obtain an array ( clusterX ) whose ele-
ments are the cluster numbers of each node as an output. For example, 
when the cluster number of bacteria_effective[i] in group X is 1, then 
clusterX[bacteria_effective[i]] = 1.

Step 2.2. Determination of the group of bacteria to be unified (determination of the 
set of nodes to be contracted)

In whatever sample groups, the false correlations considered by this method occur 
between closely related bacteria. Therefore, we consider as the target of unification 
(contraction) maximal sets of bacteria (nodes) that belong to the same phylogenetic 
category at one level higher, and that have a correlation (edge) with each other in both 
of the two groups.

Specifically, for a pair of bacteria bacteria_effective[i] and 
bacteria_effective[j], we consider the following two conditions: 

1	 The two bacteria belong to the same phylogenetic category at one level higher. This is 
determined by 

2	 Those two bacteria belong to the same cluster in each of the two groups in the clus-
tering results of Step 2.1. This is determined by 

sup_category[bacteria_effective[i]] = sup_category[bacteria_effective[j]].

clusterX[bacteria_effective[i]] = clusterX[bacteria_effective[j]] and
clusterY[bacteria_effective[i]] = clusterY[bacteria_effective[j]].
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We call a (sub)set of bacteria any pair of whose element (bacteria) satisfy the above 
two conditions a similar bacteria group within a cluster. In this step, bacteria that are 
in the same cluster as a clustering results in Step 2.1 and belong to the same phylo-
genetic category at one level higher are identified. The output in this step is an array 
(bacteria_groups) containing similar bacteria groups within a cluster.

We show a pseudo-code of the process of this step in Listing 2 in Additional file 1: 
Section 1.2.

Step  2.3. Unification of similar bacteria within a cluster (contraction of similar node 
sets)

For each similar bacteria group within a cluster in the array bacteria_groups, 
we select the bacteria with the highest average abundance in all samples in that group 
(e.g., for the ith bacteria, 1

N

∑N
ℓ=1 abundance_table[bacteria[i]][sample[ℓ]] , 

where N is the number of samples), and we call it the representative bacteria of the 
similar bacteria group within the cluster. These representative bacteria are the ele-
ments of the array bacteria_representative as the nodes of the network after 
unifying similar bacteria groups within the cluster. Accordingly, the adjacency matri-
ces of the networks after unification of similar bacteria groups within a cluster is 
correlation_representativeX and correlation_representativeY , and 
the sizes of the rows and columns are equal to the size of bacteria_representative.

Since the same process is applied for two groups, we describe the detailed process only 
with group X. The two-dimensional array
correlation_representativeX[bacteria_representative[i]]

[bacteria_representative[j]] (i.e., the edge weights between bacteria_repre
sentative[i] and bacteria_representative[j] in the network of group X after 
contraction) is computed as the average weight of all the edges between two similar bac-
teria groups within a cluster to which the bacteria bacteria_representative[i] 
and bacteria_representative[j] belong, respectively (or 0 if there is no edge).

We show a pseudo-code of the process of this step in Listing  3 in Additional file  1: 
Section 1.2.

Step 3: Selection of core bacteria for bacterial correlation network

In this step, we select the core bacteria of the bacterial correlation network. The core 
bacteria are ones that satisfy the representative bacteria obtained in Step 2, and also sig-
nificantly increased in the focused group (designated by input (3)). For this purpose, we 
use one-sided Mann–Whitney’s U test [22] to determine the p value for each representa-
tive bacteria, if its abundance is increased in group Y compared to group X.

The array bacteria_core consisting of representative bacteria whose p values 
obtained by the test satisfying p < p_threshold is the output of this step. The default 
value of p_threshold is set to 0.005, which is a commonly used significance level. 
Those bacteria, which are representative bacteria in the network whose false correlations 
are removed by unifying similar bacteria groups within clusters in Step 2, and which are 
determined to be significantly increased bacteria in Step 3, are called core bacteria.

We show the input and output of this step in Additional file 1: Section 1.3.
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Step 4: Construction of a network consisting of core bacteria and related bacteria

In this step, we obtain output (1) by extracting the core bacteria and their related bacte-
ria (neighboring nodes) that may have different properties from those of the core bacte-
ria but are correlated with them.

Let V be the set of nodes corresponding to the representative bacteria in the 
bacteria_core obtained in Step 3 and the set of nodes adjacent to one of those nodes 
in at least one of the two networks after the contraction (unification of similar bacte-
ria groups in a cluster), and let EX be the set of edges in the network after the contrac-
tion and both of whose end nodes belong to V. The network is constructed by letting 
GX = (V ,EX) . These GX and GY obtained in this way become part of the output. (Visu-
alizations of these networks are also provided using the NetworkX [23] library.)

We show a pseudo-code of the process of this step in Listing  4 in Additional file 1: 
Section 1.4.

Step 5: Calculation of rewiring index and other features of each bacteria

In this step, several features of each bacteria are computed by using the network con-
structed in Step 4.

We calculate the rewiring index (QNetDiff score), which is newly proposed in this 
paper as a measure of the level of rewiring of bacteria between two networks, of each 
node as a feature of each bacteria on the network after contracting the nodes corre-
sponding to similar bacteria within the cluster. For this purpose, we define below the 
rewiring index QNetDiffGX,GY

[v] of node v in the two networks GX and GY (simply 
QNetDiff[v] if the two networks GX and GY to compare are trivial).

The symmetric difference of the set of adjacent nodes in each of the two (unweighted) 
networks of a node can be regarded as representing the change of the edge incident to 
that node. For unweighted networks, the level of the rewiring can be regarded simply 
as the size of the set of the symmetric difference, but we extend this notion to edge-
weighted networks. Since the symmetric difference between two sets is their union 
minus their intersection, we introduce the notion of the size of weighted union and 
intersection for edge-weighted networks.

Now, let AX and AY be the (weighted) adjacency matrices of the two networks GX and 
GY , respectively. Since the intersection can be regarded as the unchanged part of the 
two networks, we define the size AX∩Y[v] of the edge-weighted intersection of node v as 
follows:

Similarly, since the union can be regarded as a part contained in at least one of the two 
networks, we define the size AX∪Y[v] of the edge-weighted union of node v as follows:

Using these, we define the size of the edge-weighted symmetric difference AX△Y[v] as

AX∩Y[v] =
∑

w∈N (v)

min
{

AX[v][w],AY[v][w]
}

.

AX∪Y[v] =
∑

w∈N (v)

max
{

AX[v][w],AY[v][w]
}

.

AX△Y[v] = AX∪Y[v] − AX∩Y[v],
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and this is the rewiring index QNetDiff[v] of node v.
In addition to the QNetDiff scores computed for each node (bacteria) according to this 

formula, the entire output of this method includes the features of each node such as the 
degree and average abundance in the respective network, and p value of the change from 
group X to Y.

We show a pseudo-code of the process of this step in Listing  5 in Additional file  1: 
Section 1.5.

Application to human gut microbiome data

In the next section, we show an example of applying the proposed method to actual data. 
The data to be applied are the counts of 2001 human gut bacterial genera estimated from 
the number of gene sequence fragments obtained by 16SrRNA gene amplicon analy-
sis for each stool sample of 576 patients, including colorectal cancer patients [18]. (We 
remark here that this is publicly available open access data and there is no direct involve-
ment of any patients in this study.) Bacterial names are given at the level of genus, and 
are classified at the level of family (one level higher) according to phylogenetic annota-
tion. Each sample is classified into one of five groups (Healthy (251 sample size), Multi-
ple_polyps (67), Stage_0 (73), Stage_I_II (111), Stage_III_IV (74)) as the disease progress 
level from healthy to worse by medical diagnosis. In this example, we let Healthy and 
Stage_0 be the groups X and Y, respectively. Specifically, we apply the proposed method 
to the data of the counts of the two groups Healthy and Stage_0 as input (1) in Overview 
section. In the following, some of the results are shown in the order of the steps indi-
cated in Overview and  Detailed descriptions of processes in each step sections. Note 
that in the input (3) (which of the two groups to focus on) of Overview section, Stage_0 
is specified (as group Y), and all options are assumed to be default values. In order to val-
idate the proposed method, a two-group comparison with Healthy (up to Step 3 of the 
proposed method) is also performed on the data of stages other than Stage_0 by using 
the existing method, and clarify which bacteria are significantly increased. The method 
proposed in this paper, that is, a method, which is based on network analysis, for finding 
bacteria with characteristic behavior between two groups from the viewpoint of rewir-
ing, is implemented and provided as a usable tool (https://​github.​com/​Discr​eteAl​gorit​
hms/​QNetD​iff).

Results
In this section, we illustrate an example of applying the method proposed to actual data 
[18] of colorectal cancer patients. Here, we assume that group X = Healthy (healthy 
group) and group Y = Stage_0 (diseased group). As a result, we confirm that bacteria 
that cannot be detected simply by their abundance or comparison of their abundance are 
identified as characteristic bacteria in the bacterial correlation network.

Step 1 In the originally constructed bacterial correlation networks of the healthy and 
diseased groups, both of which consists of 2001 genera, there are 1743 genera that do 
not have any correlation (edges) with other genera (nodes) in any of the two groups. 
After removing them from the total of 2001 genera, the number of effective bacteria (i.e., 
nodes), constituting the bacterial correlation network output by this step becomes 258. 

https://github.com/DiscreteAlgorithms/QNetDiff
https://github.com/DiscreteAlgorithms/QNetDiff
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The number of edges was 1372 for group X (Healthy) and 1747 for group Y (Stage_0), 
and the sum of the edge weights, which is the total correlation coefficient between pairs 
of genus, was 758.524 for group X (Healthy) and 952.879 for group Y (Stage_0). Similar 
information about other groups are presented in Supplementary Table 1 in Additional 
file 1: Section 2.1.

Step  2 Clustering of the bacterial correlation networks of the healthy and diseased 
groups showed that the 258 effective bacteria were divided into 134 clusters of similar 
genera. Among those, 102 consisted of a single genus and 32 were similar groups of two 
or more genera. The unification of similar bacteria within a cluster (i.e., contraction of 
the set of similar nodes) is practically performed for bacterial groups consisting of more 
than two kinds of bacteria. This results the number of nodes in the bacterial correlation 
network to 134 after unification. Detailed information is given in Supplementary Table 2 
in Additional file 1: Section 2.1

The size of the largest unified group of the genera was 35, and its representative bac-
teria was Shigella, whose sup_category was Enterobacteriaceae. A complete list of 
bacterial groups and representative bacteria in the unified clusters is shown in Supple-
mentary Table 3 in Additional file 1: Section 2.2. We also show a list of bacteria unified 
in a single genus in Supplementary Table 4 in Additional file 1: Section 2.2.

Step 3 Among all 2001 bacteria genera included in the input, the genus whose p values 
are below 0.01 by the test, and those negative values after taking their ordinary loga-
rithm ( − log10 p ) are shown in Fig.  2. There are already only 25 genera with p values 

Fig. 2  All genera with p values below 0.01 among all 2001 genera and their − log10 p are shown. The black 
vertical line indicates the significance level p = 0.005 . The genera shown in red represent the genera that 
remain as representative bacteria after the unification of similar bacteria within the cluster in Step 2, and 
are selected as core bacteria after being tested as significantly increasing ones in Step 3. The genera shown 
in gray represent the genera that are significantly increased in the comparison of two groups but do not 
correlate with other genera or are not representative bacteria
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below 0.01. Among those, nine of them (shown in red) are found to be representative 
bacteria.

Step 4 Based on the core bacteria identified in Steps 2 and 3, we construct a network 
consisting of the core bacteria and their related bacteria for the healthy and diseased 
groups, respectively. Figure 3 shows those networks. The red nodes represent the core 
bacteria. The green edges represent bacteria pairs that do not correlate in the other 
group, and in the present data, such a pair exists only in group Y (Stage_0). Each pair 
of genus is drawn as a thicker and darker edge when it has a higher weight (correlation 
coefficient).

Step  5 We show in Fig.  4 a visualization of the network by taking the difference of 
the edge weights for the two networks consisting of the core bacteria and their related 
bacteria constructed in the Step 4. In this network, the sum of the weight of the edges 

Fig. 3  Bacterial correlation networks consisting of core bacteria and their related bacteria for group X 
(Healthy) (left) and group Y (Stage_0) (right). Red nodes represent core bacteria, and gray nodes are genera 
that show a correlation of 0.4 or more with one or more core bacteria in any of the groups. Green edges 
represent pairs of genera that are not correlated in the other group, and gray edges represent those that are 
correlated in both groups. Each pair of genera is depicted as a thicker and denser edge when the correlation 
(branch weight) is greater. The size (area) of a node represents the relative abundance of the corresponding 
bacteria

Fig. 4  A network whose edge weights are the difference of those for the networks of Healthy and Stage_0, 
and the values are expressed as the thickness and density of the edges (the weight is 0 when there is no 
edge). The size (area) of the node represents the QNetDiff score. Nodes are arranged in counterclockwise 
order of QNetDiff score, and Actinomyces is the bacteria with the largest QNetDiff score. Granulicatella has 
been reported to form a biofilm in the oral cavity together with Fusobacterium, which is known to increase 
with the progression of colorectal cancer
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incident to a bacteria is equal to the QNetDiff score of the bacteria, and its size is shown 
as the size (area) of the hexagon in Fig. 4. We can see that Actinomyces, Granulicatella, 
Gemella, etc. show relatively high QNetDiff scores.

Finally, we show in Fig.  5a a scatter plot of the relationship between the QNetDiff 
score and − log10 p for each bacteria in the network consisting of core bacteria and their 
related bacteria. We also show in Fig. 5b a similar scatter plot about NetShift score, for 
the comparison with other tools in Subseciton  . Figure  5c shows a one-tailed test to 
determine if the abundance of each genus increased also for Stage_I_II and Stage_III_
IV compared to Healthy, and three p values obtained for the genus whose abundance 
is below the significance level of p = 0.005 in any of the stages, including Stage_0, are 
shown as line graphs. We also give the QNetDiff scores for all 26 representative bacte-
ria, the degree in each network for each genus, the average abundance, and the p values 
for the change from Healthy to Stage_0 in Supplementary Table 5 in Additional file 1: 
Section 2.3.

Fig. 5  Relationship between a QNetDiff scores (horizontal axis) for all 26 core bacteria and their related 
bacteria, and − log10 p (vertical axis) for the significant difference p obtained from the test comparing two 
groups, Healthy and Stage_0; b similarly, the relationship between NetShift score (horizontal axis) and 
− log10 p (vertical axis). The black horizontal line indicates the significance level p = 0.005 , and the size of the 
circle (area) indicates the mean abundance of each genus in the total samples. c The value − log10 p of the 
significant difference p obtained by the two-group test for the increase of abundance in each of the three 
stages (Stage_0, Stage_I_II, Stage_III_IV) compared to Healthy. (Here, only genera whose p-values are lower 
than the significance level at any of the stages are shown. The black horizontal line indicates the significance 
level of p = 0.005)
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Discussion
In this paper, we develop and provide a new method for finding the difference between 
two groups of data that generally indicate the abundance of bacteria. Specifically, unlike 
existing methods that are based only on fundamental analysis such as the amount of 
each bacteria and its increase or decrease, this method detects and quantifies rewiring, 
which is only revealed through network analysis by focusing on advanced data analysis, 
such as the correlation among bacteria. Then, we applied the proposed method to two 
groups of human colorectal cancer patients, the healthy group and the diseased group, 
and the bacteria present in their stool specimens. In this section, we discuss the signifi-
cance and effectiveness of the proposed method based on the results of its application.

Features and novelty of the proposed method

One of the features of the proposed method is that it focuses on the phenomenon called 
rewiring, in which certain bacteria change their co-occurrence relationship with other 
bacteria as the disease progresses, and provides a method to quantify this phenom-
enon by introducing an indicator that expresses the level of rewiring of each bacteria. 
Attempts to quantify rewiring based on bacterial correlation networks are not necessar-
ily new, however, this paper newly provides a definition for the level of rewiring based 
on the (weighted) symmetric difference of edges incident to the nodes corresponding 
to bacteria. As a result, as we will see in the next subsection (Detailed descriptions of 
processes in each step section), we have succeeded in finding bacteria that are difficult to 
detect by existing methods, although they are the characteristic bacteria associated with 
rewiring and have differences between two groups. In particular, a feature of the pro-
posed QNetDiff score is that it is more sharpened in comparison with other methods, 
and thus it has an ability to detect bacteria with extreme features more clearly and easily.

One of the major issues in conducting such metagenomic analyses based on networks 
is the noise generated in the construction of bacterial correlation networks. Typically, it 
is caused by an imbalance in the abundance of bacteria for which correlation is calcu-
lated, however, tools to reduce this kind of noise, such as SparCC [17], are available. On 
the other hand, a single read may map to multiple closely related bacterial genome, as 
the genomic region to be mapped are almost identical in sequence. When correlations 
are obtained for such data, there is a problem of false correlation, in which the correla-
tions of closely related bacteria are much higher than they actually are, but this is una-
voidable for such closely related bacteria, and no effective way to deal with this noise was 
known.

To cope with this problem, our method suggests and employs a new noise reduction 
method for the construction of bacterial correlation networks. Specifically, we first con-
struct a bacterial correlation network and then cluster the bacteria (using the Louvain 
method, which is a typical clustering method). Then, we utilize phylogenetic annotation 
to unify (contract) bacteria belonging to the same classification at one level higher than 
the bacterial name, which leads to removing false correlations (edges representing false 
correlations). For the bacteria representing the unified bacterial group, the bacteria with 
the largest average abundance in all the samples in the group are selected.
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Confirmation of the effectiveness of the proposed method

In Results section, we constructed a bacterial correlation network for human colorec-
tal cancer data [18] with healthy group (Healthy) and diseased group (Stage_0) as two 
groups and applied this tool to actual cases. The results are shown in Figs. 2, 3, 4, and . In 
particular, according to the scatter plot in Fig. 5a which shows the relationship between 
the QNetDiff score and − log10 p for each bacteria, we can see that Granulicatella and 
Parvimonas, which are located mainly in the lower right region and have the second 
and fourth highest QNetDiff scores, respectively, are found to have large QNetDiff score 
although the p value does not reach the significance level, that is, they can be found as 
genera that are significantly rewiring in the bacterial correlation network although the 
change in the abundance of the two groups is not necessarily large.

Among these genera, Granulicatella has been reported to form a biofilm in the oral 
cavity together with Fusobacterium, which is known to increase with the progression 
of colorectal cancer [24], and although the p value did not reach the significance level, 
it may affect the disease in the intestine together with other bacteria. Also, Parvimonas 
is a genus whose p value does not reach the significance level in Stage_0, the early stage 
of colorectal cancer, but increases further in the later stages of colorectal cancer. As 
observed, we can see that the proposed method reliably identifies in the early stages bac-
teria with high QNetDiff scores as those with strong functional associations with bacte-
ria associated with colorectal cancer by in vitro experiments, and bacteria that have been 
reported to be associated with colorectal cancer by multiple cohort studies [2, 3].

A genus with similar characteristics to Parvimonas is Gemella, which has the third 
highest QNetDiff score. This genus has already significantly increased at Stage_0, but 
we can see in Fig. 5c that it increases further in later stages. In this way, QNetDiff score 
may detect genera that increase further in later stages than the stage adopted as the dis-
ease group, and it is assumed that the score may be used to predict disease-associated 
bacteria. These results suggest that QNetDiff score proposed in this paper to represent 
the level of rewiring is also useful in more advanced analyses of bacterial correlation 
networks.

Comparison with other tools

There are a limited number of existing methods that use network analysis for bacterial 
correlation networks, such as the one employed in this paper, for the purpose of compar-
ing two groups of data and clarifying the differences between them. One of the few such 
methods is NetShift [25]. In this subsection, we apply NetShift to a bacterial correlation 
network consisting of core bacteria and their related bacteria constructed from the data 
on human colorectal cancer to which our proposed method was applied in Results sec-
tion. Then we compare our QNetDiff, our proposed method in this paper, and NetShift.

As already explained in Results section, Fig.  5a shows the relationship between the 
QNetDiff scores of all 26 bacteria that constitutes the bacterial correlation network of 
the core bacteria and their related bacteria and − log10 p for the significant difference 
p obtained from the test comparing the two groups, Healthy and Stage_0. Similarly, 
Fig. 5b shows the relationship with the NetShift scores (that are shown in Supplemen-
tary Table 5 in Additional file 1: Section 2.3 as well).
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From the comparison between Fig. 5a and b, the genera such as Granulicatella, Actio-
myces, Gemella, and Parvimonas, which show high values in QNetDiff score, also show 
high values at some level in NetShift score. On the other hand, however, NetShift shows 
the same level of scores for relatively many genera other than the above, which makes it 
difficult to understand how only Granulicatella, Actiomyces, and Gemella differ from the 
others. In other words, we can see that NetShift provides a large number of candidates, 
while QNetDiff can focus on more sharpened and important candidates. From these 
observations, it is assumed that QNetDiff is suitable for searching bacteria with stronger 
distinctive propensity between two groups, and NetShift could be used when we want 
to select a larger number of bacteria as candidates, although the possibility of including 
noise is higher.

Limitation

The proposed method may have performance limitations or restrictions in the follow-
ing points.

•	 False correlations (edges of bacterial correlation networks) are effectively elimi-
nated by the unification (contraction) of similar bacteria, which is a characteristic 
feature of the proposed method. On the other hand, we cannot deny the possibil-
ity that edges due to positive correlation may also be eliminated. Therefore, the 
tool implementing this method has an option to skip this contraction process. In 
addition, output (3) provides information on what bacteria have been centralized 
to the representative bacteria, and therefore, it is possible to check the unification 
process and to examine its validity qualitatively.

•	 It is difficult to determine the threshold for the correlation coefficient between 
bacteria. We set the default threshold value to be 0.4. However, it is confirmed 
that if we set it smaller (larger), then more (less) edges and nodes remain in the 
bacterial correlation network. Therefore, more (less) candidate bacteria appear. 
For this point, we think that the developed tools allow users to arbitrarily change 
the correlation threshold that serves as a criterion for putting edges among bac-
teria when constructing a bacterial correlation network, and that such a function 
can be used to adjust and cope with this issue to some extent.

•	 As a criterion for selecting representative bacteria from the unified bacterial 
groups, we currently adopt the maximum average value of relative abundance. In 
this case, there is a possibility that some biologically important bacteria could be 
hidden by unification. Therefore, in the developed tool, a list of unified bacteria is 
presented as output (3), together with their representatives. We can address this 
issue by checking the structure of the clusters.

Conclusion
In this paper, we propose a method for finding candidate bacteria associated with 
changes in the attribute values of two sets of samples, which have different attrib-
ute values mainly related to some human diseases (typically, a healthy group and a 
diseased group), by focusing on the phenomenon called rewiring of the bacterial 
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correlation network. The proposed method was applied to actual data of human colo-
rectal cancer patients, and we verified its usefulness.

Although this method was developed for human diseases with the identification of 
their causative bacteria as a starting point, it goes without saying that the scope of its 
application is not limited to this. In other words, it can be widely applied when the 
elements in each of two groups of data with different attribute values are correlated 
in some way, and the differences between the two groups can be detected based on 
the correlations (networks). Furthermore, it is expected to be useful not only for the 
purpose of comparing two groups but also for interpreting the meaning of the data of 
each group.
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