
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Liu et al. BMC Bioinformatics          (2024) 25:116  
https://doi.org/10.1186/s12859-024-05706-9

BMC Bioinformatics

Integration of scRNA-seq data 
by disentangled representation learning 
with condition domain adaptation
Renjing Liu1†, Kun Qian1†, Xinwei He1 and Hongwei Li1* 

Abstract 

Background: The integration of single-cell RNA sequencing data from multiple 
experimental batches and diverse biological conditions holds significant importance 
in the study of cellular heterogeneity.

Results: To expedite the exploration of systematic disparities under various biologi-
cal contexts, we propose a scRNA-seq integration method called scDisco, which 
involves a domain-adaptive decoupling representation learning strategy for the inte-
gration of dissimilar single-cell RNA data. It constructs a condition-specific domain-
adaptive network founded on variational autoencoders. scDisco not only effectively 
reduces batch effects but also successfully disentangles biological effects and con-
dition-specific effects, and further augmenting condition-specific representations 
through the utilization of condition-specific Domain-Specific Batch Normalization lay-
ers. This enhancement enables the identification of genes specific to particular condi-
tions. The effectiveness and robustness of scDisco as an integration method were ana-
lyzed using both simulated and real datasets, and the results demonstrate that scDisco 
can yield high-quality visualizations and quantitative outcomes. Furthermore, scDisco 
has been validated using real datasets, affirming its proficiency in cell clustering quality, 
retaining batch-specific cell types and identifying condition-specific genes.

Conclusion: scDisco is an effective integration method based on variational autoen-
coders, which improves analytical tasks of reducing batch effects, cell clustering, retain-
ing batch-specific cell types and identifying condition-specific genes.

Keywords: ScRNA-seq, Cellular heterogeneity, Integration, Variational autoencoder, 
Disentangled representation learning, Condition domain adaptation

Background
Single-cell RNA sequencing (scRNA-seq) has emerged as a crucial technique for quan-
tifying gene expression at the resolution of individual cells, thus offering a powerful 
instrument in unraveling cell heterogeneity and deciphering the intricate molecular 
mechanisms that underlie diseases [1, 2]. The swift advancement of scRNA-seq technol-
ogy has resulted in the accumulation of vast and diverse single-cell gene expression data-
sets, derived from diverse laboratories and platforms [3, 4]. These datasets encompass a 
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wide array of species, tissue types, and experimental conditions [5]. The analysis of such 
heterogeneous datasets necessitates the integration of multiple scRNA-seq datasets to 
mitigate the influence of batch effects, which can introduce expression biases and con-
found biological variation [6, 7], thereby giving rise to erroneous inferences in subse-
quent analyses. Consequently, the correction of batch effects assumes vital importance 
in comprehensively investigating cellular biology. Numerous unsupervised methods for 
batch effect correction have been developed to overcome this challenge.

One category of methods is based on traditional approaches. These methods, inspired 
by the concept of Mutual Nearest Neighbors (MNN) as introduced by Haghverdi et al. 
[8], include Seurat v3 [9] and Scanorama [10]. In these methods, a reference dataset 
serves as a baseline to guide the correction of a target dataset. This correction is achieved 
by calculating correction vectors based on the distances between corresponding pairs of 
cells from the two datasets within a shared space. Another approach involves merging 
clustering algorithms with batch effect removal techniques. These methods cluster anal-
ogous cells from various datasets, construct joint graphs accounting for strength of con-
nections, and subsequently apply community detection algorithms to identify cells that 
are intrinsically linked across different batches. Harmony [11], for instance, highlights 
the clustering of cells from diverse batches and associates cells from all datasets with 
cluster centroids. Additionally, there exist methods that rely on Non-negative Matrix 
Factorization (NMF), such as scINSIGHT [12], which jointly model and decompose 
the gene expression matrices of individual samples into condition-specific and shared 
modules.

Deep learning methods have also emerged as an outstanding category in the field of 
biology, leveraging the power of neural networks to tackle complex challenges. These 
approaches have attracted significant attention due to their ability to discern the under-
lying structure of scRNA-seq data and mitigate batch effects through intricate nonlin-
ear transformations [13]. For instance, MMD-ResNet [14] employs a residual neural 
network to minimize distribution discrepancies among datasets. scVI [15] estimates 
parameters based on the principles of Variational AutoEncoder (VAE) [16]. DESC [17] 
removes batch effects through iterative clustering. Cell BLAST [18] aligns cells from 
different batches using a neural network-based generative model with adversarial strat-
egies. DeepMNN [19] explores MNN pairs across batches in PCA space to minimize 
distances. iMAP [20] incorporates a generative adversarial network (GAN) [21] to match 
the distribution of shared cell types using style transfer techniques. SCIDRL [22] gen-
erates biologically meaningful and batch effect independent representations. CLEAR 
[23] maximizes the similarity of positive sample expression and minimizes the similarity 
of negative samples through a self-supervised contrastive learning framework, thereby 
learning shared cell expression representations across different datasets. In conclusion, 
deep learning-based methods effectively alleviate batch effects through their network 
architecture and robust fitting capabilities, outperforming traditional approaches in scal-
ability and their capacity to handle larger and more complex scRNA-seq datasets [24].

While existing methods have demonstrated their utility in mitigating batch effects 
across multiple single-cell samples, they often inadvertently confound the underlying 
biological distinctions that exist between different conditions, such as different stages 
of various diseases, which can significantly impact subsequent biological analyses. 
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scDisInFact [25] considers removing batch effects while preserving the nuanced bio-
logical signatures specific to each condition. scDisInFact, employing sophisticated mod-
eling techniques, employs VAEs for disentanglement by optimizing seven loss functions. 
Moreover, to discriminate among various conditions, scDisInFact establishes separate 
encoders for the shared biological effects and conditional effects to facilitate distinct 
encoding processes from the outset and then maximizes the maximum mean discrep-
ancy (MMD) across diverse conditions, which is used to ensure that the latent repre-
sentation of each condition type is independent of both the batch and other irrelevant 
condition types. Different from scDisInFact and drawing inspiration from established 
methods in scRNA-seq data integration and cognizant of their inherent limitations, we 
introduce scDisco, which takes advantage of disentangled representation learning with 
condition domian adaptation to integrate biologically heterogeneous scRNA-seq data. 
scDisco, employing VAEs for disentanglement, features a reduced network complex-
ity and superior generalization performance. Moreover, we are inclined to consider 
that condition-specific biology represents an integral facet of the broader biological 
landscape. Hence, we initially employ a shared encoder. To discriminate among vari-
ous conditions, scDisco adopts a unique stance by further enhancing the disentangled 
condition-specific biological representations through conditional domain adaptation. 
This meticulous process yields finely-tuned, discriminative representations of condition-
specific biology. These representations can be directly applied to identify condition-spe-
cific genes within networks, thus enhancing precision in downstream analyses. Different 
from other methods, scDisco transcends the mere correction of batch effects; it adeptly 
retains the intricate biological condition-specific information and unravels the underly-
ing biological intricacies associated with diverse conditions. Moreover, recognizing the 
potential interaction among condition-specific biological effects, scDisco systematically 
disentangles and diminishes the confounding similarities that might exist between dis-
tinct conditions.

Specifically, scDisco takes preprocessed scRNA-seq expression matrices annotated 
with batch information as input, and then disentangles the shared biological representa-
tion from the condition-specific biological representation. In the process of removing 
batch effects, scDisco skillfully preserves the invaluable condition-specific biological 
information. Notably, scDisco employs domain-specific batch normalization (DSBN) 
[26], an ingenious technique originating from the field of domain adaptation, which 
plays a pivotal role in negating inter-condition similarities. We evaluated the perfor-
mance of scDisco on both simulated and real datasets, comparing it with state-of-the-
art methods. The experimental results demonstrate that scDisco effectively corrects for 
batch effects and achieves significant improvements in performance metrics compared 
to nine other methods. Furthermore, our experimental endeavors corroborate scDisco’s 
unique capacity to preserve batch-specific cell subtypes. Importantly, scDisco faithfully 
retains the distinct biological signatures tied to different conditions. This crucial capa-
bility facilitates the probing of condition-associated genes, exemplified by the discern-
ment of noteworthy candidates such as NFATC3, associated with chronic obstructive 
pulmonary disease, and MAGEA6, linked to pancreatic ductal adenocarcinoma. These 
insights, discovered using scDisco, hold substantial promise for advancing the frontier of 
disease biology research.
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Methods
In this section, we will delve into the fundamental architecture of scDisco, detailing its 
implementation steps, experimental setup, and quantitative metrics. Additionally, we 
will introduce comparative methods and briefly outline the datasets employed in this 
academic study.

An outline of the scDisco method

The primary objective of scDisco is to minimize ambiguity between biology and technol-
ogy while preserving condition-specific biological effects and extracting condition-spe-
cific genes. The method is rooted in the elegant framework of variational autoencoders, 
which disentangles the gene expression profiles into two independent representations: 
a shared biological representation and a condition-specific biological representation. 
scDisco comprises an array of essential components, each playing a pivotal role. These 
components include a shared feature encoder, a shared biological encoder, a dedicated 
condition encoder, condition-specific Domain-Specific Batch Normalization layers (con-
dition-specific DSBNs), a condition classifier, and a decoder, as illustrated in Fig. 1. The 
encoder assumes the critical responsibility of encoding the preprocessed scRNA-seq 
expression matrix, annotated with batch information, into a latent representation that 
removes batch effects. The decoder maps the annotated latent space back to the scRNA-
seq expression matrix. We introduce each of these steps in detail below.

Shared Encoder. scDisco takes a preprocessed scRNA-seq expression matrix, 
denoted as X = [xij] ∈ R

n×m , alongside the one-hot encoded batch information 
B ∈ R

n×b as input, where n represents the total number of cells; m represents the 
number of genes after preprocessing; b represents the number of batches. First, 
the expression matrix and batch information are fed into a shared feature encoder, 

Fig. 1 Overview of the scDisco method. scDisco comprises three key components: Shared Encoder, 
Encoding biological information component and Encoding condition specificity information component
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yielding shared features L ∈ R
n×d , which is a latent representation of dimension d . 

Subsequently, non-shared encoders, namely the common-bio biological encoder and 
the condition encoder, are employed to disentangle the shared features L , resulting 
in two distinct representations: a shared biological representation and a condition-
specific biological representation. The reconstruction process combines these repre-
sentations with the batch information, ultimately generating a reconstructed matrix 
X = [xij] ∈ R

n×m . The network model is trained with a combination of reconstruc-
tion loss and the Evidence Lower Bound (ELBO) loss to remove batch effects.

Encoding biological information. To capture biological information, the shared 
features L undergo a disentanglement process through the shared biological 
encoder. This operation yields the mean µbio = [(µbio)ij] ∈ R

n×d1 and the variance 
σ
2
bio = [(σ 2

bio)ij] ∈ R
n×d1 for the shared biological representation. Subsequently, the 

shared biological embedding Zbio ∈ R
n×d1 is obtained, with its dimension d1(d1 ≪ m)

.
Encoding condition specificity information. Similarly, to encode condition-specific 

biological information, the shared features L are disentangled using the condition 
encoder, yielding the mean the mean µcond = [(µcond)ij] ∈ R

n×d2 and the variance 
σ
2
cond = [(σ 2

cond)ij] ∈ R
n×d2 of the condition-specific biological representation. Sub-

sequently, the condition-specific biological embedding Zcond ∈ R
n×d2 is derived, with 

a reduced dimension d2(d2 ≪ m) . Next, Zcond serves as the input for the condition-
specific DSBN layers (DSBN 1, DSBN 2, . . . , DSBN C, where C represents the number 
of condition categories). These layers extract similarity information between condi-
tions, resulting in the condition-shared information representation Z ′

cond ∈ R
n×d2 that 

eliminates domain-specific information. To further extract condition-specificity, the 
condition-specific biological embedding Zcond is differenced with the condition-shared 
information representation Z ′

cond , generating the condition-specific invariant represen-
tation Zsp

cond ∈ R
n×d2 . Finally, Zsp

cond is fed into the condition classifier for predicting the 
condition category. This aims to separate condition-specific factors from shared biologi-
cal effects and prevent their removal as part of the batch effects.

Therefore, the training process of scDisco entails optimizing network weights 
while simultaneously minimizing reconstruction loss, ELBO loss, and condition 
classification loss. The outputs of scDisco comprise the shared biological embedding 
Zcond and the condition-specific invariant representation Zsp

cond.

Data pre‑processing

For all scRNA-seq datasets used, scDisco employs Scanpy [27] to preprocess the raw 
expression matrices. The preprocessing steps are as follows: First, genes that are 
not expressed in fewer than one cell and cells with less than 200 expressed genes 
are filtered out. Second, the gene expression of each cell is normalized by its library 
size factor. The library size factor is defined as the total count in the cell divided by 
the median total count of all cells. Third, the normalized data is log-transformed, 
and 3000 highly variable genes are selected. These genes are then transformed into 
z-scores, ensuring that the expression levels of each gene have a zero mean and unit 
variance across all cells.
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Encoders

Shared Encoder. The network input involves the preprocessed single-cell gene expression 
profile X accompanied by batch noise B . The extraction of shared features is facilitated 
through a neural network, denoted as Enc , which performs dimensional reduction as 
outlined below:

where φ represents the shared layer encoder Enc parameters.
Considering that condition effects are part of biological effects, while simultaneously 

reducing parameter counts and computational complexity, the neural network Enc 
shares two fully connected layers. The ReLU activation function is strategically employed 
between successive hidden layers, with the output layer also employing ReLU to enforce 
non-negativity of outputs. Utilizing the sparsity property of the ReLU function implies 
that each latent variable primarily activates a small subset of the data. This allows each 
latent feature to capture specific, unique aspects of the data and reduces computational 
load during training [28].

Common-bio Encoder. To obtain the shared biological embedding representation Zbio , 
scDisco employs VAE that leverages the continuous and regular properties of the latent 
space. The VAE learns the distribution of latent variables in this space. The generation of 
latent variables Zbio utilizes the reparameterization technique:

where φµbio
,φ

σ
2
bio

 represent the parameters of the encoder networks Encµbio
 and Enc

σ
2
bio

 , 

respectively. Both Encµbio
 and Enc

σ
2
bio

 are equipped with a fully connected layer that is 

not followed by the ReLU function.
Condition Encoder. Similarly, the acquisition of the condition-specific biological 

embedding representation Zcond relies on leveraging the reparameterization trick:

where φµzond
,φ

σ
2
zond

 represent the parameters of the encoders Encµzond
 and Enc

σ
2
zond

 , 

respectively. Encµzond
 and Enc

σ
2
zond

 are both equipped with a fully connected layer that is 

not followed by the ReLU function. Further particulars can be found in section of 
Implementation.

Optimizing Zcond : attaining more specific conditional information

To enhance the specificity of the condition-specific biological embedding, scDisco 
employs a meticulous optimization scheme. By refining the encoding process, scDisco 

(1)L = Enc(X ,B;φ),

(2)Zbio = σ
2
bioζbio + µbio,

(3)µbio = Encµbio
(L;φµbio

) , σ
2
bio = Enc

σ
2
bio
(L;φ

σ
2
bio
) , ζbio ∼ N(0, Id1×d1),

(4)Zzond = σ
2
zondζzond + µzond ,

(5)
µzond = Encµzond

(L;φµzond
) , σ

2
zond = Enc

σ
2
zond

(L;φ
σ
2
zond

) , ζzond ∼ N(0, Id2×d2),
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aims to capture intricate and comprehensive information related to the specific experi-
mental conditions.

Condition-specific DSBNs. In the field of domain adaptation in deep learning, Batch 
Normalization is a widely used technique for normalization that expedites the conver-
gence of neural networks. Drawing inspiration from domain adaptation, our method 
aims to differentiate domain-specific information from domain-invariant information, 
thereby improving generalization performance. To achieve this, we introduce condi-
tion-specific Domain-Specific Batch Normalization layers (DSBNs), which optimize the 
condition-specific biological representations Zcondc . The DSBNs incorporate multiple 
branches of Batch Normalization (BN) layers, customized to the number of condition 
types. Each branch is assigned to a particular conditional domain.

By retaining BN for each condition domain and independently normalizing data from 
different condition sources, DSBNs assign domain-specific learnable scaling and shifting 
parameters for each conditional domain label c ∈ 1, 2, . . . ,C:

where ǫ is a small constant used to prevent division by zero. Therefore, Z
′

condc
 repre-

sents the similarity across conditions. It’s extracted by removing the mean and variance 
specific to different conditions, effectively eliminating the differences caused by varying 
conditions.

After being processed by the condition-specific DSBNs, the representation of condi-
tional shared information Z

′

condc
 effectively reduces the condition-specificity among dif-

ferent types of conditions. By applying a subtraction operation to each conditional field, 
we obtain more condition-specific representations to each condition domain:

This step aims to retain condition-specific information while removing differences in 
mean and variance caused by different conditions.

Classifier. In order to maximize the discrimination of conditional heterogeneity fac-
tors and protect them from being mistaken for batch-related noise, scDisco introduces 
a conditional classifier denoted as Cls . This classifier is constructed utilizing a neural 
network endowed with learnable parameters represented by φCls . scDisco proceeds by 
inputting the conditioned latent variable Zsp

condc
 into the conditional classifier, which 

contains richer and more specific information about the conditions. Cls serves the pur-
pose of condition label classification, producing probabilities for each cell’s membership 
within various classes specific to the given condition. The dissimilarity between the pre-
dicted conditional probability distribution and the true conditional distribution is quan-
tified through the utilization of the cross-entropy loss function:

where ct represents the true condition label, encoded in a one-hot representation; the 
neural network Cls employs fully connected layers, incorporating ReLU activation 

(6)Z
′

condc
[i, j] =

Zcondc [i, j] − µc√
σ 2
c + ǫ

,

(7)Z
sp
condc

= Zcondc − Z
′

condc
.

(8)lossCls = −ct logCls(Z
sp
condc

;φCls),
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functions within its intermediate layers. Configuration details can be found in section of 
Implementation.

Decoder and loss function

We model X as a joint generation of embedding variables Zbio within a d1-dimensional 
shared biological latent space, Zcond within a d2-dimensional condition-specific biological 
latent space, and batch noise B . The decoding procedure in scDisco employs a fully con-
nected network called Dec , parameterized by θ . Dec serves the purpose of mapping both 
the biological latent space and the condition-specific biological latent space back to the pre-
processed gene expression space, as expressed by the equation:

where Dec comprises three fully connected layers. Details can be found in section of 
Implementation.

While the derivation of the posterior probability distribution p(Z|X ,B) involves intri-
cate computations related to the marginal distribution p(X |B) , necessitating integration 
over latent variables, we introduce a variational distribution qφ(Z|X ,B) . This distribution 
is defined by an encoder neural network, aiming to provide an approximate of the posterior 
distribution p(Z|X ,B) , where φ represents the learnable parameters of the encoder. In the 
subsequent sections, we present the pivotal steps of this process, with comprehensive deri-
vations available in the Supplementary Methods of Additional file 1 for further reference.

Utilizing Monte Carlo estimation and employing the Kullback–Leibler (KL) divergence, 
we measure the similarity between p(Z|X ,B) and qφ(Z|X ,B) with the objective of mini-
mizing the KL divergence DKL(qφ(Z|X ,B) || p(Z|X ,B)) . This endeavor gives rise to the fol-
lowing optimization problem:

The act of minimizing the KL divergence as described in Eq. (10) is equivalent to the 
maximization of the evidence lower bound (ELBO) [29], expressed as follows:

In Eq. (11), the distribution pθ (X |Z,B) follows a Gaussian distribution N(Dec(Z,B), cI) . 
Assuming the separability of the biological latent space and the condition-specific bio-
logical latent space, our Multi-facet variational distribution qφ(Z|X ,B) [30] adopts a 
mean-field form:

(9)X̃ = Dec(Zbio,Zcond ,B; θ),

(10)min
φ

DKL

(
qφ(Z|X ,B) || p(Z|X ,B)

)
.

(11)

min
φ

DKL

(
qφ(Z|X ,B) || p(Z|X ,B)

)

= max
φ,θ

ELBO

= max
φ,θ

{
Ez∼q[log pθ (X |Z,B)] − DKL

(
qφ(Z|X ,B) || p(Z)

)}
.

(12)qφ(Z|X ,B) = qφ(X ,B)

J∏

j=1

qφ(Z j|X ,B),
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where J=2. For each j, the variational distribution qφ(Z j|X ,B) takes the form of a multi-
variate Gaussian distribution featuring a diagonal covariance matrix, and its mean and 
variance are determined by the encoder Encµbio

 , Encµcond
 , Enc

σ
2
bio

 and Enc
σ
2
cond

.

As a result, our VAE loss function can be defined as follows:

The objective function of scDisco can be formulated as follows:

where the first term in the objective function aims to minimize the reconstruction error; 
the second term represents the ELBO loss; the third term corresponds to the conditional 
classification loss; � and µ are coefficients used to weigh the importance of these losses, 
respectively.

Condition‑specific genes selection

For each dataset, assuming we have C sets of conditions, we sequentially use each con-
dition (e.g., condition c1 ) to treat the cells in that set as the query dataset, while con-
sidering the remaining conditions (e.g., c2, c3, . . . , cC ) as the reference dataset. Within 
this framework, we calculate the condition-specific domain-invariant representation 
deviations ( �z

sp
cond ∈ R

d2 ), which quantify the distinctions between the query cells and 
the reference cells. Subsequently, we perform backpropagation of gradients through the 
neural network, directing them back to the input gene expression space:

where ∂z
sp
cond
∂ x̃

∈ R
d2×m and �x̃ ∈ R

m.
To provide greater precision, scDisco initiates by employing a stochastic process. Spe-

cifically, we randomly select five cells from the reference dataset for each cell within the 
query dataset, thereby strengthening the robustness of our model. Subsequently, we 
compute the average of the embedded representations for these five cells and normalize 

(13)

lossVAE = −ELBO

= DKL

(
qφ(Z|X ,B) || p(Z)

)
− Ez∼q[log pθ (Z|X ,B)]

=

J∑

j=1

[DKL

(
qφ(Z j|X ,B) || p(Z j)

)
] − Ez∼q[log pθ (Z|X ,B)]

=

m∑

i=1

n∑

j=1

||xij − x̃ij||
2

+ �

(1
2

d1∑

i=1

n∑

j=1

((µbio)
2
ij + (σbio)

2
ij − 1− log(σbio)

2
ij)

+
1

2

d2∑

i=1

n∑

j=1

((µcond)
2
ij + (σcond)

2
ij − 1− log(σcond)

2
ij)

)

�
= loss1 + � loss2.

(14)loss = loss1 + � loss2 + µ lossCls,

(15)�x̃ =

(
∂z

sp
cond

∂ x̃

)
⊺

·�z
sp
cond ,



Page 10 of 26Liu et al. BMC Bioinformatics          (2024) 25:116 

the deviation relative to the query cell, yielding a unit vector denoted as �z
sp
cond

 . This unit 
vector provides us with the gene gradients that represent the movement of cells from 
other conditions towards the query condition.

Following this, we engage in backpropagation, utilizing the gradients of the embedded 
representation pertaining to the query cell, with the normalized deviations serving as 
gradient values. This procedure provides us with gene gradient values for all cells operat-
ing under that specific condition.

Consequently, we proceed to determine the average gene gradient value �x̃ for each 
gene within this condition. Increased gradient values serve as indicators of heightened 
gene expression levels, thereby contributing significantly to the directional movement of 
cell embeddings towards the specific condition in focus. This process effectively identi-
fies these genes as pivotal features within that condition.

In conclusion, we conduct a sorting operation on all gene gradient values associated 
with each condition, subsequently selecting the top 15 genes distinguished as the most 
significant contributors.

Implementation

scDisco is implemented in Python 3.8, using Scanpy version 1.9.3 for data preprocessing. 
Within our model architecture, the shared feature encoder and decoder are equipped 
with hidden layers, their dimensions thoughtfully configured as 512, 256, dim, 256, 
512, with dim representing the dimensionality of the bottleneck layer. The dimension 
of the common-bio encoder is determined based on the number of cells, and one can 
find detailed specifications in Table S1 of Supplementary Tables [see Additional file 1]. 
Concurrently, the dimension of the condition encoder is set to 8. We use the Adam for 
optimization with a learning rate of 0.0001 and train scDisco for a total of 50 epochs for 
real datasets. The hidden layer sizes of the condition classifier are set as 100, 100, 100, 
100, and the Adam optimizer is used with a learning rate of 0.0001. The loss function 
weights are set as hyperparameters with � = 0.001 and µ = 0.001 . The analysis of how 
to choose hyperparameters � = 0.001 and µ = 0.001 can be found in the Table S2–S9 of 
Supplementary Tables [see Additional file 1].

For thorough quantitative evaluation across all datasets, we employ a suite of robust 
metrics. These include ARI [31] and NMI [32], which provide insights into clustering 
quality. ARI compares known cell type labels with the integrated clustering results, 
ranging from −1 to 1, where a value closer to 1 indicates better clustering performance. 
Comparing known cell type labels with the integrated clustering results, the NMI ranges 
from 0 to 1, where a value closer to 1 indicates better clustering performance. Addition-
ally, we utilize two integrated metrics ASW [33] and F1 Score [7], which both represent 
a combination of batch-wise ASW (BASW) and cell-wise ASW (CASW). ASW ranges 
from 0 to 1, with a higher ASW indicating better batch correction effectiveness. And 
a higher F1 Score indicates better batch correction effectiveness. The clustering labels 
are efficiently computed using the k-means algorithm. We use Zbio for UMAP visuali-
zation and the above metrics calculations, and we employ Zsp

cond for condition UMAP 
visualization and identification of associated genes. Comprehensive details pertaining to 
these evaluation metrics, a more detailed explanation of the rationale behind our data 
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selection and the data selection of comparison methods for plotting and clustering can 
be referenced in the Additional file 1: Sect. 3.1.

For datasets containing fewer than 10,000 cells, we adopt a meticulous approach to 
mitigate algorithmic variability and ensure fair comparisons. scDisco entails comput-
ing the above metrics by performing ten iterations of sampling, each involving 95% 
subsampling per class of cell from the original expression data. When conducting ten 
repetitions of the sampling experiment with a dataset size exceeding 10,000 cells, certain 
methods lead to an extension of the computational runtime to more than 48 h. There-
fore, for datasets surpassing the 10,000-cell threshold, considering memory consump-
tion and resource limitations, we perform experiments on the complete dataset without 
sampling for comparison. In particular, for datasets with more than 20,000 cells when 
calculating F1 Score and ASW, we do not perform 20 repeated samplings to evaluate 
certain comparative methods due to their time and memory requirements. Instead, we 
only calculate the results once without sampling, while still conducting sampling in all 
other experiments.

Integration methods used for comparison

To assess the efficacy of the scDisco method, we compare it with nine other methods: 
Seurat [9], Harmony [11], Scanorama [10], DESC [17], scVI [15], Cell BLAST [18], 
SCIDRL [22], scDisInFact [25], and scINSIGHT [12]. Specifically, Seurat, Harmony, and 
Scanorama are classical traditional methods that do not utilize neural networks. DESC 
employs a self-encoding network framework for batch effect removal through the con-
cept of deep embedded clustering, whereas our method operates within an enhanced 
variational autoencoder framework. Additionally, we contrast our approach with scVI 
and Cell BLAST, both of which employ a variational autoencoder framework. SCIDRL 
is a method based on the resolution of confounding by separating batch noise, while 
our method utilizes the idea of disentangling to separate condition-specific biological 
effects. Furthermore, we compare our method with scDisInFact and scINSIGHT, meth-
ods that address heterogeneous samples originating from different biological conditions 
and separate these condition biological effects. To ensure the fairness of the compari-
son experimental results, we have not made any modifications to the code and tutorials 
provided by the authors, excluding the mismatch between the tutorials and the original 
paper descriptions. All comparison methods are implemented using the default param-
eters and the default preprocessing steps.[see Additional file 1: Tables S10 and S11].

The experiments were carried out on a workstation with an Intel(R) Iris(R) Xe graph-
ics card, eight 11th Gen Intel(R) Core(TM) i5-1155G7 @ 2.50GHz CPUs, and 16 G ran-
dom access memory (RAM). It’s worth noting that we performed all experiments for all 
methods in the CPU environment.

Datasets

The simulated dataset used in our study was generated using the scDesign R package 
[34]. It consists of 3000 cells and 4977 genes. This dataset was designed to simulate data 
from three time points (T1, T2, T3), with two samples at each time point, resulting in a 
total of six distinct cell types (c1, c2, c3, c4, c5, c6). Notably, the cell types c1, c2, and c3 



Page 12 of 26Liu et al. BMC Bioinformatics          (2024) 25:116 

are present across all samples, while the cell types c4, c5, and c6 are only found under 
specific conditions (Table 1).

For the real datasets, we acquired six publicly available datasets with cell annotation 
labels. These datasets encompass five human datasets and one mouse dataset. Compre-
hensive details and download links for these six datasets are provided in the Supplemen-
tary Methods of Additional file 1, and the specific quantity information is summarized 
briefly in Table 2.

Results
To evaluate the performance of scDisco in the integration analysis of scRNA-seq data, 
we conducted experiments on both simulated and real datasets. By comparing it with 
nine other integration methods, we demonstrated that scDisco possesses an advantage 
in batch effect removal and can extract condition-related significant genes. All com-
parative methods were carefully executed in strict adherence to their respective recom-
mended standard pipelines.

scDisco improves cell‑type resolution and batch‑effect correction on simulated data

In order to benchmark the performance of the scDisco method, we conducted experi-
ments using simulated scRNA-seq data with known cell type composition and condi-
tion-specific effects as outlined in Table 1.

For raw data, we observed that the data exhibited a phenomenon where the true cell 
types were indistinguishable due to variations in cell types, batches, and conditions, as 
illustrated in Fig.  2A. And cells, for which batch effects are not initially removed, are 
influenced by specific time points, leading to clustering patterns that may be mislead-
ing. Taking into account the influence of random factors, we performed ten repeated 

Table 1 Cell type compositions in the simulated dataset

Condition Sample Cell type

c1 c2 c3 c4 c5 c6

T1 S1 100 100 100 0 100 100

S2 100 100 100 0 100 100

T2 S3 100 100 100 100 0 100

S4 100 100 100 100 0 100

T3 S5 100 100 100 100 100 0

S6 100 100 100 100 100 0

Table 2 Quantitative information of the six real datasets

Datasets No. of cells No. of genes No. of groups No. of batches

Human pancreas2 [35] 2914 30415 13 10

Human lung [36] 3566 19206 14 4

Human pancreas [37] 8569 20125 14 4

Mouse mucosa [38] 43677 30446 24 4

Human epithelium [39] 32926 26528 10 15

Human ductal [40, 41] 57530 18008 10 35
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experiments for each method on the simulated dataset, with comprehensive details on 
the experimental settings available in the Implementation section. When running ten 
sampling iterations on simulated data with scINSIGHT, the computation time will be 
extended to over 10 h. Therefore, we applied only scDisco alongside eight other com-
parative methods—Seurat, Harmony, Scanorama, DESC, scVI, Cell BLAST, SCIDRL, 
scDisInFact to the simulated dataset, using time points as the condition factor. Among 
these methods, we visualized the UMAP plots based on the average ARI values calcu-
lated from ten runs for each method. These plots were organized in descending order to 
facilitate comparison. Figure 2 showcases the visualizations for four of these methods, 
while additional visualizations for the remaining methods can be found in Additional 
file 1: Fig. S1.

The visual representations clearly demonstrate the successful identification and segre-
gation of the true cell types accomplished by scDisco (Fig. 2A). In addition, our method 
effectively retains specific batch-related effects, as evidenced by the UMAP plots 

Fig. 2 The integrated comparation of the simulated dataset. A UMAP plots of Raw and the cell embeddings 
produced by scDisco, scVI, Harmony, and Seurat. Each point represents a cell, and each column represents 
a method, while each row corresponds to the UMAP plot with coloring based on true cell types, batch IDs, 
and condition IDs. B–E Boxplots of ARI, NMI, BASW, and ASW values of each method by applying the nine 
integration methods to randomly selected subsamples of the complete simulated data
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wherein cells c4, c5, and c6 remain adequately preserved and separate, despite their pres-
ence in distinct batches. Conversely, the other methods fail to segregate cells c4, c5, and 
c6 (Figs. 2A, S1A). Using the known ground truth cell labels, we computed the NMI and 
ARI scores, which indicate that scDisco achieves results close to 1 and exhibits remark-
able stability (Fig.  2B, C), in line with the ground truth. Additionally, scDisco attains 
high scores in the computation of BASW and ASW metrics (Fig. 2D, E), indicating that 
the distances between cells from different batches are similar to within-batch distances, 
while the distances between cells of the same cell type are also relatively close. To visu-
ally present the distances between different cell clusters on the plot, we utilized PCA for 
linear dimensionality reduction and visual analysis, as shown in Additional file 1: Fig. S2. 
And we quantitatively assessed whether cells of the same type after integration became 
dissimilar, which can be found in Additional file 1: Table S13.

scDisco identifies batch‑specific cell types

To further validate the ability of scDisco in preserving batch-specific cell types, we per-
formed experiments on the dataset of human lung. For the human lung, we first con-
sidered data cleaning by removing cells with unknown true cell types and eliminating 
cell types with a count below one percent. As a result, the dataset comprised 3202 cells 
belonging to 13 distinct cell types across 4 batches. Among these batches, Muc3843, 
Muc4658, and Muc5103 batches shared nine cell types with the Muc5104 batch. Nota-
bly, the Muc5104 batch exhibited unique cell types, including lung ciliated cells, trans-
formed epithelial cells, lung secretory cells, and type II pneumocytes cells. The eight 
comparative methods were ranked based on the average ARI values calculated from ten 
iterations. The UMAP plots were visualized in a descending order, and here we only pre-
sent the visualizations of three comparative methods in Fig. 3A. The remaining methods 
can be found in Additional file 1: Fig. S3.

scDisco effectively separated lung ciliated cells and transformed epithelial cells, with 
minimal admixture of lung secretory cells with other cell types. Type II pneumocytes 
cells were mainly separated as well, highlighting the ability of scDisco to preserve batch-
specific cell types (Fig. 3A). DESC managed to separate a significant portion of lung cili-
ated cells, but it exhibited a slight mixture with B cells, and type II pneumocytes cells 
could not be distinguished from B cells (Fig. 3A). SCIDRL divided type II pneumocytes 
cells into two clusters and failed to cluster transformed epithelial cells.

Although both Cell BLAST and scVI successfully separated lung ciliated cells, they 
exhibited some degree of mixing with lung secretory cells and type II pneumocytes cells, 
along with other cell types (Fig.  3A). Harmony failed to separate lung secretory cells 
and mixed type II pneumocytes cells with B cells. Seurat failed to separate transformed 
epithelial cells, lung secretory cells, and type II pneumocytes cells. scDisInFact failed to 
distinguish type II pneumocytes cells from B cells. Scanorama was unable to separate 
the four batch-specific cell types belonging to Muc5104 [see Supplementary Figures of 
Additional file 1, Fig. S3A].

Additionally, except for scDisco, which showed minimal mixing between lung mac-
rophage cells with B cells, all other methods resulted in a significant mixture between 
these two cell types. Moreover, apart from scDisco and SCIDRL, other methods showed 
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considerable mixing between type II pneumocytes and B cells. In terms of performance 
metrics, scDisco achieved higher ARI scores and the highest F1 score values (Fig. 3B, C). 
Additionally, it also exhibited superior values in NMI and ASW scores [see Supplemen-
tary Figures of Additional file 1: Fig. S3B, C].

To evaluate the performance of scDisco on integrating datasets with a limited number 
of shared common cell types while preserving batch-specific cell type clusters, we con-
structed a specialized dataset with only one shared cell type, named Human pancreas-
subset [see Detailed description of the real datasets]. Then, we conducted integration 
using scDisco and nine comparison methods (Additional file 1: Fig. S4 of Supplemen-
tary Figures). scDisco could effectively retain and separate all nine cell types, with only 
a slight mixture between endothelial cells and acinar cells, as shown in Additional file 1: 
Fig. S4A. And scDisco achieved the highest ARI, demonstrating favorable outcomes in 
batch mixing and preserving cell purity, as observed in Additional file 1: Fig. S4B, C.

scDisco achieves effective integration of multiple batches on datasets with varying species 

and data sizes

To evaluate the performance of scDisco on datasets with varying numbers of batches, 
species, and data sizes, we conducted experiments using simulated data and five data-
sets: a small-scale dataset called human pancreas2 with 10 batches, a small-scale data-
set called human lung with 4 batches, a slightly larger human pancreas dataset with 4 

Fig. 3 The integrated comparation of the human lung dataset. A UMAP plots of Raw and the cell 
embeddings produced by scDisco, DESC, SCIDRL, and Cell BLAST. Each point represents a cell, and each 
column represents a method, while each row corresponds to the UMAP plot with coloring based on true cell 
types, batch IDs, and condition IDs. B–C Boxplots of ARI and F1 Score values of each method by applying the 
nine integration methods to randomly selected subsamples of the complete human lung data



Page 16 of 26Liu et al. BMC Bioinformatics          (2024) 25:116 

batches, a mouse mucosa dataset with 4 batches, and a large-scale human epithelium 
dataset with 15 batches. Due to the significant time and memory requirements of scIN-
SIGHT, especially when confronted with datasets of a scale surpassing 20,000 cells, scIN-
SIGHT cannot generate results, even after exceeding a runtime of 96 h. Consequently, 
our experimental purview was limited to encompass solely the simulated data and four 
real datasets: human pancreas2, human lung, human pancreas, and mouse mucosa. For 
other methods, we have shown results of simulated data and results of human lung in the 
preceding two sections. Before the analysis, we conducted data cleaning for all real data-
sets, removing cells with unknown cell types and cells from types that represented less 
than 1 % of the total cell count. As a result, the human pancreas2 dataset was reduced to 
2,125 cells with 8 cell types across 10 batches, the human pancreas dataset was reduced 
to 8,451 cells with 9 cell types across 4 batches, the mouse mucosa dataset was reduced 
to 10,974 cells with 17 cell types across 4 batches, and the human epithelium dataset was 
reduced to 24,163 cells with 5 cell types across 15 batches.

The scINSIGHT model was trained using the default parameters. Additionally, no 
sampling was performed on any of the five datasets. Specifically, we trained scINSIGHT 
and scDisco models using the five datasets individually and generated UMAP plots [see 
Supplementary Figures of Additional file  1: Fig. S9] along with the evaluation metrics 
ARI and F1 Score (Fig. 4). The results revealed that the batch effect removal effectiveness 
of the scDisco model on the UMAP plots was generally superior, with enhanced sepa-
ration between cell clusters. In the simulated data, the scINSIGHT model struggled to 
completely distinguish between the two cell types [see Supplementary Figures of Addi-
tional file  1: Fig. S9A]. However, for the other four real datasets, scDisco consistently 
achieved enhanced separation between cell clusters, as well as more cohesive clustering 
within clusters. Upon analyzing the integrated UMAP plots, it became apparent that the 
mixing performance of scDisco was comparable to that of scINSIGHT. Across all five 
datasets, scDisco yielded higher ARI scores (Fig. 4). Except for the simulated data and 
human pancreas2, scINSIGHT demonstrated higher F1 Score results, whereas scDisco 
had superior F1 Score performance on the remaining datasets.

For the comparison methods other than scINSIGHT, we conducted experiments sepa-
rately on human pancreas2, human pancreas, mouse mucosa, and human epithelium and 
compared them with scDisco. For the human pancreas2 dataset, scDisco demonstrated 
effective segregation for most cell types, although there was some minor co-expression 

Fig. 4 Bars of ARI and F1 Score of the five datasets by scINSIGHT and scDisco
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cell mixing with type B pancreatic cells [see Supplementary Figures of Additional file 1: 
Fig. S5A]. In the case of the human pancreas dataset, scDisco successfully achieved seg-
regation for the 9 cell types, although ductal cells exhibited some dispersion, and a small 
number of beta cells were intermingled with delta cells [see Supplementary Figures of 
Additional file 1: Fig. S6A]. For the mouse mucosa dataset, scDisco achieved basic sepa-
ration for the 17 cell types and exhibited relatively tight clustering, with only a few cell 
types split into two clusters [see Supplementary Figures of Additional file 1: Fig. S7A]. 
Furthermore, scDisco obtained the highest ARI, NMI, and F1 Score values [see Supple-
mentary Figures of Additional file 1: Fig. S7B–E]. Regarding the human epithelium data-
set, scDisco, scVI, and cell BLAST showed slightly lower separation compared to DESC 
for different cell types, with some mixing of KRT8-expressing intermediate cells with 
respiratory basal cells. However, they were still able to obtain reasonably tight cell clus-
ters [see Supplementary Figures of Additional file 1: Fig. S8A].

scDisco achieves effective integration of multiple batches on large‑scaled data

Furthermore, to evaluate the performance of scDisco on datasets characterized by larger 
sizes and a greater number of batches, we conducted experiments using the human 
ductal dataset and compared it against seven alternative methods, excluding Seurat and 
scINSIGHT. Seurat was not included in the comparative analysis due to its substantial 
resource requirements surpassing the memory capacity of our device, and the same 
applies to scINSIGHT. The seven methods were ranked according to the calculated ARI, 
and the UMAP visualizations were plotted in descending order. Figure 5 only displayed 
the visualizations for three of the comparative methods, while the visualizations for 
the remaining methods are presented in Additional file 1: Fig. S10. Notably, among the 
11 batches (N1 to N11), none of them contained ductal cell type 2. And none of the 5 
batches (T1, T3, T14, T18, T22) included ductal cell type 2.

scDisco has successfully achieved separation and clustering of cell populations, effec-
tively distinguishing ductal cell type 1 from ductal cell type 2 (Fig. 5A). scVI exhibited 
slight mixing of a small portion of ductal cell type 1 with ductal cell type 2, along with 
some fusion between ductal cell type 2 and acinar cells. Harmony mixed of a small 
portion of ductal cell type 1 with ductal cell type 2 and mixed T cells with other cells. 
DESC showed scattered results, with several cell clusters mixing with each other, and 
there was no distinct separation observed. Regrettably, Cell BLAST was unable to effec-
tively differentiate ductal cell type 1 from ductal cell type 2. Scanorama, scDisInFact, 
and SCIDRL mostly mixed all cells together [see Additional file 1: Fig. S10]. Experimen-
tal results have confirmed that scDisco has not only conserved batch-specific cells but 
also accomplished commendable clustering outcomes. In terms of performance metrics, 
scDisco has garnered the highest ARI, as depicted in Fig. 5B.

Concurrently, we transformed the variational autoencoder network into an autoen-
coder network to verify the effectiveness of the variational autoencoder. Specifically, we 
employed six real datasets to train the scDisco-VAE model and the scDisco-AE model. 
The results demonstrated that the scDisco-VAE model yielded superior batch effect 
removal effects in the UMAP plots, with enhanced separation between cell clusters and 
a more cohesive clustering within clusters [see Supplementary Figures of Additional 
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file 1: Fig. S12A]. Moreover, when evaluating the ARI metric across the six real datasets, 
the results consistently favored the scDisco-VAE model as illustrated in Additional file 1: 
Fig. S12B. Notably, except for the human epithelium dataset, the F1 Score metric also 
revealed higher values for the scDisco-VAE model.

scDisco identifies condition‑specific genes

To verify the capability of scDisco in effectively disentangling condition-specific fac-
tors from shared biological effects, we conducted experimental validations on all six real 
datasets: human lung, mouse mucosa, human ductal, human pancreas2, human pan-
creas, and human epithelium. The UMAP plots depicting the condition-specific invari-
ant representations acquired through encoding [Figs.  6A, 7A, S13, S14, S15 and S16 
in the Supplementary Figures of Additional file 1] reveal the discriminative prowess of 
scDisco in effectively discerning various condition categories. It is worth noting that the 
darker colors observed in the plots correspond to higher Gaussian kernel density esti-
mates of the computed embeddings, indicating a denser concentration of data points in 
those corresponding regions.

By applying scDisco to the human lung dataset, we successfully identified condition-
specific genes. Figure 6B shows that among the top 15 genes associated with the 62-year 

Fig. 5 The integrated comparation of the human ductal dataset. A UMAP plots of Raw and the cell 
embeddings produced by scDisco, scVI, Harmony and DESC. Each point represents a cell, and each column 
represents a method, while each row corresponds to the UMAP plot with coloring based on true cell types, 
batch IDs, and condition IDs. B–C Bars of ARI and F1 Score of the eight integration methods of the complete 
human ductal data



Page 19 of 26Liu et al. BMC Bioinformatics          (2024) 25:116  

condition, 10 genes, such as MIR4435-2HG and NFATC3, exhibit abundant expres-
sion in this condition, with a significant number showing high expression levels. Previ-
ous research has demonstrated the involvement of MIR4435-2HG in promoting tumor 
cell proliferation, invasion, and apoptosis resistance, linking it to various types of can-
cer [42]. Furthermore, studies indicate that the risk of lung cancer increases in COPD 
patients compared to non-COPD individuals, and the risk further rises with the pro-
gression of COPD [43]. Increased expression of NFATC3 [44] in lung tissue of COPD 
patients promotes the production of inflammatory cytokines, aggravating inflammatory 
responses. The expression level of NFATC3 positively correlates with the severity of 
COPD. NFATC3 serves as a key transcription factor connecting chronic inflammation 
and tissue damage induced by tobacco smoke breathing in. It is noteworthy that the sup-
pression of NFATC3 activity holds promise for improving the inflammatory response 
triggered by tobacco smoke exposure.

Fig. 6 Condition-specific genes of the human lung. A The UMAP density plot of the condition-specific 
invariant embedding based on age: 58 year, 62 year, and 69 year. B The violin plot of the gene expression 
distribution specifically for the 62-year-old condition. The width of the violin indicates the concentration of 
gene expression values, while its height represents the range of gene expression values. C The heatmap of 
the gene expression matrix displays the condition-specific gene expression patterns for the three categories: 
58 years, 62 years, and 69 years. The deeper the shade of yellow, the higher the gene expression value
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Given that the 62-year-old donor was diagnosed with chronic obstructive pulmo-
nary disease (COPD), it is reasonable to consider the specific genes associated with the 
62-year condition play a crucial role in the pathogenesis of this disease. To visually dem-
onstrate this, we generated a differential expression matrix plot (Fig.  6C) encompass-
ing all 45 genes linked to the three condition categories. Both the 58-year and 69-year 
donors were disease-free, and thus, the differential genes compared to the 62-year dis-
eased donor are visually distinguished with darker colors of yellow in the lower-right 
corner and the middle region. These two condition categories (58-year and 69-year) 
share condition-associated genes with the 69-year category.

Furthermore, we employed the mouse mucosa dataset, with the stimulation of inter-
feron alpha (IFN-α ) serving as the condition, to identify genes associated with stimula-
tion. Figure 7B demonstrates that out of the 15 genes identified by scDisco, 11 genes, 
such as Spint1 and FGF9, exhibited elevated expression levels, indicating a robust asso-
ciation with IFN-α . These findings suggest that these specific genes undergo alterations 
when mice are exposed to interferon alpha stimulation. Previous studies have proposed 
that IFN-α may induce the upregulation of Spint1 expression, thereby inhibiting the 
aging process in the skin [45]. Moreover, IFN-α has been shown to upregulate FGF9 
mRNA expression in dendritic cells derived from mouse bone marrow, facilitating fur-
ther understanding of IFN-α ’s role in immune regulation [46].

Subsequently, we validated scDisco using the human ductal dataset, comprising two 
groups of donors: individuals with primary pancreatic ductal adenocarcinoma (PDAC) 
tumors (T) and healthy individuals (N). Notably, Additional file  1: Fig. S13B show-
cases that scDisco successfully identified 12 out of the 15 genes (PKHD1L1, XIRP1, 
CTSV, MAGEA6, PIP, GFI1, CDH19, MEOX1, CNR2, CA12, GNAT3, KLK8, ITGB6) as 

Fig. 7 Condition-specific genes of the mouse mucosa. A The UMAP density plot of the condition-specific 
invariant embedding by scDisco based on interferon alpha stimulation (interferon alpha) and no stimulation 
(none) as the two distinct conditions. B The heatmap of the average expression matrix of condition-specific 
genes between interferon alpha and none conditions, normalized to a range of 0–1, reveals the relative 
expression levels. Deeper shades of blue indicate higher average gene expression values
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exhibiting significantly high expression levels in association with primary PDAC tumors, 
indicating their significant correlation with the disease. Previous studies have shown 
that CTSV is primarily expressed in the stromal tissue surrounding PDAC tumor cells, 
and its elevated expression is associated with poor prognosis in PDAC patients, making 
it a potential biomarker and treatment target for prognostic assessment [47]. Increased 
expression of MAGEA6 suppresses autophagy in PDAC cells, promoting disease pro-
gression and establishing it as a potential therapeutic target [48]. Furthermore, GFI1 is 
linked to drug resistance in PDAC, as high Gfi-1 expression can enhance tolerance to 
chemotherapy drugs in PDAC treatment, making it a potential target for overcoming 
drug resistance [49].

In addition, we further validated the effectiveness of scDisco on three real datasets: 
human pancreas2, human pancreas, and human epithelium. For the human pancreas2 
dataset, as illustrated in Additional file 1: Fig. S14B, scDisco successfully identified 9 out 
of the 15 genes that exhibited significantly elevated expression levels in connection with 
type II diabetes mellitus, underscoring their strong correlation with the disease. Simi-
larly, in the human pancreas dataset, as shown in Additional file 1: Fig. S15B, scDisco 
also identified 9 out of the 15 genes displaying significantly high expression levels asso-
ciated with type II diabetes mellitus. For the human epithelium dataset, as depicted in 
Additional file 1: Fig. S16B, scDisco effectively identified 10 out of the 15 genes display-
ing significantly elevated expression levels associated with childhood onset asthma, 
highlighting their substantial association with the disease. These satisfactory results 
were consistently observed across all six real datasets.

Computational time and memory usage

We conducted comprehensive experiments to compare the performance of scDisco with 
nine other methods in terms of time consumption and memory utilization, measuring 
the time and memory usage for a single, non-sampled experiment on each dataset for 
every method. The evaluations were carried out on six real datasets: human pancreas2, 
human lung, human pancreas, mouse mucosa, human epithelium, and human ductal. 
These datasets range in size from 2125 to 57,530 cells.

Figure 8A reveals that scDisco exhibits a distinct advantage in terms of time efficiency. 
As the dataset size increases, scDisco demonstrates near-linear time consumption 

Fig. 8 The time consumption and memory utilization across six real datasets. A The line chart of the time 
consumption of ten methods on the six real datasets. B The line chart of the memory utilization of ten 
methods on the same datasets. Each line represents a method, with the x-axis representing the datasets 
arranged in ascending order of cell numbers
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growth with a relatively gentle rate, highlighting its scalability. Notably, methods that 
process the human pancreas2 dataset with a larger sample size require more time. How-
ever, due to excessive memory usage and prolonged processing time, scINSIGHT faced 
limitations in handling the human epithelium and human ductal datasets, preventing 
their inclusion in the presented chart. Regarding memory utilization (Fig. 8B), scDisco 
demonstrates a linear increase along with the dataset size for all datasets except human 
ductal, where Cell BLAST exhibits even lower memory consumption. Regrettably, due to 
Seurat’s substantial memory usage on the human ductal dataset, it could not be included 
in the analysis.

Discussion
In this article, we propose the scDisco, an innovative method designed for batch effect 
removal in scRNA-seq data. We benchmark it against nine other batch effect removal 
methods on both simulated and real datasets. By decoupling the preprocessed scRNA-
seq expression matrix annotated with batch labels, we obtain shared biological repre-
sentations and condition-specific biological representations. This enables us to retain 
condition specificity while removing batch effects from the biological representations. 
Additionally, by applying gradient backpropagation to condition-specific representa-
tions, scDisco facilitated the identification of genes associated with specific conditions, 
thereby providing valuable insights into disease biology. For instance, we have observed 
a compelling positive correlation between NFATC3 and the severity of COPD. We exten-
sively validated the batch effect removal capability of scDisco on a simulated dataset and 
six real datasets. Furthermore, we evaluated scDisco’s performance in uncovering condi-
tion-specific genes across six real datasets. The experimental results demonstrated that 
scDisco exhibits robustness compared to existing methods, as it not only removes batch 
effects but also retains batch-specific cell types to a certain extent. In terms of computa-
tional performance, both time consumption and resource utilization of scDisco exhibit 
a slow linear increase as the number of cells increases, thus providing advantages across 
the six real datasets.

In contrast to conventional autoencoder networks employed in existing frameworks 
for obtaining low-dimensional representations, scDisco leverages the power of a vari-
ational autoencoder (VAE) network to achieve superior cell embedding in low-dimen-
sional space. Moreover, scDisco effectively guides batch effect removal by incorporating 
batch information during the initial input stage, leading to more stable network train-
ing compared to directly decoupling batch noise. Considering the non-orthogonal rela-
tionship between condition biological effects and cellular biological variations, scDisco 
employs a shared encoder in the initial phase and condition-specific DSBN layers later 
on to better eliminate shared information between conditions, ultimately facilitating the 
extraction of condition biological effects across specific condition domains. Addition-
ally, scDisco preprocessing picks out highly variable genes, aiding the model in capturing 
richer information for condition-specific data. Proper parameter selection during the 
neural network training process, within a certain range, enhances scDisco’s performance. 
While these steps assist in integrating scRNA-seq data, theoretically, perfect removal of 
batch effects cannot be guaranteed. Aiming to further eliminate batch effects, scDisco 
can be improved tailored to practical applications. For example, utilizing maximum 
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mean discrepancy (MMD) loss can match the distributions between two batch datasets 
that share many common cell types [50]. For datasets with minimal shared cell types, 
employing discriminative loss can prevent variables after integration from distinguish-
ing their respective batches, which should be careful to avoid mixing batch-specific cell 
types with other cells.

At the same time, it is important to note that even though scDisco successfully identi-
fies genes associated with specific conditions, the set of condition-related genes it dis-
covers may not encompass all relevant genes. Indeed, condition effects have significant 
correlation with cellular biology effects and do not exhibit a completely orthogonal rela-
tionship, making it extremely challenging to fully decouple condition effects unrelated to 
biology. Handling multiple confounding factors also introduces this challenge. The inter-
correlation among these factors implies that disentangling these effects while maintain-
ing condition-specific biological effects is a formidable task. However, by building upon 
the existing scDisco model, we can expand it to handle multiple different conditions. By 
establishing hierarchical relationships in the condition encoders for various factors, the 
model automatically identifies the construction of encoders based on the actual input 
factors. Subsequently, we can introduce MMD loss to align the distributions of the same 
conditions and create a distinct separation between the distributions of different condi-
tions. Future research will endeavor to explore methods that more comprehensively dis-
entangle condition-specific effects from biological effects.

While scDisco is developed specifically for batch effect removal in scRNA-seq data, 
the overall VAE framework, decoupling principles, and condition-specific DSBN lay-
ers can be extended to modeling other types of data that can be collected using exist-
ing technologies, such as scATAC-seq and spatial transcriptomics [51]. Simultaneously, 
by introducing a time-dependent factor to scDisco and incorporating time-dependent 
embeddings to capture temporal progression, the model can effectively handle time-
dependent data, providing promising directions for future applications. Leveraging the 
scalability of scDisco, it is also possible to perform condition-specific gene selection 
through the integration of multiple omics data. This extension allows us to disentangle 
more accurate condition-specific information using scDisco and gain a deeper under-
standing of the regulatory mechanisms underlying gene expression or protein synthesis.

Conclusions
In conclusion, this manuscript introduces scDisco, a novel method for batch effect 
removal. It utilizes a variational autoencoder (VAE) network to enhance low-dimen-
sional cell embeddings, guiding batch effect removal by incorporating batch infor-
mation at the initial input stage. Initially, we employ a shared encoder, which helps 
to retain batch-specific cell types to a certain extent while removing batch effects. By 
decoupling and employing condition-specific DSBNs, scDisco derives shared biologi-
cal representations and more specific condition representations, enabling the identifi-
cation of condition-specific genes that provide valuable insights into disease biology. 
Additionally, scDisco features reduced network complexity, which aids both in time 
consumption and resource utilization, increasing in a slow linear fashion as the number 
of cells increases.
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