
HormoNet: a deep learning approach 
for hormone‑drug interaction prediction
Neda Emami1* and Reza Ferdousi1 

Introduction
Recent reports have shown that the human endogenous hormones can interact via drugs 
in many ways and significantly affect drug efficacy. The interactions between hormones 
and drugs are crucial for drug treatment and precision medicine, therefore it is essential 
to understand the hormone-drug associations. For instance, in an experiment to exam-
ine the effect of stress hormones on the efficacy of a microtubule disrupting agent, pacli-
taxel, in co-culture through Cdk-1 in breast cancer cell lines (MDA-MB-231), it resulted 
that stress hormones have negative affections [1]. In another study, they showed that 
stress hormones (cortisol, norepinephrine, and epinephrine) can render drug resistance 
to paclitaxel, which may have profound implications for the treatment of drug resistance 
in patients with Triple-negative breast cancer [2].
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However, only a limited number of hormone-drug pairs among the large number 
of hormones and drugs have been studied so far. Most previous studies have focused 
only on certain types of hormones (stress hormones) and drugs (cancer-treating drugs). 
Therefore, in order to better understand the relationships between hormones and drugs, 
it is necessary to investigate other types of hormones and drugs pairwise.

Most of the previous studies in this scope have been conducted through in-vivo and 
in-vitro process-based methods, especially using cell lines, since mainly the drugs stud-
ied were cancer treatment drugs. In-vivo and in-vitro methods are accurate and reliable, 
but they are not appropriate for analyzing whole pairwise combinations of hormones 
and drugs since these processes are challenging, time-consuming, and often require high 
costs. Computational methods can accelerate the process of testing whole pairwise com-
binations of hormones and drugs and save cost.

To the best of our knowledge, there are two in silico-based approaches have been 
developed so far for hormone and drug study. In [3], Sun et  al. proposed a model to 
uncover how epinephrine affects apoptosis-regulating mechanisms of eight prostate 
cancer drugs, using ordinary differential equations. They found that epinephrine signal-
ing interfered with apoptosis induced in prostate cancer cells by combinations of sig-
nal transduction inhibitors. Consequently, this process decreases the chemotherapeutic 
efficacy of prostate cancer drugs. The quantitative models’ parametric characteristics 
such as ODE models facilitate accurate network analysis however require optimizing 
of several parameters. In another study [4], Kwon et al. proposed a predictor based on 
hormone effect paths and drug effect paths using a scoring function to define hormone 
impacts on drug efficacy. Although, their predictor had yielded favorable results, how-
ever there are several opportunities and requirements for enhancing this field.

The use of the deep learning approaches as powerful tools have had a high perfor-
mance in biological problems [5–9], and they have not yet been applied as a computa-
tional tool for prediction of hormone–drug interactions. To this purpose, we leveraged 
a novel conventional neural network (CNN)-based approach to predict HDI pairs and 
possible their risk level based on 30 physicochemical and conformational properties of 
hormone receptors and drug targets information. To handle the imbalance problem in 
our dataset, we used a data augmentation procedure [10]. Building on this contribution, 
here we presented a novel CNN-based approach for HDI prediction and the possible 
their risk level. The system is called ‘HormoNet’ for ease of reference. The use of Hor-
moNet goes beyond previous work as it uses a deep learning method for prediction and 
achieved high performance on our constructed benchmark dataset.

Results
This section summarizes the outcomes of several evaluation experiments on our model.

The results of data collection

In order to construct our reliable datasets, we collected following data from six different 
databases: Human endogenous hormones and their receptors from EndoNet, Drug-drug 
interactions from DDInter, Drug-target associations from DrugBank, Protein sequences 
from UniProtKB/Swiss-Prot, Protein–protein interactions from BioGRID and TRI-tool 
(see Materials and methods).
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First, we obtained drug-drug interactions and clarified a relation for every drug-drug 
interaction (see “Materials and methods”). Second, Hormones and drugs should have at 
least one protein receptor or protein target, respectively.

As a result, 283 human hormones and 451 receptors have been extracted. A total num-
ber of 8961 drug-drug interactions have been found. Additionally, 2209 drug-protein 
target associations have been found. For protein–protein interaction; 9230 interactions 
containing 4773 positive and 4457 negative interactions have been obtained.

Finally, for constructing the first stage’s dataset, the total number of instances were 
9230, which contain 4773 positive and 4457 negative instances, include 28 hormones, 
443 drugs and 28 hormone receptors and 321 protein targets were obtained. For build-
ing the second stage’s dataset, the 4773 interactions containing risk levels have been 
considered include 21 hormone, 20 hormone receptors, 312 drugs and 295 protein tar-
gets were obtained.

The results of the balancing dataset

This study intends to provide an accurate approach to identify the risk levels of HDIs. 
The data imbalanced problem resulted in inefficient training of the predictors on the 
minority class, i.e., moderate. This resulted in a higher proportion of test samples incor-
rectly predicted from the target variable corresponding to moderate level. To deal with 
this problem, SMOTE was implemented to obtain a balanced dataset for effective train-
ing of our model. Table 1, presents the number of samples that each class had before and 
after applying SMOTE.

Compared with the condition of original unexpanded dataset and the data expanded 
by the SMOTE algorithm, it is clear that the performance of our proposed model is 
boosted after applying SMOTE, which shows an increase in classification; accuracy 
increased by 0.0494; Precision increased by 0.0819; Recall increased by 0.2407; and 
F1-score increased by 0.2705, for training dataset. And, accuracy increased by 0.0308; 
Precision increased by 0.0011; Recall increased by 0.2149; and F1-score increased by 
0.2348, for testing dataset.

Table  2 shows the performance of our proposed model before and after applying 
SMOTE technique, respectively.

The results of deep neural networks performances

In order to select the appropriate deep neural network for prediction of HDI, we com-
pared three deep neural networks: Multy layer perceptron (MLP), CNN, and long short 

Table 1 Number of instances for each class before and after applying SMOTE technique

The number of samples in each classes in the data set is not the same, therefore this SMOTE balanced the number of 
samples in all classes are highlighted in italic

For risk level of interaction of drug A and drug B: class A is major, class B is moderate, and class C is minor

Before SMOTE After SMOTE

Samples Class A Class B Class C Samples Class A Class B Class C

All 4773 561 3701 511 11,103 3701 3701 3701

Train 3579 429 2778 372 8327 2785 2765 2777

Test 1194 132 923 139 2776 916 936 924
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term memory (LSTM). To set the neural networks we used the following: rmsprop algo-
rithm was considered as an optimizer with its default values; the number of batch sizes: 
16; and epochs: 30. Figure 1 depicts the outcomes in terms of accuracy, recall, precision, 
and F1-score gained by MLP, CNN, and LSTM.

It is evident that CNN provides the highest performances for our benchmark dataset. 
Therefore, we selected CNN as our classifier. These outcomes have demonstrated the 
competitive performance of CNN in predicting HDI.

The results of the CNN optimization

According to Fig. 1, it is evident that CNN provides the highest performances for our 
benchmark dataset. Therefore, we selected CNN as our classifier. To improve the per-
formance and adjust the optimal state, the diverse hyperparameter for proposed model 
were implemented. The final values are as follow: Epochs = 50, Learning rate = 0.00025, 
and batch size = 16. In this study we have applied three different strategies including 
Random Forest (RF), Linear Support Vector Classification (LSVC), and eXtreme Gradi-
ent Boosting (XGBoost) techniques to select most important features. However, the out-
comes of our predictor have not improved after applying feature selection (see Fig. 2), 
therefore we have presented our final model without feature selection.

For RF, the parameters were set based on our several feature selections experi-
ments. The estimator’s value was set 300 and max depth value was set 9 based on our 
feature selection experiments. The dimensions of our initial datasets were 9230*900 
and 7963*900 for HDI prediction and risk level prediction, respectively. This method 
reduced the number of features. In other words, this method reduced the dimensions 
of the dataset from 9230*900 to 9230*162 for HDI and 7963*900 to 7963*324 for HDI 

Table 2 Our model’s performance before and after applying SMOTE technique

Since deep learning methods require high volume of data, therefore the performance of deep learning methods increases 
with the increase in the number of samples. In our study, since SMOTE increased the number of samples in the dataset 
by balancing the number of samples in each classes, thus the performance of the model after applying SMOTE has been 
increased and are highlighted in italic

Model Accuracy F1-Score Precision Recall

Train Before 0.7773 0.3570 0.7009 0.3682

After 0.8267 0.6275 0.7828 0.6089

Test Before 0.7781 0.3567 0.7130 0.3690

After 0.8089 0.5915 0.7141 0.5839

Fig. 1 Comparison of the prediction performances of three deep neural network on our benchmark dataset, 
where A and B show results for train test, respectively. MLP: multilayer perceptron, CNN-1D: convolutional 
neural network, and LSTM: long short term memory
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risk level. For LSVC, the parameters were set based on our several feature selections 
experiments. The penalization was based on l2 norm and estimator value was set 300. 
This method reduced the dimensions of the dataset from 9230*900 to 9230*293 for HDI 
and 7963*900 to 7963*337. For XGBoost, the parameters with its default values. This 
method reduced the dimensions of the dataset from 9230*900 to 9230*177 for HDI and 
7963*900 to 7963*259. However, the outcomes of our predictor have not improved after 
applying feature selection techniques (see Fig. 2).

Figure 3 illustrates the ROC plots for HormoNet and Fig. 4 shows model accuracy and 
loss of HormoNet for batch size = 16 and epoch = 50. According to Fig. 4, the ROC val-
ues for HormoNet had not improved after applying feature selection.

Figure 3 presents ROC values of HormoNet on our benchmark dataset for prediction 
of HDI and their risk level before and after applying FS strategies. As it is clear, the per-
formance of our model did not improve after applying three different FS methods.

Figure 4 illustrates the model accuracy and loss of HormoNet on our benchmark data-
set for prediction of HDI and their risk level before and after applying FS strategies. It is 
clear that, for prediction of HDI and their risk level by HormoNet, model accuracy has 
been decreased and model loss has been increased. These outcomes have demonstrated 
the competitive performance of hormonet in predicting HDIs.

Discussion and conclusions
In this study, we developed HormoNet that predicts hormone-drug interactions and 
possible risk level of their interaction. To this end, we took advantage of a deep neural 
network in consideration of the interaction between hormone receptors and drug tar-
gets. AAC is one of the common methods for encoding protein sequences. However, 
the main challenge of this method is the loss of protein sequence information that can 
affect the model performance. To overcome this problem, we have applied the PseAAC 
strategy, because PseAAC has been broadly applied in different studies and has provided 

Fig. 2 The results of HormoNet on our benchmark datasets for hormone-drug interaction and risk level 
before and after applying feature selection strategies. RF: Random Forest, LSVC: Linear Support Vector 
Classification, and XGBoost: eXtreme Gradient Boosting
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Fig. 3 Receiver operating characteristic (ROC) curves of HormoNet before and after feature selection 
techniques on our benchmark datasets. Where A depicts the prediction performance of HormoNet for HDI 
before using feature selection, B illustrates the prediction performance of HormoNet for HDI after using RF, 
C shows the prediction performance of HormoNet for HDI after using lsvc, D is the prediction performance 
of HormoNet for HDI after using XGBoost.E is the prediction performance of HormoNet for risk level before 
applying feature selection methods, F is the prediction performance of HormoNet for risk level after RF, G is F 
is the prediction performance of HormoNet for risk level after lsvc, and H is F is the prediction performance of 
HormoNet for risk level after XGBoost
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sufficient performances in the field of protein interaction predictions [11–19]. Thus, in 
this study we used this technique to encode protein sequences.

In several studies [20–25], it has been proved that the physicochemical and biochemi-
cal characteristics (e.g., hydrophilicity, hydrophobicity, polarity, hydrogen bonds, salt 
bridges) have an essential role in protein associations. Therefore, we have collected 30 
different sequence-based and structural-based features from protein sequences which 
the use of this large number of properties is unprecedented in this field.

In our study, we had imbalanced problem in our dataset since the classes’ distribution 
were not similar, therefore, we used SMOTE to deal with this problem. According to [18, 
26–32], among different methods to handle imbalance problem, SMOTE had superior 
performances on the biological data. According to Table 2 in the experimental results 
generated from our predictor, the results on the test dataset were significantly improved 
after applying the SMOTE.

In this study a deep learning model for the first time has been developed for predict-
ing of HDI. The advancement of interaction prediction in various fields of computa-
tional biology can provide valuable insights into genetic markers, related diseases, and 
ncRNAs related with drug [33–40]. Therefore, future studies in these areas for biologi-
cal predictions could be performed using machine/deep learning methods. Wang et al. 

Fig. 4 Model accuracy and loss of HormoNet before and after feature selection techniques on our 
benchmark datasets. Where, A is the model accuracy of HormoNet for HDI before using feature selection, B, 
C, and D are model accuracy of HormoNet for HDI after using RF, lsvc, and XGBoost. E is model accuracy of 
HormoNet on our benchmark dataset for hormone-drug interaction risk level. F, G, and H are model accuracy 
of HormoNet for risk level after RF, lsvc, and XGBoost. I is the model loss of HormoNet for HDI before using 
feature selection, J, K, and L are model loss of HormoNet for HDI after using RF, lsvc, and XGBoost. M is model 
loss of HormoNet on our benchmark dataset for hormone-drug interaction risk level. N, O, and p are model 
loss of HormoNet for risk level after RF, lsvc, and XGBoost.
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[41] proposed a model named DMFGAM to predict Human ether-a-go-go-related 
gene blockers based on a fully connected neural network. They used molecular finger-
print features and molecular graph features are fused as the final features of the com-
pounds to make the feature expression of compounds. Sun et al. [42] proposed a model 
named as graph convolutional network with graph attention network (GCNAT) based 
on deep learning approaches, for predicting potential metabolic-disease associations. 
They constructed a heterogeneous network using known associations of metabolite-
disease, metabolite-metabolite similarities, and disease-disease similarities. In another 
study [43], Wang et al. presented a deep learning model named GCNCRF using graph 
convolutional neural network and conditional random field to predicte human lncRNA-
miRNA interactions. They constructed a heterogeneous network based on interactions 
of lncRNA-miRNA, lncRNA/miRNA similarity network, and the lncRNA/miRNA fea-
ture matrix.

Deep Learning as a subfield of machine learning methods have been demonstrated to 
exhibit unprecedented performance in different biological prediction areas [40, 44–53]. 
Here, we have proposed a deep neural network model, termed HormoNet, to predict 
HDI and their risk level.

We compared the MLP, CNN, and LSTM outcomes on our benchmark dataset to 
develop our prediction model for HDI. The performance of each network and algorithm 
was determined by assessing how they could correctly predict whether the hormones 
receptors were interacting with a specific drug target or not.

Figure 1 shows that CNN had superior outcomes compared to MLP and LSTM meth-
ods. According to [54–59], CNNs have had more efficient outcomes in biological prob-
lems. Generally, CNN have had better performances in classification of image data. In 
this study, since HDI data are liked 2D images, therefore CNN-1D network had higher 
performance compare to MLP and LSTM networks.

In order to select the most important features and ranking them we tested three dif-
ferent FS strategies including RF, LSVC, and XGBoost. The 162, 293, and 177 optimal 
features were chosen for RF, LSVC, and XGBoost, respectively, according to the nature 
of our dataset and the optimized parameters. The parameters for each algorithm were 
set based on our several feature selections experiments.

However, according to Fig.  2, the performance of our predictor was reduced after 
applying FS methods. Which, it can be justify that the deep learning-based methods 
require large-scale data. The dimension of our initial dataset for HDI was 9230*900 for 
HDI, which reduced to 9230*162, 9230*293, and 9230*177, for RF, LSVC, and XGBoost, 
respectively, which decreased our model’s performance.

The dimension of our initial dataset for HDI risk level was 7963*900 which reduced 
to 7963*334, 7963*337, and 7963*259, for RF, LSVC, and XGBoost, respectively, which 
decreased our model’s performance. According to the obtained results, it is clear that the 
predictor’s performance would be higher when fed with larger dataset.

Roc curves have been applied as a common method to evaluate the performance of 
models based on machine/deep learning methods [60–64]. Thus, we used this method 
to evaluate the performance of the proposed model in our experiments. It is a better 
technique instead AUC because AUC considers only numerical values. Figure 4 shows 
ROC curves for HDI and risk level of HDIs, respectively. The curves illustrate that the 
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algorithm found class 1—level moderate—harder to learn, probably because, the class is 
highly variable among samples and across time.

In this study, for the first time we have proposed HormoNet, a novel deep learning 
technique for HDI identification based on physicochemical and conformational proper-
ties from hormone and drugs pairs. Moreover, we constructed two novel datasets for 
HDI and HDI risk levels. In addition, we have proposed a learning approach directed to 
predict the risk level of HDIs. We have performed several experiments to test the per-
formance of our model. Experimental evaluations indicate that, HormoNet achieved 
high level of performance on our benchmark datasets regarding accuracy, f1score, preci-
sion and recall. This study is unique in three ways: (1) it is the first study that uses deep 
learning techniques for prediction. (2) In addition to predicting hormone-drug interac-
tions, it also predicts their risk level. (3) We have collected 30 different sequence-based 
and structural-based features from protein sequences to create our benchmark datasets 
which the use of this large number of properties is unprecedented in this field.

HormoNet has indicated to be able to provide insights into understanding HDI’s 
nature, which can be helpful for all scientists and researchers in this field.

One of the main challenges of this study was about limitation of the number of data-
bases for hormone-receptor interactions. Another challenge of this study was the lack 
of a database including hormone-drug interactions and a regarding datasets. Since this 
study is the first effort in the field of HDI prediction using sequence-based features of 
hormone receptors and drug targets, therefore, more studies in this area are required 
by using of other feature extraction strategies. In addition, this study focuses on hor-
monal drugs, but there are other types of drugs that require more research to focus on 
hormonal interactions with other types of drugs. A powerful web server for HDI iden-
tification can be a very helpful tool for researchers in this field, therefore, future studies 
by focusing on designing web server for HDI, are recommended. Since the outcomes of 
proposed model presented the potential of HormoNet along with the use of properties, 
therefore in other further efforts can use it.

Methods
This section presents detailed information of the constructing our datasets, including 
data gathering, feature extraction, and balancing dataset. Additionally, prediction model 
construction and model evaluation have been elaborated. It should be noted that, all 
technique in this study implemented in Python language using Python 3.8.16 version. To 
implement the deep learning methods Keras library of Python was used in Google Col-
laboratory environment. Figure 5 illustrates a schematic overview of the training module 
for HormoNet.

Data collection

This study had two stages: first stage, prediction of possible hormone-drugs interac-
tions. Second stage, if there is interaction, prediction of risk levels (major, moderate, 
and minor) of hormone-drugs interactions. Therefore, we constructed two different 
datasets for different purposes including, the training dataset of HormoNet for HDI 
includes interacting and non-interacting hormone-drug pairs. As well, the training 
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dataset of HormoNet for HDI risk levels containing the risk level of those positive 
interaction in the previous dataset for hormone-drug pairs.

In order to construct a reliable dataset, we collected following data from six differ-
ent databases:

1. Human endogenous hormones and their receptors from EndoNet [65] 2. Drug-
drug interactions from DDInter [66] 3. Drug-target associations from DrugBank [67] 
4. Protein sequences from UniProtKB/Swiss-Prot [57–68] 5. Protein–protein interac-
tions from BioGRID [69] and TRI-tool [70].

First, we obtained drug-drug interactions and clarified a relation for every drug-
drug interaction. Relations have been classified into three categories including: class 
A: ’risk level of interaction of drug A and drug B is major’, class B: ’risk level of inter-
action of drug A and drug B is moderate’, and class C: ’risk level of interaction of drug 
A and drug B is minor’. The ‘drug A–drug B interaction’ is extracted if drug A is one 
of the human hormones, we collected from EndoNet (i.e., from ‘risk level of inter-
action of drug A and drug B’ to ‘risk level of interaction of hormone A and drug B’). 
Second, Hormones and drugs should have at least one protein receptor or protein tar-
get, respectively. Thus, we extracted human hormones that have one or more protein 
receptors and obtained drugs which have one or more protein targets. Next, for the 
proteins, since the identifiers of protein receptors and targets are presented in Drug-
Bank and EndoNet (e.g., NR3C1, PPARG, KCNJ1, etc.), therefore, we prepared their 
sequences by searching in UniProtKB/Swiss-Prot based on the best name matches. 
It should be noted that, we removed sequences that their length was smaller than 50 
or contained X in their amino acid sequences (e.g., CFTR, CACNA1B, PIK3R2, and 
etc.). Then, we extracted those protein receptors and protein targets that had physical 
interactions based on their sequences. Finally, for constructing the first stage’s data-
set, the total number of instances were 9230, which contain 4773 positive and 4457 
negative instances, include 28 hormones, 443 drugs and 28 hormone receptors and 

Fig. 5 A schematic overview of the training module of HormoNet. Where, A presents data gathering 
processing using 5 different databases; B shows feature extraction strategy using PseAAC and constructing 
our benchmark datasets; C displays HDI prediction and their risk level; and HDI is Hormone Drug Interaction
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321 protein targets were obtained. For building the second stage’s dataset, the 4773 
interactions containing risk levels have been considered include 21 hormone, 20 hor-
mone receptors, 312 drugs and 295 protein targets were obtained (see Fig. 6).

Hormone–receptor interaction

We obtained hormones that have one or more receptors from EndoNet database. 
EndoNet contains physical interactions between human hormones and their protein 
receptors. As a result, 283 human hormones and 451 receptors are extracted.

Drug–drug interaction

We collected drug-drug interaction from DDInter database. DDInter provides drug-
drug associations with their risk levels. It contains different entries of drug-drug inter-
actions, which among them we chose interactions involving hormonal drugs, excluding 
sex hormones and insulin’s drugs. A total number of 8961 interactions have been found.

Drug–target interaction

We obtained drug’s protein targets by searching in DrugBank based on the best name 
matches. DrugBank provides physical interactions between drugs and their specific pro-
tein targets. As a result, 2209 drug protein target associations have been found.

Protein–protein interaction

Physical possible protein proteins are extracted from BioGRID (Biological General 
Repository for Interaction Datasets) and TRI-Tool (Transcriptional Regulation Inter-
actions) databases. The BioGRID is resource that houses manually curated protein and 
genetic interactions from multiple species and human. The TRI_tool is a sequence-based 
tool for protein interactions prediction in the human transcriptional regulation. As a 

Fig. 6 Flowchart of performed methodology to gather data and construct our datasets. Where, D: Drug, H: 
Hormone, R: Receptor, T: Target
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result, 9230 interactions containing 4773 positive and 4457 negative interactions have 
been obtained.

Feature construction

In this study, the amino acid composition and pseudo-amino acid composition were 
used for encoding the protein sequences of each hormone’s receptors and drug’s targets.

Amino acid composition (AAC)

AAC is a common technique in biological problems for encoding proteins. It calculates 
the number of amino acids of each type in a protein sequence. For a sequence with N 
amino acids:

where i is the 20 amino acid residues and n(i) is the number of amino acids type i.

Pseudo-amino acid composition (PseAAC)

One of the main challenges in AAC method is losing the information of protein 
sequences which can affect the prediction performances. To overcome this problem, we 
have applied PseAAC strategy. The PseAAC algorithm was introduced for the first time 
in 2001 in molecular biology [71]. It was designed to improve the prediction quality of 
protein subcellular properties. PseAAC has been used in various biological problems 
[72–78] for extracting features from proteins. It can be described as follows [79]:

Consider a protein chain S with N amino acid residues:

The order’s effect of protein sequence can be approximately reflected with a set of sep-
arate correlation factors as defined below:

θ1, θ2, …, θλ are the 1-tier, 2-tier, and λth tier sequence order correlation factors, respec-
tively. The correlation function compared as:

(1)f(i) = n(i)/N

(2)S = R1R2R3 . . .RN
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H1(Ri), H2(Ri), and M(Ri) are, some physicochemical and biochemical attribute values 
of the amino acid Ri. H1(Rj), H2(Rj), and M(Rj) are the corresponding values of the amino 
acid Rj. The values of each attribute are described from the original values by the follow-
ing formula:

H1(i), H2(i), and M(i) are the original values of attributes for the 20 native amino acids. 
Consequently, for a protein sequence S, the PseAAC is demonstrated via a (20 + λ)- 
Dimensional vector as below:

where T is called the transpose operator.

where fi indicates the number of the 20 amino acids, θj indicates jth tier sequence-corre-
lation factor, and the ω is the weight factor of the effect of sequence order.

The first 20 elements in Eq. 4 indicates the effect of amino acid composition, and the 
rest of them (20 + 1 to 20 + λ) indicate the sequence-order effect. Therefore, the whole of 
20 + λ elements is PseAAC. Here, we set ω = 0.05 and λ = 30.

In this study, we used 30 physicochemical (i.e., molecular weight, mass, bulkiness, 
hydrophobicity, hydrophilicity, melting point, transfer-free energy, solvation free energy, 
buriability, volume, polarity, relative mutability, isoelectric point, amino acid distribu-
tion, chromatographic index, residue volume, compressibility, hydration number, Shape, 
Stability, power to beat the N terminal, C terminal, unfolding entropy change, unfolding 
enthalpy, unfolding Gibbs free energy change, middle of alpha helix, Alpha-helical ten-
dency, Beta-helical tendency, Turn tendency, and coil tendency) amino acid properties. 
The 30 properties were reached from [80, 81], which could be found in Additional file 1.

Balancing the dataset

The class imbalance problem typically refers to a problem with classification problems 
where the distribution of each classes is not similar and equal. Consequently, it can 
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limit the performance of the model because the model tends to be overwhelmed by the 
majority classes and ignore the small ones [82]. In our study we had imbalanced problem 
in our dataset since the classes’ distribution were not similar, therefore, we used SMOTE 
to deal with this problem. we applied SMOTE to deal this problem [10]. According to 
[18, 26–32], among different methods to handle imbalance problem, SMOTE had supe-
rior performances on the biological data. SMOTE is an over-sampling technique for 
balancing dataset in which the minority class is over-sampled by generating “synthetic” 
instances rather than by over-sampling with replacement [83]. New synthetic samples 
are generated for each minority class until all classes reach a balanced number equal 
to the number of the majority class’s samples. Our constructed datasets are available in 
Additional files 2 and 3.

In SMOTE the synthetic data generation is based on a k-nearest neighbor’s algorithm 
and linear interpolation [84]. Take u is a random number between 0 and 1; x is the fea-
ture vector (instance) under consideration of the minority class and (xR) is its nearest 
neighbor. The SMOTE instances are linear combinations of two similar instances from 
the minority class (x and xR) and are determined as

The synthetic instance will be at a random point along the line segment between two 
specific features. This technique effectively forces the decision-making regions of the 
minority class instances to become more general. Figure 7 describes this procedure.

Description of deep neural network model

In this study, we have selected a 1-Dimensional Convolutional Neural Network (1D-
CNN; [49]) as our predictor.The proposed 1D-CNN model for prediction of HDI is 
composed of an input layer, four convolutional layers, two pooling layers, one fully con-
nected (FC) layer, and a sigmoid output layer. The proposed 1D-CNN model for predic-
tion of risk level of HDI pairs is composed of an input layer, four convolutional layers, 
two pooling layers, two batch size normalization layers, one activation layer, five fully 
connected layer, and a categorical cross entropy soft-max output layer.

A one dimensional convolutional operation can be determined as [85]:

(8)s = x+ u.(xR − x)

Fig. 7 Illustration of SMOTE technique in order of imbalance handling and generating synthesized data
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where ylj indicates the jth feature map in the layer l; wl
i,j indicates the trainable convolu-

tional kernel; xl−1
i  indicates the ith feature map in the layer (l–1); conv1D indicates the 

1D convolution operation without zero-padding, Nl−1 indicates the number of feature 
maps in the layer (l–1); blj indicates the bias of the jth feature map in the layer l; and b 
is an activation function named rectified linear unit (Relu) for avoiding the over-fitting 
problem. It is determined as

Then, 64 feature maps with the size of 176 × 1 are outputted and then passed through 
a max-pooling layer. It is calculated as:

where pa′i  , pai  , and s are the a′th neuron in the ith feature map before and after max-
pooling operation, the size of pooling window, respectively.

In this study, the size of pooling window and the stride of windows were set 2 for Pool-
ing Layer 1. Which it can sufficiently reduce the parameters’ training number in the pre-
dictor and accelerate the process of training. The outputs of the pooling operation are 
64 feature maps with the size of 88 × 1. Then, Conv Layer 3 and Conv Layer 4 are fol-
lowed for extracting higher-level features which can facilitate the classification. There 
are 128 and 1024 kernels in the shape of 3 × 1 in the Conv Layer 3 and Conv Layer 4, 
respectively. ReLU function was applied for non-linear activation. After passing the fea-
ture maps through all 1D convolutional layers, the 1024 feature maps with the size of 
82 × 1 were obtained. They were fed into GlobalAveragePooling1D operation with 256 
neurons. Then, dropout was applied to the output of the pooling layer for alleviating the 
over-fitting problem.

The output features were fed into four fully connected layers with 128 neurons. Finally, 
a Sigmoid and Softmax output layers were added to the proposed model for HDI and 
risk level final recognition, respectively.

The last layer’s output for risk level classifier was acquired using the Softmax function. 
It is described as:

The last layer’s output for HDI classifier was acquired using the sigmoid function. It is 
calculated as:
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For prediction of the risk levels of each HDI, the optimization of the parameters of 
the model was based on the categorical cross-entropy loss function. It is described as 
follows:

where y∗i  is the corresponding target value (1 for the correct class and 0 incorrect class) 
and ŷi is ith output prediction.

The rmsprop algorithm [86] was applied for optimizing the model by updating the 
parameters of the model.

For HDI prediction we used binary cross-entropy cost function. It is described as 
follows:

where i is the index of training sample, v is the true value of sample i, which its value can 
be 0 or 1, g is the predicted network’s output for 0 or 1 value of sample i, and d is the dif-
ferent labels index. Consequently, the value of E will get less if the predicted results are 
close to the true values. Thus, to get the most optimal performance, the function must 
be minimized since the cross-entropy is a non-negative function. The final optimized 
values are as follow: Epochs = 50, Learning rate = 0.00025, and batch size = 16.

Performance evaluation

Here, we applied threefold cross-validation strategy for evaluation of our predictor’s per-
formance. In this method, the whole dataset is randomly separated into 3 folds which 
two-folds are applied for training and one for testing. This technique is repeated three 
times and each sample is tested once. To evaluate the performance of our model, we 
used four metrics include accuracy, precision, recall, and F1-score which were deter-
mined as follow:

where for a given class, the values of true positives (TP) and false negatives (FN) display 
the number of samples of the class that are predicted by the model correctly classified 
and incorrectly classified, respectively. Also, true negatives (TN) and false positives (FP) 
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display the number of samples not belonging to the class that are correctly predicted as 
non-belonging to the class and the number of samples not belonging to the class that are 
incorrectly classified as belonging to the class, respectively.
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