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Background
With the rapid accumulation of the Human Genome Sequencing Project [1–5], more 
than millions of human genetic variations have been discovered and stored by research-
ers. Among them, the prediction of functional impact of missense variants is interesting 
and critical research field. The meaning of functional impact is that a variant that may 
increase an individual’s susceptibility or predisposition to a certain disease or disorder. 

Abstract 

Background: In the past decade, single nucleotide variants (SNVs) have been 
identified as having a significant relationship with the development and treatment 
of diseases. Among them, prioritizing missense variants for further functional impact 
investigation is an essential challenge in the study of common disease and cancer. 
Although several computational methods have been developed to predict the func-
tional impacts of variants, the predictive ability of these methods is still insufficient 
in the Mendelian and cancer missense variants.

Results: We present a novel prediction method called the disease-related variant 
annotation (DVA) method that predicts the effect of missense variants based on a com-
prehensive feature set of variants, notably, the allele frequency and protein–protein 
interaction network feature based on graph embedding. Benchmarked against data-
sets of single nucleotide missense variants, the DVA method outperforms the state-
of-the-art methods by up to 0.473 in the area under receiver operating characteristic 
curve. The results demonstrate that the proposed method can accurately predict 
the functional impact of single nucleotide missense variants and substantially outper-
forms existing methods.

Conclusions: DVA is an effective framework for identifying the functional impact 
of disease missense variants based on a comprehensive feature set. Based on differ-
ent datasets, DVA shows its generalization ability and robustness, and it also provides 
innovative ideas for the study of the functional mechanism and impact of SNVs.
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For example, SNVs located in the coding region of the DNA sequence may lead to the 
different amino acid translation, resulting in the impact on the function of gene products 
in multiple ways, e.g., by affecting the protein’s interaction with other proteins, its stabil-
ity or it active sites. These changes may have an important impact on the overall func-
tion and signal transmission of the gene product. Therefore, how to accurately interpret 
the functional impact of missense variants is particularly important.

Various computational methods have been proposed to predict the functional impact 
of variants. Prediction methods based on a single type of information (for example, con-
servation/evolution/sequence homology) were proposed earlier. For example, Kumar 
et  al. [6] proposed a prediction method called SIFT that predicts the effects of mis-
sense variants (amino acid substitutions, AASs) based on the sequence homology and 
the main idea of SIFT is that highly conservative positions tend to not tolerate variants/
substitutions, while low conservative positions are just opposite. The prediction method 
based on single information can provide a simple, intuitive and easy to explain pre-
diction result, which is convenient for relevant researchers and clinical staff to use in 
practical work. However, its prediction results are often less accurate. Therefore, many 
methods have been developed to improve prediction accuracy by merging multiple 
types of variant features. For example, Shihab et al. [7] developed a novel method called 
FATHMM-MKL that integrated 10 different variant features (such as sequence conser-
vation, histone modification, footprints, GC content, transcription factor binding sites) 
to improve the accuracy of functional impact prediction of variants. In addition to com-
bining the features of variants, some methods also take the prediction scores of other 
methods as features to improve prediction accuracy. Such as REVEL [8] and MISTIC 
[9], these methods all use the scores of other prediction methods as features to predict 
the functional impact of variants. These different types of computational methods have 
advanced the study of the prediction of the functional impact of variants. However, most 
of these methods do not perform well enough [10] in the functional impact prediction 
of missense variants. Therefore, how to construct a comprehensive feature set and an 
efficient computational model to improve the prediction accuracy is still a key challenge.

To solve the above problems, we proposed a method called disease-related variant 
annotation (DVA, http:// bionet. org. cn/ DVA), which systematically integrated multiple 
features including conserved elements, allele frequencies in different populations, and 
protein–protein interaction (PPI) network feature transformation. The sequence conser-
vation (DNA or protein) often means that a sequence has been maintained by natural 
selection and is considered to have functional value [11–13]. Therefore, when a vari-
ant or its corresponding amino acid substitution occurs at a highly conserved site, the 
possibility of harmful effects often is greater than the possibility of harmlessness. In 
addition to sequence conservation, allele frequency is also used as a predictor, that is, 
low-frequency variants usually trend to be disease-related, and high-frequency variants 
trend to be neutral [14]. Here, allele frequency is used as a predictor variable to predict 
the functional impact of variants. Except for the perspective of single-site and popula-
tion statistics, the important impact of missense variants may lie in the interaction of 
protein molecules. For a protein molecule to perform a certain function, it often needs 
to be combined or coordinated with other protein molecules. However, previous meth-
ods rarely take this into account. Therefore, we employ this (PPI network) as the novel 

http://bionet.org.cn/DVA
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feature to predict the functional impact of variants, which is extracted by graph embed-
ding. To sum up, the DVA method constructs a comprehensive feature set including 
sequence conservation, allele frequency, and PPI structure feature to predict the func-
tional impact of variants accurately. The novelty of our approach lies in the combination 
of a set of features including conserved elements, allele frequencies in different popula-
tions, and PPI network feature transformation, to build the random forest model that 
achieves the significant improvement of accuracy within different complex diseases and 
cancers using missense variant datasets.

Results and discussion
Experimental results for somatic cancer missense variants

Experimental results on somatic cancer variants are shown in Fig.  1 and Table  1. The 
area under receiver operating characteristic curve (AUROC) for DVA is 0.979. Here, 
we compared the DVA method to 14 prediction methods that were recently developed, 
widely used: SIFT [6], PROVEAN [15], MutationTester [16], MutationAssessor [17], 
FATHMM-MKL [7], DANN [18], MetaSVM [19], MetaLR [19], ClinPred [14], CADD 
[20], PrimateAI [21], REVEL [8], M-CAP [22], and MISTIC [9]. The prediction scores 
of these methods were obtained from the webserver or software provided by authors, 
ANNOVAR, or the dbNSFP v3/v4 database. The AUROCs for the other individual pre-
diction methods ranged from 0.506 to 0.84. Among them, the highest AUROC value was 
0.84 achieved by the ClinPred method and the lowest AUROC value was 0.506 achieved 
by the MISTIC method. As a result, many prediction methods performed poorly on 
somatic cancer variants. Nevertheless, DVA significantly outperformed other functional 
impact prediction methods on such data. These results demonstrate that DVA has a 
good ability to predict the functional impact of somatic cancer variants.

In addition to the AUROC, accuracy, precision, recall, and F1-score also were 
employed to evaluate the performance of DVA and state-of-the-art prediction methods. 
As shown in Table 1, the performance of the previous algorithms was relatively poor and 
the DVA method has achieved the best performance among the four evaluation criteria 
(accuracy, precision, recall, and F1-score). In particular, the recall for DVA was higher 

Fig. 1 The AUROCs of 15 different prediction methods using somatic cancer missense variants
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than other methods by at least 0.2. The proposed method significantly outperformed 
other prognostic predictors of functional impact of somatic cancer variants.

Experimental results for missense variants in ClinVar database

Experimental results on the ClinVar missense variants are shown in Fig. 2 and Table 2. 
The AUROC value of DVA is 0.977. The AUROC for the other individual predic-
tion methods ranged from 0.601 to 0.959. For example, REVEL and ClinPred achieve 
relatively good performance, with AUROC values of 0.915 and 0.959, respectively. 
The AUROCs of other prediction tools fluctuate around 0.8 (AUROC for MetaSVM is 
0.861; AUROC for MetaLR is 0847; AUROC for CADD is 0.851; AUROC for DANN 
is 0.79; AUROC for PrimateAI is 0.773; AUROC for FATHMM-MKL is 0.777; AUROC 
for MutationAssessor is 0.845; AUROC for MISTIC is 0.871; AUROC for PROVEAN is 

Table 1 Performance of prediction methods using the somatic cancer missense variants

The best results are bolded

Order Methods Accuracy Precision Recall F1-score

1 SIFT 0.587 0.525 0.435 0.468

2 MutationTaster 0.509 0.454 0.743 0.563

3 MutationAssessor 0.575 0.505 0.398 0.441

4 FATHMM-MKL_coding 0.564 0.49 0.442 0.46

5 PROVEAN 0.584 0.514 0.544 0.526

6 MetaSVM 0.579 0.511 0.481 0.49

7 MetaLR 0.57 0.498 0.569 0.529

8 DANN 0.646 0.6 0.517 0.555

9 CADD 0.62 0.578 0.437 0.491

10 MISTIC 0.585 0.539 0.248 0.333

11 REVEL 0.595 0.53 0.484 0.504

12 PrimateAI 0.604 0.553 0.405 0.463

13 ClinPred 0.795 0.811 0.679 0.739

14 M-CAP 0.581 0.512 0.535 0.52

15 DVA 0.94 0.918 0.943 0.93

Fig. 2 The AUROCs of 15 different prediction methods using missense variants in the ClinVar database
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0.849; AUROC for SIFT is 0.821; AUROC for M-CAP is 0.857). MutationTaster has the 
worst predictive performance in the ClinVar missense variants with an AUROC of 0.601. 
These results demonstrate that DVA has a good ability to predict the functional impact 
of missense variants of different mendelian diseases.

As shown in Table 2, the DVA method also has achieved the best performance com-
pared to other prediction tools. The recall of DVA is 0.926 at least 3.4 percentage points 
higher than other prediction tools. The precision, accuracy, and F1-score of DVA also 
have achieved the excellent performance, which indicates that DVA is effective in repre-
senting and distinguishing the differences between disease-related and neutral variants.

Experimental results for missense variants in VariBench database

Experimental results on the VariBench missense variants are shown in Fig. 3 and Table 3. 
As shown in Fig. 3, the DVA method has the best performance and its AUROC value is 
0.858. For other prediction methods, the highest AUROC value was 0.813 achieved by 
the REVEL method and the lowest AUROC value was 0.54 achieved by the Mutation-
Taster method. The deep neural network (DNN) has achieved an overwhelming advan-
tage in some research fields of computer science, such as computer vision and natural 
language process. In the aspect of functional impact of variants, some prediction meth-
ods also employed deep neural networks. However, the performance of these methods 
did not significantly outperform other methods. DNN models require a lot of training 
data sets. Among all kinds of biological data, sequence data has a large scale to meet the 
requirements of training. Thus, PrimateAI employed a DNN model to predict the func-
tional impact of variants using multi-sequences. Although DNN is used, the prediction 
result of PrimateAI based on sequence data is not excellent. DANN also is a prediction 
method based on the DNN model. Compared with other methods, DANN doesn’t show 
the significantly overwhelming performance too. Based on the current observations, 
DNN has not achieved significant success in this field. Thus, more excellent machine 

Table 2 Performance of prediction methods using missense variants in the ClinVar database

The best results are bolded

Order Methods Accuracy Precision Recall F1-score

1 SIFT 0.756 0.803 0.748 0.773

2 MutationTaster 0.629 0.624 0.846 0.718

3 MutationAssessor 0.776 0.836 0.747 0.788

4 FATHMM-MKL_coding 0.735 0.743 0.807 0.772

5 PROVEAN 0.794 0.818 0.814 0.815

6 MetaSVM 0.799 0.845 0.785 0.813

7 MetaLR 0.774 0.806 0.79 0.795

8 DANN 0.741 0.75 0.809 0.776

9 CADD 0.798 0.806 0.843 0.824

10 MISTIC 0.805 0.854 0.788 0.819

11 REVEL 0.85 0.889 0.837 0.862

12 PrimateAI 0.731 0.751 0.781 0.764

13 ClinPred 0.909 0.942 0.892 0.916

14 M-CAP 0.795 0.826 0.804 0.814

15 DVA 0.929 0.946 0.926 0.935
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learning algorithms and feature sets may still be a better choice. These results demon-
strate that DVA has a good ability to predict the functional impact of missense variants 
in VariBench database.

As shown in Table 3, the DVA method also has achieved the best performance com-
pared to other prediction tools. The accuracy, precision, and F1-score of DVA also have 
the best performance compared to state-of-the-art methods. The prediction ability of 
the DVA method is also proved on the VariBench dataset.

Experimental results for missense variants based on cross-database validation

Prediction methods usually achieve better performance based the training data and 
testing data, which come from the same database. As shown in the Fig. 2 and Table 2, 
DVA achieves excellent performance (AUROC is 0.977) and the compared prediction 

Fig. 3 The AUROCs of 15 different prediction methods using missense variants in the VariBench database

Table 3 Performance of prediction methods using missense variants in the VariBench database

The best results are bolded

Order Methods Accuracy Precision Recall F1-score

1 SIFT 0.625 0.631 0.547 0.582

2 MutationTaster 0.536 0.512 0.77 0.615

3 MutationAssessor 0.631 0.65 0.523 0.573

4 FATHMM-MKL_coding 0.603 0.574 0.694 0.626

5 PROVEAN 0.617 0.611 0.594 0.593

6 MetaSVM 0.734 0.738 0.703 0.717

7 MetaLR 0.742 0.753 0.699 0.722

8 DANN 0.628 0.627 0.584 0.598

9 CADD 0.633 0.616 0.632 0.623

10 MISTIC 0.739 0.75 0.696 0.718

11 REVEL 0.755 0.751 0.741 0.744

12 PrimateAI 0.621 0.602 0.645 0.62

13 ClinPred 0.692 0.691 0.656 0.67

14 M-CAP 0.746 0.764 0.688 0.722

15 DVA 0.785 0.797 0.744 0.768
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methods also achieve good or fair performance (the AUROCs of most methods are 
around 0.85) based the training data and testing data, which come from the same 
database. However, when prediction methods are training in one dataset and testing 
in another dataset, the testing result may decrease. Thus, we perform another experi-
ment to discuss whether DVA and other methods still have the better prediction abil-
ity when training data and test data come from different databases according to your 
suggestion. Most prediction methods (such as MISTIC and ClinPred) are trained on 
ClinVar or similar types of datasets. Thus, ClinVar and COSMIC/VariSNP were cho-
sen as the training set and testing data, respectively. Experimental results are shown 
in the Fig. 4 and Table 4, the AUROC and accuracy of 15 methods have decreased. 
However, performance of other 14 methods is significantly reduced (the AUROCs 

Fig. 4 The AUROCs of 15 different prediction methods on COSMIC dataset

Table 4 Performance of prediction methods on COSMIC dataset

The best results are bolded

Order Methods Accuracy Precision Recall F1-score

1 SIFT 0.568 0.495 0.537 0.515

2 MutationTaster 0.511 0.454 0.715 0.555

3 MutationAssessor 0.56 0.484 0.459 0.471

4 FATHMM-MKL_coding 0.567 0.491 0.397 0.439

5 PROVEAN 0.583 0.511 0.522 0.517

6 MetaSVM 0.577 0.505 0.473 0.488

7 MetaLR 0.571 0.498 0.527 0.512

8 DANN 0.647 0.603 0.507 0.551

9 CADD 0.617 0.568 0.428 0.488

10 MISTIC 0.569 0.492 0.293 0.367

11 REVEL 0.593 0.526 0.469 0.496

12 PrimateAI 0.603 0.551 0.372 0.444

13 ClinPred 0.793 0.803 0.682 0.737

14 M-CAP 0.58 0.507 0.521 0.514

15 DVA 0.861 0.815 0.873 0.843
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of most methods are around 0.6), while DVA still achieves excellent performance 
(AUROC is 0.934). These results demonstrate that DVA has better robustness.

Feature importance analysis

We analyzed the importance of selected features for the prediction performance of DVA 
method and used randomForest package to obtain importance scores using missense 
variants in the VariBench dataset. Figure 5 represents the importance level of the top 
20 features. Among the top 20 features, allele frequency features are the most impor-
tant features in our method and accounting for 9 of the top 20 features. The PPI graph 
embedding features are next important features and accounting for 8 of the top 20 fea-
tures. The importance of conservative score features is relatively lower than that of the 
first two types of features, but there are still three conservative features in the top 20 
features. So, it has also played a certain role in predicting the functional impact of mis-
sense variants. From the above feature importance analysis, it can be concluded that the 
two new features performed in the DVA method play a significant role in predicting the 
functional impact of missense variants.

Conclusions
Since the completion of human gene mapping, human beings have entered the post 
genome era. Annotation and analysis of gene and gene product functions are criti-
cal study at the post genome era. In addition to the general gene function research, the 
functional impact of variants occurred in the gene coding region is a very important and 
meaningful direction. For example, research by Shajani-Yi et al. [23] showed that some 
“key” genes have been found to carry disease-related variants in different cancers. In the 
Glioma/Glioblastoma cancer, 67% (16/24) of tumors exhibited one disease-related vari-
ant, of which 94% (15/16) were in IDH1 and 6% (1/16) were in PIK3CA. In the Colon 
Adenocarcinoma, 67% (73/109) of tumors with disease-related variants had more than 
one variant in addition to TP53. Daboub et al. [24] claimed a report of Parkes Weber 
syndrome associated with two disease-related variants in RASA1. Timms et  al. [25] 

Fig. 5 The degree of contribution from top 20 features used by DVA
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discovered that BRCA disease-related variants were observed in all breast cancer sub-
types. These studies also show that disease-related variants have a greater correlation 
with cancer. However, there are several variants stored in different databases, which 
are not yet clear about their possible effects. Therefore, how to better predict disease-
related variants can better enable researchers or clinicians to focus on the scope of can-
cer research, thereby promoting precision medicine. With DVA, we describe an effective 
framework for identifying the functional impact of disease missense variants based on a 
comprehensive feature set. We demonstrate that the performance of DVA is much bet-
ter than the state-of-the-art prediction methods based on different missense variants. 
Meanwhile, we observed the general robustness of the DVA, and it will be innovative for 
the study of the functional mechanism and impact of SNVs.

New features and appropriate model may contribute to the improved prediction per-
formance. First, two new types of features have been introduced to significantly improve 
the predictive ability of this algorithm: (a) variant allele frequencies in different popula-
tions. When a SNV is widely present in the population, it often has no pathogenic effect 
on the molecular function or organism. On the contrary, if a SNV only appears in a few 
individuals, its impact on the organism may be more pathogenic. It has been less con-
sidered in previous prediction methods. (b) PPI network features. Whether it is nor-
mal organic operations or harmful molecular changes, it is often not a single factor that 
promotes its development, but the interaction of multiple molecules or changes in key 
molecules that lead to essential changes in the entire working mechanism. In the past, 
little attention has been paid to the interaction of different molecules in the research 
of the functional impact of variants. Here we used the graph embedding (PPI network) 
to represent the interaction of molecules with different variants. Second, a random for-
est model was constructed to predict the functional impact of variants. By merging the 
different types of features and the random forest model, the DVA algorithm has signifi-
cantly improved the prediction of the impact of variants.

In this article, the graph embedding representation of protein–protein interactions is 
used as a novel feature to predict functional impact of variants and it improves the per-
formance of the proposed method effectively. In addition to protein–protein interaction, 
protein structure also is an informative and detailed feature to protein function and may 
improve the performance of prediction methods. However, applying protein structure 
to predict functional impact of variants is still challenging. There are several problems 
to be fixed: (1) Although the wild protein structures are accessible in several database 
[26–28], the mutated protein structure usually is not provided; (2) Protein structure is 
complicated. How to construct protein structure representation as the input feature of 
machine learning methods is still a critical challenge. In the future, we will continue to 
develop novel methods which focus on addressing existing problems to predict func-
tional impact of variants.

Methods
DVA datasets

In this study, we used three datasets (ClinVar(v20210922) [3], VariBench [29] and 
COSMIC [4]/VariSNP(v2017) [30]) to assess the performance of the proposed method 
and the state-of-the-art prediction methods. All of datasets were categorized as the 
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disease-related and neutral missense variants, which were selected as the positive (dis-
ease-related or recurrent in cancer tissues) and negative (neutral) labels, respectively. To 
evaluate the performance of DVA and the state-of-the-art prediction methods appropri-
ately, we established the following rules to filter out genetic variants:

(1) The functional impact of variants contained in benchmark datasets should be pre-
dictable by all the state-of-the-art prediction methods.

(2) The variants should be rare, namely, the gnomAD allele frequencies (AF) of these 
variants are less than 1%.

(3) Each variant should not occur in the training set of the state-of-the-art prediction 
methods.

Finally, we obtained three datasets: (1) 12,569 recurrent missense variants from the 
COSMIC (https:// cancer. sanger. ac. uk/ cosmic) dataset and 16,873 neutral missense vari-
ants from the VariSNP database; (2) 3706 disease-related missense variants and 2929 
neutral missense variants from the ClinVar database; (3) 2965 disease-related missense 
variants and 3198 neutral missense variants from the VariBench database, which is inte-
grated into the filtered versions of HumVar [31], ExoVar [32], VariBench, and SwissVar 
[33] datasets. There are some overlaps between the original databases. Through data pre-
processing, we give priority to retaining duplicate variant data in ClinVar, then retaining 
variant data in Varibench, and finally retaining variant data in COSMIC and VariSNP.

Performance evaluation

The performance of the state-of-the-art prediction methods and DVA was evaluated 
using accuracy, precision, recall, F1-score, and the area under the ROC curve:

In the equations above, the following parameters are defined: True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative (FN). The positive cases 
denote the disease-related, deleterious, or pathogenic missense variants, while the 
negative cases denote the neutral or benign missense variants. Accuracy is the rate 
at which the prediction method correctly classifies the positive and negative cases. 
The Precision and Recall represent the ratio of real positive cases to predicted posi-
tive cases and correctly predicted positive to correctly predicted cases, respectively. 
F1-score is a compromise between precision and recall. The Receiver Operating 

(1)Recall =
TP

TP + FN

(2)Precision =
TP

TP + FP

(3)F1− score =
2 ∗ Recall ∗ Precision

Recall + Precision

(4)Accuracy =
TP + TN

TP + FP + TN + FN

https://cancer.sanger.ac.uk/cosmic
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Characteristic (ROC) curve is a plot that illustrates the predictive ability of the pre-
diction method. The Area Under the ROC curve (AUROC) is a numerical representa-
tion of the ROC curve to indicate the performance of the prediction method more 
conveniently. The AUROC, accuracy, precision, recall, and F1-score were obtained 
using the pROC [34] package implemented by the R language.

Feature matrix construction

In this section, we will introduce the comprehensive feature set of DVA. There are 
three kinds of variant features: conserved element features, allele frequency features, 
and PPI network features as shown in the Fig. 6.

Conserved element features

Here, the DVA algorithm incorporates a total of 8 conserved element features as pre-
dictive features to identify the functional impact of missense variants: The Genomic 
Evolutionary Rate Profiling++ (GERP++) [35] discoveries constrained elements in 
multiple alignments by quantifying substitution deficits, which represent substitu-
tions that would have occurred if the element were neutral but did not occur because 
the element has been under functional constraint. GERP++ is widely used as the 
common feature in the prediction of functional impact of variants. In addition to 
GERP++, The PHylogenetic Analysis with Space/Time models (PHAST) [36] and 
phyloP [37] and transcription conservation element are also integrated into DVA fea-
tures, which increases the diversity of feature sets. All these conserved element fea-
tures were obtained from the ANNOVAR database.

Fig. 6 The overview of the DVA method
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Allele frequency features

Complex diseases may be associated with low-frequency genetic variants [38]. Thus, 
we incorporated the allele frequency data including 17 features from the Genome 
Aggregation Database [39] (gnomAD version v2.1.1), such as AF_male, AF_female, 
AF (all), AF_afr (African/African-American), AF_sas (South Asian), AF_amr (Latino/
Admixed American), AF_eas (East Asian), AF_nfe (Non-Finnish European), AF_fin 
(Finnish), AF_asj (Ashkenazi Jewish), AF_oth (Other) and so on. If the AF (all) of an 
SNV is missing, we will remove the SNV in subsequent experiments. Here, we fill in 
the missing values of conserved elements and AFs using filling [40] R package. All of 
the features were obtained using ANNOVAR [41] and dbNSFP v3/v4 [42, 43].

PPI network features

When a variant occurs in the “multi-connected” gene that has more neighbor genes 
in the PPI network, its impact may be greater. Therefore, we introduce the charac-
teristics of the PPI network into the prediction of SNV function effects to improve 
accuracy. However, the dimension of PPI network is too high, which will undoubtedly 
increase the computational complexity, it will affect the prediction work. The graph 
embedding [44] based on network structure and random work is a good way to solve 
this problem. The specific steps are as follows:

• Based on protein–protein interaction database (STRING [45]), the binary adja-
cency matrix of PPI network will be obtained.

• A special random walk with two parameters p and q is performed to guide the 
walker. The transition probability is as follows:

where βpq(t, v, x) is the transition probability between current node v and its neighbor 
node x . The node t is the last step node, which is passed by the random walker. The p 
and q are walk direction parameter, respectively. Parameter dtx is the distance of node 
t and node x . The βpq(t, v, x) determines the probability of the random walker moving 
from node v to the next node.

• Based on the transition probability βpq(t, v, x) , start node t and walk step l  , the 
random walk sequence of the start node t will be obtained as shown in the Fig. 6.

• Repeat random walk process for each node in the PPI network and obtain several 
walk sequences for PPI network to represent local structure information.

• Fit the Skip-Gram [46] neural network using the representation vectors of the 
start node (as input vector) and each node in the random walk sequence of the 
start node (as output vector).

• Finally, the k-dimensional vectors will be used to represent the graph embedding 
information of the whole PPI network. The feature matrix is Uk ∈ Rn×k as follows:

(5)βpq(t, v, x) =

1
p dtx = 0

1 dtx = 1
1

q dtx = 2



Page 13 of 15Wang et al. BMC Bioinformatics          (2024) 25:100  

DVA model and cross-validation

We used random forest, a machine learning technique, to predict whether a mis-
sense variant is disease-related or neutral. Due to the differences in training sam-
ples, tenfold cross-validation for each dataset was performed to enhance the 
robustness of the results for the DVA method, respectively. The detailed steps of 
tenfold cross-validation are: (1) randomly divide the entire dataset into 10 groups 
of equal size; (2) for each unique group: First, take the unique group as the test 
set. Second, take the remaining groups as the training set. Third, fit the prediction 
model on the training set and evaluate it on the test set; (3) take the average of ten 
evaluation results as the final result. We trained random forest on the set of variants 
by using the randomForest [47] package with 500 binary classification trees to pre-
dict whether a missense variant is disease-related or neutral. The DVA score rep-
resents the fraction of the final prediction score which votes for the variant being 
disease-related or neutral.
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