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Abstract 

Background: In recent years, researchers have made significant strides in understand‑
ing the heterogeneity of breast cancer and its various subtypes. However, the wealth 
of genomic and proteomic data available today necessitates efficient frameworks, 
instruments, and computational tools for meaningful analysis. Despite its success 
as a prognostic tool, the PAM50 gene signature’s reliance on many genes presents chal‑
lenges in terms of cost and complexity. Consequently, there is a need for more efficient 
methods to classify breast cancer subtypes using a reduced gene set accurately.

Results: This study explores the potential of achieving precise breast cancer subtype 
categorization using a reduced gene set derived from the PAM50 gene signature. By 
employing a “Few‑Shot Genes Selection” method, we randomly select smaller sub‑
sets from PAM50 and evaluate their performance using metrics and a linear model, 
specifically the Support Vector Machine (SVM) classifier. In addition, we aim to assess 
whether a more compact gene set can maintain performance while simplifying 
the classification process. Our findings demonstrate that certain reduced gene subsets 
can perform comparable or superior to the full PAM50 gene signature.

Conclusions: The identified gene subsets, with 36 genes, have the potential to con‑
tribute to the development of more cost‑effective and streamlined diagnostic tools 
in breast cancer research and clinical settings.
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Background
Advances in omic techniques have revolutionized how we analyze gene expression data, 
enabling us to understand various diseases, including cancer. One such disease, breast 
cancer, is known for its heterogeneity, with different subtypes exhibiting distinct biologi-
cal characteristics and treatment responses [1–4]. In recent years, a wealth of genomic 
and proteomic data has become available, offering valuable insights into the underlying 
biology of breast cancer. However, harnessing this amount of information requires effi-
cient theoretical frameworks, instruments, and computational tools [5, 6].

Breast cancer subtypes, such as hormone receptor-positive and hormone receptor-
negative, can be further classified into more specific subgroups based on their intrinsic 
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properties. For example, hormone receptor-positive breast cancer can be further clas-
sified into luminal A, luminal B, or HER2-enriched subtypes, while hormone receptor-
negative breast cancer can be classified into triple-negative or basal-like subtypes [7]. In 
recent years, the PAM50 gene signature, a set of 50 genes used to classify breast cancer 
into the four intrinsic molecular subtypes, has emerged as a valuable prognostic tool in 
breast cancer research, providing insights into tumor subtypes and guiding therapeutic 
decision-making [8]. However, the PAM50 approach has some limitations, including its 
reliance on a relatively large number of genes, which can increase costs and complexity 
in research and clinical settings [9]. This highlights the need for a more efficient method 
to classify breast cancer subtypes using fewer genes accurately.

The primary objective of this research is to explore the potential for achieving pre-
cise breast cancer subtype categorization utilizing a reduced gene set derived from the 
PAM50 gene signature. By employing a method known as “Few-Shot Gene Selection”, we 
will randomly select smaller subsets from PAM50 and evaluate their performance using 
the F1 Score and a linear model, specifically, the Support Vector Machine (SVM) classi-
fier. In addition, this approach assesses whether a more compact gene set can maintain 
accuracy while simplifying classification.

Our contributions are as follows: 

1 An experiment demonstrating the impact of using fewer genes in the gene selection 
phase;

2 A direct comparison with the PAM50 gene selection method;
3 A 2D visualization of t-distributed stochastic neighbor embedding (t-SNE) applied 

to the model’s predicted samples, providing insight into how the model perceives the 
data, including misclassified samples at subtype boundaries.

Through this research, we hope to demonstrate that selecting fewer but more represent-
ative genes can lead to a more accurate classification of breast cancer subtypes while 
addressing the limitations of the PAM50 approach.

Related works
In this section, we discuss the related work on the limitations of the PAM50 gene signa-
ture in the context of breast cancer subtype classification. Also, we briefly present some 
works related to Gene Expression Data Selection.

PAM50 gene signature

The PAM50 gene signature, also referred as the Prosigna Breast Cancer Prognostic Gene 
Signature Assay, is a molecular classification method that assists in identifying breast 
cancer subtypes  [10]. This gene signature utilizes the expression levels of 50 specific 
genes (Table 1) to classify breast cancer into four intrinsic subtypes: Luminal A, Luminal 
B, HER2-enriched, and Basal-like. The accurate classification of these subtypes is criti-
cal, as they are associated with different prognoses and treatment options [11].

In clinical practice, the PAM50 gene signature is employed as a prognostic tool to 
predict the likelihood of breast cancer recurrence, guide treatment decisions, and esti-
mate patient survival [8]. It is particularly useful for determining the most appropriate 
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treatment for patients with early-stage, hormone receptor-positive breast cancer. It can 
help identify those at a higher risk of recurrence who may benefit from more aggressive 
treatment options.

The prognostic value of the PAM50 gene signature in predicting improved outcomes 
has shown some limitations [12, 13]. One of these limitations is using unsupervised sta-
tistical methods in deriving the PAM50 signature, which may result in the inclusion of 
genes that lack biological relevance to breast cancer prognosis or treatment [14]. Conse-
quently, the PAM50 gene signature might miss biologically meaningful genes crucial for 
understanding breast cancer prognosis and treatment [13].

Additionally, some studies using the PAM50 gene signature apply arbitrary cut-off 
values when evaluating the functional groups of genes [9]. This method may further 
contribute to the exclusion of important genes. Adopting a more nuanced approach in 
selecting cut-off values and incorporating more relevant genes could potentially improve 
the performance and clinical utility of the PAM50 gene signature [9, 14].

Gene selection in expression data

Mendonca-Neto et al. [15] proposed a novel outlier-based gene selection (OGS) strategy 
to pick significant genes for classifying breast cancer subtypes quickly and effectively. In 
a test set of 77 samples, the authors present a multi-level classifier demonstrating that 
their technique yields F1 scores of 1.0 for basal and 0.86 for her 2, the subtypes with the 
poorest prognoses, respectively. The authors suggested strategy surpasses existing meth-
ods in terms of F1 score, using 80% fewer genes. Their strategy generally picks just a few 
highly important genes applied to a hierarchical classifier, accelerating classification and 
enhancing performance considerably.

Liu et al. [16] proposed a gene selection method combining double radial basis func-
tion (RBF) kernels with weighted analysis to extract relevant genes from gene expression 
data. By eliminating redundant and irrelevant genes, this method addresses the chal-
lenge of analyzing gene expression data with many genes and small samples. The authors 
tested the modified method on four benchmark datasets, including two-class and mul-
ticlass phenotypes. They found it outperformed previous methods regarding accuracy, 
true positive rate, false positive rate, and reduced runtime. This approach allows for 
knowledge-based interpretation of omics data, providing essential information about 

Table 1 PAM50 Gene Signature

Gene Set Genes

PAM50 ACTR3B, ANLN, BAG1, BCL2, BIRC5,

BLVRA, CCNB1, CCNE1, CDC20, CDC6

NUF2, CDH3, CENPF, CEP55, CXXC5,

EGFR, ERBB2, ESR1, EXO1, FGFR4,

FOXA1, FOXC1, GPR160, GRB7, KIF2C

NDC80, KRT14, KRT17, KRT5, MAPT,

MDM2, MELK, MIA, MKI67, MLPH,

MMP11, MYBL2, MYC, NAT1, ORC6,

PGR, PHGDH, PTTG1, RRM2, SFRP1,

SLC39A6, TMEM45B, TYMS, UBE2C, UBE2T
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various biological processes and reflecting the current physiological status of cells and 
tissues.

Yang et al. [17] developed a hybrid approach that combines correlation-based feature 
selection and binary particle swarm optimization to select relevant gene subsets from 
microarray gene expression data for disease classification and medical diagnosis. They 
applied this approach to six gene expression datasets related to human cancer. They used 
the K-nearest neighbor method as a classifier to evaluate classification performance. The 
results demonstrated that the proposed approach effectively simplified the feature selec-
tion process and reduced the number of parameters needed while achieving higher clas-
sification accuracy than other feature selection methods. Their method could be an ideal 
pre-processing tool for optimizing the feature selection process, improving classification 
accuracy while minimizing computational resources. Furthermore, this approach may 
also apply to other problem areas.

Our approach

While these studies have contributed significantly to gene selection and breast cancer 
classification, there is still room for improvement. One aspect often overlooked in these 
studies is the importance of comparing the proposed methods with the current state-
of-the-art, such as the PAM50 gene signature. By comparing novel gene selection tech-
niques with the PAM50, we can better assess their true potential and practical relevance 
in real-world clinical and research settings.

In our experiments, we aim to address this gap by comparing the performance of our 
proposed gene selection strategy with the well-established PAM50 gene signature. This 
comparison will help us understand the advantages and limitations of our approach and 
evaluate its potential to provide accurate and efficient breast cancer subtype classifica-
tion in real-world situations. Furthermore, it will enable us to identify areas where fur-
ther improvements can be made, ultimately leading to more robust and effective gene 
selection methods for breast cancer subtype categorization.

Approach explained
In this study, we introduce an innovative approach termed “Fewer-Shot Genes Selec-
tion” to refine breast cancer subtype classification. Our method strategically generates 
multiple gene subsets stemming from the well-established PAM50 signature, subse-
quently evaluating their potency in classification. One of the crucial motivations behind 
this approach is the profound practical significance of reducing gene sets. In medicine, 
a condensed set of genes simplifies the classification process. Clinicians and researchers 
no longer need to identify a vast array of genes, making the diagnostic procedure more 
efficient and potentially more accurate. By critically assessing the performance of these 
gene subsets, our goal is to unearth combinations that either match or surpass the clas-
sification prowess of the PAM50 signature, thus enhancing the overall process of breast 
cancer subtype classification. The exhaustive pipeline of our proposed method is illus-
trated in Fig. 1.
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In summary, our approach consists of the following steps: 

1 We take one dataset and normalize it using the Standard Scaler.
2 We filter the dataset using the PAM50 signature.
3 We split the filtered dataset into the train, validation, and test sets, ensuring the Gene 

Selection will not suffer overfitting.
4 We input the train, validation, and test sets into the “Few-Shot Genes Selection” to 

assess the optimal subset choices based on the size of the Gene Signature.
5 We use the best subset choices in a second pipeline, which starts by normalizing a 

second dataset using the Standard Scaler.
6 We filter the second dataset using each best subset choice (Gene Signatures from dif-

ferent sizes).
7 We evaluate each filtered subset using a train/test Support Vector Machine (SVM) 

with Grid Search. Here we do not need a validation portion, once there is no data 
leak from the gene selection phase from Dataset 1.

8 We evaluate the test predictions using the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), Confusion Matrix, and Receiver Operating Characteristic (ROC) - 
Area Under the Curve (AUC) curve.

This comprehensive approach, splitting Dataset 1 into Train, Validation, and Test to 
ensure unbiased subset selection, and Dataset 2 only into Train and Test, for the evalua-
tion process, enables the selection of optimal gene subsets and their subsequent evalua-
tion without bias from any Dataset.

Few‑shot genes selection

In this study, we adopted a ’Few-shot gene selection’ approach, wherein subsets ranging 
from 10% to 80% of the total signature length were analyzed. This strategy was carefully 
chosen to optimize the balance between model accuracy and interpretability, in addi-
tion to reducing computational demands. Specifically, for the PAM50 Gene Signature, 
this approach entails evaluating subsets from size 5 to size 40. To achieve this, we used 
a Support Vector Machine (SVM) with a linear kernel, which was trained on 70% of the 
data, validated on 15%, and tested on the remaining 15%.

Fig. 1 Proposed approach
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In the rigorous evaluation of gene subsets within the “Few-shot gene selection” meth-
odology, we executed a comprehensive set of experiments, conducting 1 million tri-
als for each combination of subset size and experimental setup. Given the vastness of 
potential combinations, assessing each exhaustively is infeasible. Thus, we strategi-
cally organized our evaluation into three separate experiments, each encompassing 1 
million distinct combinations, resulting in an aggregate of 3 million combinations per 
subset size. Post-experimentation, a statistical analysis was performed to compare the 
outcomes of the three experiments. The results consistently registered a p-value greater 
than 0.05, indicating that the differences in the experiments were not statistically signifi-
cant. This affirms the robustness of our methodology, ensuring that our observations are 
not attributable to random variations.

This extensive experimentation allowed us to explore a large search space and iden-
tify the optimal gene subsets that maximize the combined F1 scores from both valida-
tion and test data for the ACES and TCGA datasets separately. After this validation, we 
combined the data from all three experiments for each subset size, selected the gene 
sets corresponding to the maximum validation and tested combined F1 scores. We then 
cross-evaluated the best choices for one dataset on the other dataset and vice versa, 
ensuring that each subset size achieved the results without overfitting from one dataset.

Evaluation

Our study evaluated the performance of the “Few-Shot Genes Selection” approach by 
comparing the results with the well-established PAM50 gene signature. In addition, we 
employed several evaluation metrics and visualization techniques to highlight the differ-
ences between the PAM50 and the best-chosen subset. 

1 ROC-AUC Curve: We used the Receiver Operating Characteristic (ROC) curve and 
calculated the Area Under the Curve (AUC) for PAM50 and our top 3 subset size 
results. This enables us to compare the performance of the gene subsets in terms of 
their sensitivity and specificity, providing a comprehensive view in comparison with 
PAM50 Signature.

2 Confusion Matrix: We generated confusion matrices for the PAM50 gene signature 
and the subset size results to assess the classification accuracy, allowing us to identify 
any discrepancies in the classification performance between PAM50 and our selected 
gene subsets.

3 T-SNE: We employed t-Distributed Stochastic Neighbor Embedding (t-SNE) to 
visualize the high-dimensional gene expression data in a lower-dimensional space. 
By comparing the t-SNE plots of the PAM50 gene signature with the results of our 
method, we could identify patterns and structures in the data and analyze any differ-
ences in the grouping of samples.

Using these evaluation methods, we can effectively compare the performance of our 
“Few-Shot Genes Selection” approach with the PAM50 gene signature.
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Data and methods
In this section, we describe the datasets used in our experiments. We also present the 
preprocessing and machine learning algorithm employed in our paper, and also the eval-
uation metrics applied.

Experiment datasets

A large dataset is required to classify breast cancer subtypes without overfitting accu-
rately [18]. To do this, samples from 12 ACES studies (n = 1606) [19] and the TCGA 
breast invasive cancer dataset (n = 532) [20] were used. These datasets, covering 13 
independent investigations, form a collection including 2138 samples. Only the META-
BRIC dataset [21], which needs ethical approval, is absent from the data presented in 
this research, making our study the most extensive compilation of public gene expres-
sion data for Breast Cancer subtypes.

Our datasets should capture a substantial proportion of the biological heterogene-
ity across breast cancer patients and the technical biases resulting from the variation in 
platforms and study-specific sample preparations [22]. This heterogeneity will aid the 
trained models in achieving a higher degree of generalization, which is vital for apply-
ing the final classification model in the real world [23–25]. In this study, the inclusion 
criteria were specified to concentrate on particular molecular subtypes of breast can-
cer. The original dataset contained 2,148 samples. For our analysis, we included samples 
classified under the subtypes: Basal, HER2, Luminal B, and Luminal A, while exclud-
ing samples identified as Normal-like and those without defined subtypes. This led to a 
refined dataset comprising 2027 samples, bringing ACES to 1512 and for TCGA to 515 
samples.

The focus of our research is on the post-surgical treatment of patients diagnosed with 
breast cancer. A key component of this research involves the classification of tumors 
into subtypes using small gene signatures. This approach is essential for determining 
appropriate treatment modalities. The inclusion of normal samples is not relevant to 
our study’s objectives, as our emphasis is on treatment strategies for specific tumor sub-
types, not on early detection or the transformation from normal tissue to cancer. Addi-
tional information about clinical variables was added to the Additional file 1.

Experiment settings and computation time

We conducted our experiments on a custom server equipped with a 12th Gen Intel(R) 
Core(TM) i9-12900KF processor, boasting 16 cores. The system was complemented with 
64 GB of RAM and a 1 TB NVMe SSD for storage. All computational tasks were per-
formed on an environment running Ubuntu 20.04.6 LTS. Regarding computation time, 
the Experiment with TCGA as a filter required approximately 48  h, while the Experi-
ment ACES took close to 52 h to access the list of best subsets.

We used Python programming language and scikit-learn1 package for the machine 
learning algorithms to perform all the experiments in this manuscript.

1 https://scikit-learn.org/stable/
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Data preprocessing

PAM50 gene selection

For gene filtering, we applied the PAM50 Gene Selection [8]. The PAM50 signature was 
produced using unsupervised statistical approaches; hence, no restrictions were placed 
on the identified genes’ biological significance beyond their prediction ability. Unan-
swered is the issue of which regulatory factors are responsible for the diverse expres-
sion patterns of this group of genes in the distinct molecular subtypes [26]. It is one of 
the most used gene filters in the literature, which is the one we are going to use as the 
basis for our analysis. In this study, we explore the potential of achieving precise breast 
cancer subtype categorization using a reduced gene set derived from the PAM50 gene 
signature.

Standard scaler

Standard Scaler is used when the ranges of the input dataset’s attributes differ signifi-
cantly or when they are measured in various units of measure. As we deal with 13 dis-
tinct breast cancer studies, we must normalize our data by removing the mean and 
scaling to the unit variance.

Standardization:

Here, z represents the standardized value, x is the original value of a data point, µ is the 
mean of the dataset, and σ is the standard deviation of the dataset.

With mean:

In this equation, µ is the mean of the dataset, N is the number of data points, and xi rep-
resents each individual data point in the dataset.

And standard deviation:

Here, σ represents the standard deviation of the dataset, N is the number of data points, 
xi is each individual data point in the dataset, and µ is the mean of the dataset.

Utilizing the Standard Scaler, we adjust our data to a distribution where the mean is 
normalized to 0 and the standard deviation to 1. Specifically, for our multivariate data-
set, this adjustment occurs on a feature-by-feature basis, meaning it is applied indepen-
dently to each feature across all samples. This approach is particularly vital in the context 
of our study, which leverages machine learning techniques.

Given the sensitivity of machine learning algorithms to the distribution and scale of 
input data, the Standard Scaler plays a crucial role in minimizing the possibility of biases 
or distortions. These might otherwise stem from batch effects, thereby ensuring that 
each sample is processed on its own merits. This method is essential for maintaining 

(1)z =
x − µ

σ

(2)µ =
1

N

N

i=1

(xi)

(3)σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2
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the accuracy and reliability of our machine learning models, contrasting with techniques 
like quantile normalization and RMA. While the latter adjust data against a common 
reference distribution, they may not be as suited for machine learning contexts where 
batch effects could significantly impact results, potentially leading to biased outcomes in 
machine learning analyses.

SVM

We decided to utilize traditional machine learning instead of employing deep learning. 
We know how deep learning methods have advanced in the cancer area through some 
works [27–29]. Still, as our dataset size and filtering method lead us to few samples for 
training and high-dimension features with gene expression, a Deep Learning algorithm 
could suffer from overfitting and high-variance gradient updates [30].

Support vector machines (SVM) in machine learning are supervised learning models 
with associated learning algorithms that evaluate data for regression and classification. 
SVMs, based on statistical learning frameworks, are among the most reliable prediction 
techniques [31]. SVMs may effectively do non-linear classification in addition to linear 
classification by implicitly translating their inputs into high-dimensional feature spaces. 
This technique is known as the kernel trick. The choice of the SVM was based on a pre-
vious study where the SVM method achieved the best results for representative genes 
[32].

Evaluation

Here we discuss the evaluation methods used to assess the performance of our model. 
We focus on two key aspects: the ROC-AUC curve, the t-SNE visualization, and various 
performance metrics, including accuracy, precision, recall, F1 score, and AUC.

ROC‑AUC curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation of the 
true positive rate (sensitivity) versus the false positive rate (1-specificity) for different 
classification thresholds. The Area Under the Curve (AUC) of the ROC curve is a scalar 
value ranging from 0 to 1, which measures the overall performance of a classifier. For 
example, a model with perfect classification would have an AUC of 1. In contrast, a ran-
dom classifier would have an AUC of 0.5. The ROC-AUC curve is a useful tool for evalu-
ating and comparing the performance of different classifiers.

Metrics

To further evaluate the performance of our model, we compute several metrics: accu-
racy, precision, recall, F1 score, and AUC.

• Accuracy: The proportion of correctly classified instances out of the total number of 
instances. The formula for accuracy is: 

(4)Accuracy =
TP + TN

TP + TN + FP + FN
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 where TP, TN, FP, and FN represent true positives, true negatives, false positives, 
and false negatives, respectively.

• Precision: The proportion of true positive instances among the instances predicted 
as positive. The formula for precision is: 

• Recall (Sensitivity): The proportion of true positive instances among the actual posi-
tive instances. The formula for recall is: 

• F1 Score: The harmonic mean of precision and recall, which provides a balanced 
measure of both metrics. The formula for the F1 score is: 

• AUC : As mentioned earlier, the Area Under the Curve (AUC) of the ROC curve is 
a scalar value that measures the overall performance of a classifier. A higher AUC 
value indicates better classifier performance.

Visualization: t‑SNE

We used a dimensionality reduction technique known as a t-distributed stochastic neigh-
bor embedding (t-SNE) to show the results of our studies obtained from our experiment. 
t-SNE is a popular dimensionality reduction technique for visualizing high-dimensional 
data in lower-dimensional spaces, such as two or three dimensions. the main objective of 
t-SNE is to preserve the data structure by maintaining the pairwise relationships between 
data points when projecting them onto a lower-dimensional space [33].

The t-SNE algorithm involves three main steps: 

1 Compute pairwise affinities pij in the high-dimensional space using a Gaussian dis-
tribution: 

2 Compute pairwise affinities qij in the low-dimensional space using a Student’s t-dis-
tribution with one degree of freedom: 

3 Minimize the Kullback–Leibler divergence (KL divergence) [34] between the two 
distributions concerning the positions of the points in the map using the following 
cost function: 

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1 Score = 2×
Precision× Recall

Precision+ Recall

(8)pij =
exp (−||xi − xj||

2/2σ 2)
∑

k �=l exp (−||xk − xl ||2/2σ 2)

(9)qij =
(1+ ||yi − yj||

2)−1

∑

k �=l(1+ ||yk − yl ||2)−1
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In these formulas, xi and xj are data points in the high-dimensional space, while yi and yj 
are data points in the low-dimensional space. The variable σ represents the variance of the 
Gaussian distribution in the high-dimensional space, and it is usually chosen using a binary 
search for each data point. The pairwise probabilities pij and qij represent the likelihood 
of data points i and j being similar in the high-dimensional and low-dimensional spaces, 
respectively.

By minimizing the KL divergence (cost function C), t-SNE ensures that the relationships 
between data points are preserved when projecting the data onto a lower-dimensional 
space. This makes t-SNE an effective method for visualizing complex datasets and uncover-
ing hidden structures within the data.

This algorithm is broadly used among researchers in cancer with gene expression data 
[35–37]. It can represent samples in data points scattered on a plot and give us insights into 
the subtypes’ relationship.

Results
In this section, we examine the findings of our cross-validation approach. This technique 
involves determining the optimal subset for one dataset and subsequently applying it 
to the model on the second dataset, then reversing the process to select from the second 
dataset and applying it to the first dataset. Our aim is to capture less complex attributes 
in the Selection Phase using a linear model while employing a Grid Search to train non-
linear SVM models in the Evaluation Phase, the parameters applied in the SVM models are 
shown in Table 2.

In the Data Preprocessing step we had to do a gene intersection between datasets ACES 
and TCGA, in order to select one dataset and ensure that we had the genes in the other 
dataset. When we applied the PAM50 gene in the intersection, we found that the ACES 
dataset did not have 6 genes presented in the PAM50 Gene Signature: ANLN, CXXC5, 
GPR160, NUF2, TMEM45B, UBE2T. This does not discourage us from using the PAM50 
gene signature because the list still had 44 important genes to use as features in our models.

TCGA to ACES

Initially, we utilized the TCGA dataset with 515 samples as the filtering dataset. After 
passing this dataset to the first pipeline with the “Few-Shot Genes Selection” process, we 

(10)C =
∑

i �=j

pij log
pij

qij

Table 2 SVM parameters used in our experiments. Parameters missing were set as default values in 
scikit‑learn version 1.4.0

Parameter Value

C 1

Kernel Linear

Gamma Scale

Decision function shape One‑vs‑rest
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retained the best subsets for each subset length then we applied the ACES dataset for the 
evaluation process.

ROC‑AUC 

In the ROC curve, we highlighted the top 3 subsets which achieved AUC (Area Under 
Curve) equal to or even higher than the baseline PAM50, highlighted in red in Fig. 2, 
Subset size 36 (S-36), Subset size 35 (S-35) and Subset size 34 (S-34).

As we can see, there are selections that can compete with the PAM50 Gene Signature 
baseline, the gray lines in the plot also show us other selections which contain subsets 
with fewer genes.

Metrics

The results in Table  3 present the performance of four highlighted filtering methods 
(PAM50, S-36, S-35, and S-34) across the four subtypes (Basal, Her2, LumA, and LumB), 
reporting Accuracy (Acc), Precision (Prec), Recall (Rec), F1 Score (F1), and AUC for 
each case.

In the Basal subtype, S-35 attained the highest accuracy (0.943), while S-36 reached 
the best F1 Score (0.961). PAM50, however, secured the highest precision (0.966) and 
AUC (0.999), with both S-36 and S-35 achieving the best recall (0.978). For Her2, S-35 
displayed the highest accuracy (0.943) but lower precision (0.852) and F1 Score (0.829) 
compared to PAM50 and S-36. Conversely, PAM50 and S-34 tied for the highest AUC 
(0.992), and PAM50 demonstrated the best recall (0.860), with S-34 leading in precision 
(0.882).

Fig. 2 ROC curve for the evaluation of the prediction samples from ACES in a model with features filtered by 
TCGA 
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In LumA, S-35 outperformed other methods with the highest accuracy (0.943), preci-
sion (0.967), recall (0.989), F1 Score (0.978), and AUC (0.998). For LumB, S-35 achieved 
the highest accuracy (0.943) and F1 Score (0.934), and S-36 obtained the highest AUC 
(0.992). Additionally, S-35 had the highest precision (0.953), and S-34 presented the best 
recall (0.924).

Overall, S-35 consistently performed well across all subtypes, obtaining the high-
est accuracy and F1 Score in most situations. Nevertheless, PAM50 exhibited better 
precision for Basal and the highest metrics for Her2. Comparing the results, S-35 
can be considered the best-performing method in most cases, with S-36 and PAM50 
remaining competitive in some aspects.

Confusion matrix and t‑SNE

In the Confusion Matrix, we highlight the subset size of 36, which achieved the high-
est mean AUC for the four subtypes.

Comparing both Confusion Matrices, Fig. 3 and 4, we can observe that both had 
the same hits for Basal and LumB subtypes, while the PAM50 achieved better results 
in LumA and our method achieved better results in Her2.

Table 3 Classification results for the four subtypes TCGA to ACES

Basal Her2

Acc Prec Rec F1 AUC Acc Prec Rec F1 AUC 

PAM50 0.930 0.966 0.944 0.955 0.999 0.930 0.845 0.860 0.852 0.992
Subset 36 0.927 0.946 0.978 0.961 0.999 0.927 0.855 0.825 0.839 0.992
Subset 35 0.943 0.935 0.978 0.956 0.999 0.943 0.852 0.807 0.829 0.991

Subset 34 0.927 0.955 0.955 0.955 0.999 0.927 0.882 0.789 0.833 0.992

LumA LumB

Acc Prec Rec F1 AUC Acc Prec Rec F1 AUC 

PAM50 0.930 0.955 0.966 0.960 0.997 0.930 0.908 0.902 0.905 0.990

Subset 36 0.927 0.954 0.949 0.952 0.997 0.927 0.909 0.909 0.909 0.992
Subset 35 0.943 0.967 0.989 0.978 0.998 0.943 0.953 0.917 0.934 0.991

Subset 34 0.927 0.944 0.960 0.952 0.996 0.927 0.904 0.924 0.914 0.991

Fig. 3 Confusion Matrix for subset size 36, filtering from TCGA and applying on ACES
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Upon examining both t-SNE visualizations, Fig. 5 and 6, we can see that both had 
almost the same clear separation between the subtypes. We highlight the errors of 
each plot that could be identified on the Confusion Matrices. Of course, it’s not a 
perfect separation once we’re trying to project n-dimensional features in a 2D Visu-
alization. Nevertheless, we can gain an understanding of how the data perceives in 
our model and which samples are missing in the boundaries of each subtype.

Fig. 4 Confusion Matrix for PAM50 applying on ACES

Fig. 5 t‑SNE Visualization for subset size 36, filtering from TCGA and applying on ACES
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ACES to TCGA 

After doing the TCGA filtering and ACES dataset evaluation, we cross-evaluated, using 
the ACES dataset with 1512 samples as the filtering dataset. After choosing the best sub-
sets for each subset length, we applied the TCGA dataset for the evaluation process. Our 
goal by doing so is to have a full understanding of how fewer genes impact the model’s 
performance when we compare it against the PAM50 Signature.

ROC‑AUC 

In the ROC curve, we highlighted the top 3 subsets which achieved AUC (Area Under 
Curve) equal to or even higher than the baseline PAM50, highlighted in red in Fig. 7, 
Subset size 37 (S-37), Subset size 36 (S-36) and Subset size 32 (S-32).

As we can see, the results achieved by the subsets can compete with the PAM50 
baseline. In this particular ROC-AUC visualization, where we have less data in the 
prediction with the TCGA dataset, we can have a better view of the subsets that 
achieved greater curves than the baseline.

Fig. 6 t‑SNE Visualization in the ACES Prediction data after PAM50 filtering
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Metrics

Table 4 presents the performance of four filtering methods (PAM50, S-37, S-36, and 
S-32) across four subtypes (Basal, Her2, LumA, and LumB), reporting Accuracy (Acc), 
Precision (Prec), Recall (Rec), F1 Score (F1), and AUC for each case.

In the Basal subtype, S-36 achieved the highest accuracy (0.935), while PAM50, 
S-36, and S-32 shared the best precision (1.000), recall (0.931), F1 Score (0.964), and 
AUC (1.000). For Her2, S-36 displayed the highest accuracy (0.935) and shared the 
best recall (1.000) with PAM50 and S-32. S-32 attained the highest precision (0.895) 
and F1 Score (0.944), as well as the highest AUC (0.997).

Fig. 7 ROC curve for the evaluation of the prediction samples from TCGA in a model with features filtered by 
ACES

Table 4 Classification results for the four subtypes ACES to TCGA 

Basal Her2

Acc Prec Rec F1 AUC Acc Prec Rec F1 AUC 

PAM50 0.910 1.000 0.931 0.964 1.000 0.910 0.850 1.000 0.919 0.999

Subset 37 0.910 1.000 0.897 0.945 0.999 0.910 0.842 0.941 0.889 0.996

Subset 36 0.935 1.000 0.931 0.964 1.000 0.935 0.850 1.000 0.919 0.996

Subset 32 0.923 1.000 0.931 0.964 0.999 0.923 0.895 1.000 0.944 0.997

LumA LumB

Acc Prec Rec F1 AUC Acc Prec Rec F1 AUC 

PAM50 0.910 0.914 0.914 0.914 0.988 0.910 0.868 0.846 0.857 0.978

Subset 37 0.910 0.915 0.929 0.922 0.990 0.910 0.872 0.872 0.872 0.985

Subset 36 0.935 0.944 0.957 0.950 0.992 0.935 0.919 0.872 0.895 0.988
Subset 32 0.923 0.929 0.929 0.929 0.989 0.923 0.872 0.872 0.872 0.986
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In LumA, S-36 outperformed other methods with the highest accuracy (0.935), 
precision (0.944), recall (0.957), F1 Score (0.950), and AUC (0.992). For LumB, S-36 
secured the highest accuracy (0.935), precision (0.919), F1 Score (0.895), and AUC 
(0.988), while sharing the best recall (0.872) with S-37 and S-32.

Overall, S-36 consistently performed well across all subtypes, achieving the highest 
accuracy, F1 Score, and AUC in most cases, and sharing the best results in precision 
and recall with other methods. S-32 also demonstrated competitive performance in 
several aspects, particularly for the Her2 subtype.

Confusion matrix and t‑SNE

In the Confusion Matrix, by coincidence, we highlight the subset size of 36, which 
achieved the highest mean AUC for the four subtypes.

Comparing both Confusion Matrices, Fig. 8 and 9, we can observe that both had the 
same hits for Basal and Her2 subtypes. But our subset size 36 had better performance on 
LumA and LumB subtypes.

If we take a look at both t-SNE visualizations, Fig.  10 and 11, we can see that both 
had almost the same clear separation between the subtypes, the difference was an inver-
sion of the y axis but that was not because of our features, it was just the non-linear 

Fig. 8 Confusion Matrix for subset size 36, filtering from ACES and applying on TCGA 

Fig. 9 Confusion Matrix for PAM50 applying on TCGA 
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transformation of t-SNE method. We highlight the errors of each plot that could be 
identified on the Confusion Matrices. We can clearly see the errors in the subtypes’ 
boundaries.

Discussion

In our study, we observed that the list of genes from the S-36 filtering method differed 
between the two datasets. Interestingly, 30 genes were common between the gene 
sets obtained for both datasets, shown in Table 5, suggesting that these shared genes 
play a significant role in cancer subtype classification. The bold entries in the table 
represent genes that do not intersect between the two gene sets. This finding further 
supports the robustness of the S-36 filtering method as it maintains its performance 
across different datasets, despite the variations in the gene lists.

The enhanced performance of the S-36 method compared to the PAM50 Signa-
ture across various evaluation metrics suggests that certain genes within the PAM50 
Signature might not be as crucial or indicative for classifying cancer subtypes. This 
finding prompts a reevaluation of the PAM50 Signature’s gene components due to 
concerns about its effectiveness. Further analysis of molecular functions using the 
Panther Classification System [38] has revealed that while the S-36 Signature from 
TCGA shares a similar distribution of molecular functions with PAM50, the S-36 

Fig. 10 t‑SNE Visualization subset size 36, filtering from ACES and applying on TCGA 
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Signature from ACES didn’t include the “Structural Molecular Activity” provided by 
the KRT5 gene, which is unique in this aspect. Additional information about gene 
functions was added to the Additional file 2.

Fig. 11 t‑SNE Visualization in the ACES Prediction data after PAM50 filtering

Table 5 S‑36 Signatures for ACES and TCGA datasets experiments

Gene Set Genes

S‑36 ACES Dataset MAPT, BLVRA, CENPF, GRB7, BCL2, FGFR4,

CDC6, CCNB1, FOXC1, KRT17, SFRP1, PTTG1,

FOXA1, NDC80, KIF2C, MELK, MMP11, CEP55,

SLC39A6, KRT14, MIA, NAT1, EGFR, EXO1,

BIRC5, ACTR3B, CDH3, ESR1, MLPH, MDM2

CDC20, MYBL2, PGR, MYC, PHGDH, RRM2
S‑36 TCGA Dataset MAPT, BLVRA, CENPF, GRB7, BCL2, FGFR4,

CDC6, CCNB1, FOXC1, KRT17, SFRP1, PTTG1,

FOXA1, NDC80, KIF2C, MELK, MMP11, CEP55,

SLC39A6, KRT14, MIA, NAT1, EGFR, EXO1,

BIRC5, ACTR3B, CDH3, ESR1, MLPH, MDM2

UBE2C, CCNE1, MKI67, TYMS, KRT5, BAG1



Page 20 of 22Okimoto et al. BMC Bioinformatics           (2024) 25:92 

These results indicate potential areas for enhancing the PAM50 Signature. By 
improving the process of gene selection, it is conceivable to create more precise and 
effective classifiers for cancer subtypes. The common genes identified by the S-36 fil-
tering methods in both datasets could be a valuable focus for future research, as they 
may be critical to improving cancer subtype classification accuracy. Consequently, 
this could offer avenues to classify Breast Cancer subtypes using a more concise gene 
signature.

In summary, our study not only highlights the potential of the S-36 filtering method 
as a viable alternative to the PAM50 Signature, but also brings attention to the need 
for reevaluating the PAM50 Signature gene components. By focusing on the shared 
genes and improving the gene selection process, we can potentially develop more 
accurate and efficient classifiers for cancer subtypes, ultimately contributing to better 
patient care and management.

Conclusion and future directions
In this paper, we developed an approach called “Fewer-Shot Genes Selection” which uti-
lized a large number of subsets derived from the PAM50 Signature, in order to compare 
the classification performance of this baseline.

We achieved results as S-36 that surpassed the baseline PAM50 Signature, which indi-
cates that there is potential for improvement in the feature selection techniques for a 
better Breast Cancer Subtype classification.

The results achieved in this paper encourage us to extend our approach to a higher 
dimension, not limiting ourselves to a subset of the PAM50 Signature, but the entire fea-
ture space. As some papers suggest in the background showing the limitations of the 
PAM50 Signature, we could prove that even by taking subsets derived from PAM50, we 
could compare favorably with it.

We also consider applying explainable artificial intelligence (XAI) in the evaluation 
process directly in the misclassified samples in the boundaries between subtypes, which 
could be explained by the expression of specific features or even a group of features for 
that error, this explainable AI process could be really valuable for future methods where 
we could take into account of how certain features contribute in the misclassification of 
some samples that are in the subtype boundaries.
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