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Background
According to the global cancer statistics in 2020, breast cancer is the most common 
malignant tumor, accounting for two million (11.7%) patients worldwide [1]. The out-
comes of these breast cancer patients were observed to be significantly different under 
the same treatment, reflecting the heterogeneity of breast cancer. Accurate breast can-
cer outcome prediction is important for designing effective follow-up treatments, and 
improving the survival periods and life quality of patients [2].

With the advancement of molecular sequencing techniques, an increasing amount of 
high-dimensional genomic data has been used to evaluate cancer outcomes to support 
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clinical decision- making [3, 4]. The most widely used method for evaluating patient 
risks is the Cox proportional hazard model [5]. This method analyses the influences of 
different factors on cancers by calculating the survival ratios of patients without know-
ing patients’ survival distributions. In addition, Wang et  al. designed random survival 
forests (RSF) to predict cancer outcomes by utilizing the bootstrapping strategy [6]. 
However, these methods have limited performance on high-dimensional gene expres-
sion data [7]. To solve this problem, many feature dimensionality reduction technologies 
were added to the algorithm. Lin used features extracted by principal component analy-
sis (PCA) in the Cox method to predict disease prognosis [8]. Considering that PCA per-
forms poorly in a high-dimensional nonlinear space, Cai selected kernel-PCA instead 
of PCA to generate compressed features for patient risk prediction [9]. Another way to 
solve the computational challenge caused by high-dimensional features is to add a regu-
larization component to the Cox model. Boulesteix combined adaptive Lasso regulariza-
tion and the Cox regression method (IPW-lasso) to estimate cancer prognosis [10]. The 
method minimized the likelihood function via an L1-norm regularization constant to 
shrink the coefficients of the features. In addition, the survival support vector machine 
(SSVM) proposed by Evers yielded improved cancer outcome prediction performance 
by using a sparse kernel function. However, choosing a suitable kernel function and 
hyperparameters is a complex process. Recently, Liu et al. designed an integrated learn-
ing method called EXSA based on the XGBoost framework to predict cancer outcomes. 
The results show that it outperformed other traditional machine learning methods [11].

In recent years, deep learning (DL) technologies have demonstrated their efficacy in 
handling high-dimensional nonlinear features [12]. The residual neural network was 
used in Li’s work for breast cancer prognostic index classification [13]. Deep_surv, pro-
posed by Katzman, was designed to estimate cancer outcomes by combining a deep 
neural network (DNN) and the proportional hazard loss function [14]. Chaudhary used 
an Autoencoder to reconstruct high-dimensional expression features, and the gener-
ated features were used for liver cancer survival analysis [15]. Based on this method, 
Yang et al. proposed DCAP by using a denoising autoencoder to build a robust model 
for defending against data noise [16]. Nonetheless, the separation of the feature extrac-
tion and risk prediction processes hindered the convenience of this method. To solve 
this problem, an end-to-end framework called TCAP was designed to combine the risk 
prediction loss and data recovery loss [17]. Bashier et al. proposed a multi-omics data 
integration approach that combines gene similarity networks with convolutional neu-
ral networks to accurately predict the stage of breast tumors [18]. On the basis of these 
studies, to speed up the convergence of DNN model and reduce the risk of overfitting 
during model training, Qiu introduced a meta-learning-based network for cancer out-
come prediction [19].

Although DL-based methods have achieved better results in cancer outcome predic-
tion, the application of these methods is still limited by the lack of model interpretabil-
ity. Interpreting the factors associated with cancer outcomes is important for medical 
decision-making and target drug development. The widely used method for solving 
this problem is differential expression analysis (DEA). Nevertheless, when the average 
expression of the given features is low, the log-fold change values computed in DEA are 
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disproportionately affected by noise [20]. Hence, Hao proposed an interpretable DNN 
framework for cancer survival analysis, by calculating the gradients in the neural net-
work [21]. However, this approach may lead to gradient saturation, making it difficult for 
the neural network to identify important features [22]. Zhao et al. proposed DeepOmix 
for cancer prognosis prediction [23]. According to the predicted risks, DeepOmix per-
formed the Kolmogorov‒Smirnov test to identify prognosis-related genes. However, the 
genes identified by these methods are hard to be proved as effectively related to cancer 
outcomes. The studies indicated that by removing these genes from the model, the accu-
racy of prediction is not reduced dramatically [24]. Thus, it is necessary to develop an 
interpretable model to accurately predict cancer outcomes and identify cancer-related 
key genes to reveal the novel cancer mechanisms.

To address these problems, we propose an Uncertainty-based Interpretable deep 
Semi-supervised Network (UISNet) for breast cancer outcome prediction. The main 
contributions of our research are given as follows:

1. An uncertainty-based algorithm that combines the Monte Carlo dropout and the 
integrated gradients is designed to improve the reliability of the interpretable results.

2. By introducing the prior biological pathway information as a sparse layer, UISNet 
deals with the high-dimensional gene expression data effectively.

3. UISNet considered the heterogeneity of patients to extract useful information for 
cancer outcome prediction. This information was integrated into a unified frame-
work after dimension reduction. All these tasks are simultaneously optimized by the 
shared representations in the neural network.

4. UISNet was used in seven breast cancer datasets from the TCAG and GEO data-
bases, and the prediction results were analyzed comprehensively. The results indi-
cated that UISNet is accurate and robust when predicting breast cancer outcomes, 
and is able to identify prognosis-related genes, efficiently.

The details of UISNet are introduced in Section "Methods". Section "Results" shows 
the experimental results and biological analysis. Finally, we present the conclusion and 
discussion in Section "Discussion".

Methods
Datasets

In this study, seven breast cancer datasets collected from GEO (https:// www. ncbi. nlm. 
nih. gov) and TCGA (https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ resea rch/ struc 
tural- genom ics/ tcga) were used for method evaluations. Considering the requirement 
for cancer outcome prediction data with consistent gene expression profiles and com-
prehensive information on patient survival, we identified six available datasets from the 
GEO database, encompassing a total of 1323 breast cancer patients. The features of 4767 
genes in these datasets were normalized by log transformation, and the batch effect was 
removed by using the “limma” package [25]. The statistical information of each used 
dataset is given in Table 1.

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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The architecture of the proposed deep learning framework

As shown in Fig. 1, high-dimensional gene expression data are given in the input layer, 
and prior biological pathway information is introduced in the sparse layer. The uncer-
tainty-based interpretable deep semi-supervised network (UISNet) can learn meaning-
ful information by incorporating the prior biological knowledge in the sparse layer (e.g., 
KEGG and Reactome gene connection pathways). The knowledge regarding the learned 
relationships between genes and functional pathways is used to form sparse connections 
between the input layer and the sparse layer instead of full connections.

Here, we constructed a binary biadjacency matrix to represent the sparse connections 
between the genes and functional pathways by using the strategy presented by Hao [21]. 
Supposing that p gene features and prior information, including q pathways from the 
KEGG and Reactome databases, are given in the neural network, the binary biadjacency 
matrix can be expressed as AǫBq×p , and the element aij in A is given as:

(1)aij =
1, 1 ≤ i ≤ q, 1 ≤ j ≤ p
0, else

Table 1 The statistical information of the utilized cancer data in our study

Dataset Censored patients Sample size Censored 
rate (%)

BRCA 530 609 87.03

GSE2990 [26] 77 125 61.60

GSE9195 [27] 65 77 84.42

GSE11121 [28] 154 200 77.00

GSE17705 [29] 227 298 76.17

GSE19615 [30] 14 115 12.17

GSE25066 [31] 397 508 78.15

BRCA_all 1464 1932 75.78

Fig. 1 The architecture of UISNet for breast cancer outcome evaluation. Prior biological pathway information 
is introduced in the sparse layer, and UISNet predicts breast cancer outcomes by integrating patient 
heterogeneity clustering, dimensionality reduction, and cancer outcome prediction tasks into a unified 
framework
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The node values h in the UISNet framework are computed as follows:

where RelU is a nonlinear activation function, hgene represents the gene expression val-
ues, hl is the output in layer l, W is the weight matrix, and b is the bias.

The feature dimensionality reduction is performed by the Eq.  (3), where 
X =

(
x1, x2, . . . xp

)
 represents the gene expressions of the breast cancer patients, and 

Z is the low-dimensional representation of X in the last hidden layer. The feature 
dimensionality reduction task is used to obtain high-quality compressed features in 
the hidden layer. Similar to the encoder-decoder structure, supposing that E is the 
encoder function and D is the decoder function, the compressed Z is written as: 
Z = E(X), and the recovered X′ can be expressed as X′ = D(Z). The loss induced by the 
dimensionality reduction task is written as:

The subtype clustering task is designed to extract information on breast cancer 
patient heterogeneity. In the last hidden layer, a feature matrix is formed by inte-
grating the produced Z and the cluster labels L. The clustering task loss in UISNet is 
defined as the KL divergence between the two distributions S and T [32]:

where tij describes the similarity between the cluster center µj and an embedded point zj 
by Student’s t-distribution:

sij is the target distribution:

The initial cluster labels L of the patients are calculated by k-means. The number of 
clusters k is the value in [2–4] with the largest silhouette score. To ensure the accu-
racy of the clustering task in UISNet, the computed labels are updated in each epoch 
while the program runs.

The risk prediction task is used to evaluate breast cancer prognoses by Eq.  (7). In 
Eq.  (7), S(t) = Pr(T ≥ t) is the survival probability that a patient will survive before 
time t . The time interval T  is the time elapsed between data collection and the 
patient’s last contact (the end of the experiment/patient death). The risk function at t 
can be given as follows:

(2)hl+1 =

{
Relu

(
(W ∗ A)hgene + b

)
, sparse layer

Relu(W ∗ hl + b), hidden layer

(3)LD =
∑p

i=1

(
xi − x

′

i

)2

(4)Lc = KL(S||T ) =
∑

i

∑

j

sij log
sij

tij

(5)tij =

(
1+ �zi − µj�

2
)−1

∑
j

(
1+ �zi − µj�

2
)−1

(6)sij =
t2ij/

∑
itij

∑
j

(
t2ij/

∑
itij

)
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The loss function of the outcome prediction task can be expressed as Eq. (8) [14]:

where UISNet updates h(x) according to the weight θ , and R(Ti) represents the risk set 
of the breast cancer patients that are still alive at time point Ti.

By integrating the feature dimensionality reduction, patient heterogeneity cluster-
ing, and cancer outcome prediction tasks into a unified framework, the total loss of 
UISNet can be given as follows:

γ and β can balance the importance of these tasks, which can be seen as the hyperpa-
rameters chosen by the cross-validation step. In this study, the value of γ was set to 1, 
and β was set to 10.

The uncertainty‑based integrated gradients algorithm

In [21], the gradients of the output y with respect to the input x (W = ∂y/∂x) were 
used to quantify the importance of each gene to cancer prognosis. However, com-
puting the gradients in a deep neural network may lead to gradient saturation. To 
interpret the feature importance of the prediction model, UISNet uses the Gauss‒
Legendre quadrature to approximate the integral of the gradients after calculating the 
gradients of the input x across different scales against the baseline xi (zero-scaled):

Nevertheless, the evaluation results given by the integrated gradients algorithm 
are not always reliable. Calculating the uncertainty of the predictions can enable the 
reliability of the results to be judged. Bayesian neural networks have been designed 
to quantify the uncertainty of results, but due to the large number of required com-
putations, Monte Carlo dropout and Gaussian distribution models are often used as 
approximate solutions for Bayesian neural networks. Compared to Gaussian distribu-
tion models, Monte Carlo dropout can better approximate Bayesian neural networks 
by using the dropout term as one regularization term, for calculating the uncertainty 
of the results [33]. The objective function for using L2 regularization in Monte Carlo 
dropout can be expressed as:

where L is the number of layers in the deep neural network, and yi and ŷi are the tar-
get and the output of the network, respectively. By following [34], we trained UISNet 

(7)�(t) = lim
δ→0

Pr(t ≤ T < t + δ|T ≥ t)

δ

(8)LP = −
�

i=1



hθ (x)− log
�

j∈R(Ti)

exphθ (xj)





(9)lUISNet = γLD + βLC + LP

(10)IG(xi) : : =
(
xi − x

′
i

)
×

∫
1

α=0

∂F
(
x′ + α × (x − x′)

)

∂xi
dα

(11)lMC :=
1

n

∑n

1
E
(
yi, ŷi

)
+ �

∑L

l=1
�Wi�

2
2 + �bi�

2
2
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with different dropout settings at T inference times as the Monte Carlo dropout strategy. 
Supposing that lgxi represents the integrated gradients importance of the ith node, the 
uncertainty of the ith features is designed as:

where std(*) and ave(*) are the standard deviation and average values of lgxi at T infer-
ence times, respectively. The importance weight of the gene feature in the network is 
expressed as:

where U′ (xi) is the adjusted uncertainty value of U(xi) after log transformation and 
min–max normalization. In summary, the UISNet algorithm is given as follows: 

Algorithm of UISNet 

Performance evaluations and parameter selection

In this study, the cancer outcome prediction performances of different methods were 
compared through the C-index and |log10(P)| values. The C-index value is the fraction 
of all pairs of patients whose predicted outcomes are correctly ordered based on Har-
rell’s C statistics [35]. A higher |log10(P)| value indicates more significant survival dif-
ferences between the patient subgroups divided based on the predicted risks (Additional 
file 1).

The parameter list in this study is given below. The number of nodes in hidden layer 1 
was set to 1000, and the number of nodes in hidden layer 2 was set to 500. The number 
of nodes Z in hidden layer 3 was selected from [10, 20, 50]. The learning rate (LR) was 
selected from [1e-6,1e-7,1e-8], and the maximum number of epochs in the neural net-
work was set to 2000. The optimal parameters were selected by fivefold cross validation. 
To access the robustness of our method in 5-fold cross-validation and 10-fold cross- 
validation, in Additional file 1; Supplementary Table S1 we show the deviation obtained 
by UISNet in 5-fold cross validation and 10-fold cross validation.

(12)U(xi) = std
∑

lgxti /ave
∑

lgxti

(13)V (xi) = (1− U ′(xi)) ∗ IG(xi)
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Results
Method comparison

The UISNet model was evaluated by the C-index (CI) in predicting the outcome of the 
patients in seven breast cancer datasets. The average CI values are given in Table  2. 
The UISNet was compared with six methods, the adaptive Lasso-penalized Cox model 
(IPW-lasso), the integrated learning-based Cox method (EXSA), the deep survival net-
work (Deep_surv), the denoising autoencoder-based Cox model (DCAP) and the deep 
survival network with a meta-learning framework (MTC). As shown in Table 2, the UIS-
Net achieved the average CI (0.691) across seven datasets, which is significantly higher 
than the CI 0.619, 0.638, 0.653, 0.665, and 0.677 achieved by the methods, IPF-lasso, 
EXSA, Deep_surv, DCAP, and MTC, respectively. The t-test was performed on the 
results obtained from UISNet and other methods, demonstrating significant improve-
ments of our method compared to the alternative approaches.

When we divided the patients into subgroups according to the estimated prog-
nosis risks, UISNet achieved average |log10(P)|= 1.608 across the seven datasets, 
which is higher than the |log10(P)| values achieved by IPF-lasso (1.036). Meanwhile, 
UISNet performed better than the other four compared methods (Table  3, average 
|log10(P)|= 1.167). Additionally, we show the average time-dependent AUC scores [36] 
in Fig. 2. By testing on the eight breast cancer datasets, the UISNet achieved the high-
est AUC score of 0.676 among the compared methods (IPF-lasso = 0.623, EXSA = 0.634, 
Deep-surv = 0.653, DCAP = 0.660, MTC = 0.670).

Parameter sensitivity analysis

To evaluate the effects of the hyperparameters on the prediction of UISnet, we examined 
the CI values obtained on BRCA and BRCA_all with different parameter combinations 
(Fig. 3). The number of nodes in hidden layer 3 was selected from [100, 50, 20, 10], while 

Table 2 The CI values obtained by different methods on breast cancer datasets

a  The t‑tests by comparisons with UISNet

Dataset IPF‑lasso EXSA Deep‑surv DCAP MTC UISNet

BRCA 0.629
(± 0.038)

0.637
(± 0.077)

0.664
(± 0.047)

0.671
(± 0.065)

0.678
(± 0.037)

0.694
(± 0.043)

GSE2990 0.545
(± 0.089)

0.570
(± 0.089)

0.563
(± 0.074)

0.577
(± 0.059)

0.596
(± 0.091)

0.596
(± 0.043)

GSE9195 0.657
(± 0.239)

0.695
(± 0.203)

0.701
(± 0.214)

0.712
(± 0.211)

0.755
(± 0.052)

0.753
(± 0.112)

GSE11121 0.641
(± 0.102)

0.669
(± 0.092)

0.680
(± 0.063)

0.681
(± 0.116)

0.695
(± 0.094)

0.727
(± 0.074)

GSE17705 0.633
(± 0.099)

0.626
(± 0.070)

0.659
(± 0.061)

0.670
(± 0.067)

0.682
(± 0.081)

0.687
(± 0.073)

GSE19615 0.640
(± 0.059)

0.649
(± 0.085)

0.674
(± 0.078)

0.688
(± 0.067)

0.711
(± 0.041)

0.703
(± 0.048)

GSE25066 0.623
(± 0.130)

0.651
(± 0.051)

0.663
(± 0.108)

0.681
(± 0.064)

0.672
(± 0.056)

0.706
(± 0.044)

BRCA_all 0.588
(± 0.107)

0.610
(± 0.049)

0.622
(± 0.044)

0.640
(± 0.065)

0.642
(± 0.041)

0.660
(± 0.031)

Average 0.619 0.638 0.653 0.665 0.677 0.691

P-value a 5.49E-7 3.69E-7 9.5E-7 9.2E-5 0.039 -
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Table 3 The |log10(P)| values produced by different methods on breast cancer datasets

Dataset IPF‑lasso EXSA Deep‑surv DCAP MTC UISNet

BRCA 0.237
(± 0.254)

0.622
(± 0.502)

0.870
(± 0.425)

0.790
(± 0.757)

1.174
(± 0.412)

1.156
(± 0.461)

GSE2990 0.274
(± 0.272)

0.455
(± 0.794)

0.348
(± 0.239)

0.455
(± 0.206)

0.303
(± 0.267)

0.410
(± 0.314)

GSE9195 0.701
(± 0.467)

0.535
(± 0.560)

0.535
(± 0.560)

0.562
(± 0.551)

1.063
(± 0.120)

0.719
(± 0.494)

GSE11121 0.855
(± 0.896)

0.585
(± 0.693)

0.621
(± 0.510)

0.871
(± 0.912)

0.976
(± 0.849)

1.288
(± 0.761)

GSE17705 0.845
(± 0.678)

0.324
(± 0.333)

0.730
(± 0.323)

0.771
(± 0.262)

1.018
(± 0.756)

1.265
(± 0.868)

GSE19615 1.167
(± 1.208)

0.771
(± 0.509)

1.986
(± 1.605)

1.156
(± 0.637)

2.540
(± 1.043)

2.035
(± 1.462)

GSE25066 2.046
(± 2.032)

1.421
(± 0.356)

2.362
(± 2.082)

2.622
(± 1.825)

1.277
(± 0.823)

2.813
(± 1.514)

BRCA_all 2.163
(± 1.050)

2.071
(± 2.000)

1.944
(± 1.227)

2.728
(± 1.562)

2.851
(± 1.435)

3.174
(± 0.821)

Average 1.036 0.848 1.175 1.244 1.400 1.608

Fig. 2 The AUC scores obtained by different methods on eight breast cancer datasets

Fig. 3 Parameter sensitivity analysis for UISNet. The y-axis values represent the C-index values obtained by 
using different hyperparameter combinations. The number of nodes in hidden layer 3 was selected from 
[100, 50, 20, 10], and the learning rate was set to [1e-6, 1e-7, 5e-7, 1e-8]
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the learning rate was set to [1e-6, 1e-7, 5e-7, 1e-8]. By comparing the standard devia-
tion values of the CI values while one parameter was fixed, we found that the effect of 
the node size in the network was relatively small (std = 0.010), which was lower than the 
result of the learning rate (std = 0.028). Nevertheless, it is difficult to determine the opti-
mal parameter combinations in different datasets. In this study, we used a fivefold CV to 
select suitable hyperparameters of UISNet in model training.

Ablation experiment

To evaluate the contribution of each task in UISNet for cancer outcome prediction, we 
compared the performance achieved by excluding different tasks from the framework. 
As shown in Fig.  4, when only the single prediction task was used to construct the 
neural network (-DRSS), the DNN framework achieved an average CI value of 0.610, 
which is 6.87% lower than that obtained by UISNet. When excluding the clustering 
task (-SS) from UISNet, the framework caused a decrease in the CI value from 0.655 to 
0.631(− 3.66%), and a smaller decrease was caused by the exclusion of the dimensional-
ity reduction task (-DR, CI = 0.642, − 1.98%). These results indicated that the clustering 
task provides more useful information than the dimensionality reduction task, and the 
prediction accuracy benefits from integrating these tasks into a unified framework.

Independent tests

To further validate the performance of the UISNet, we conducted independent tests by 
separating the breast cancer dataset from the integrated dataset BRCA_all as an inde-
pendent test dataset (Fig. 5). The results indicated that the CI values obtained by UIS-
Net in the independent tests are higher than 0.659, averagely. The Kaplan‒Meier survival 
curves illustrate the significant (P < 0.05) difference in survival between the two patient 
subgroups classified by UISNet. All these results proved the robustness of our method.

Feature interpretability evaluation

To evaluate the feature interpretability of UISNet, we compared UISNet with the 
method without using the uncertainty strategy (IG) and the differential expression anal-
ysis (DEA) while analyzing the BRCA_all dataset. The top 200 genes sorted based on the 
importance weights given by UISNet are shown in Fig. 6a. The IG values of these genes 

Fig. 4 Ablation experiment results obtained by UISNet for cancer outcome prediction. -DRSS represents 
the result achieved by only using the cancer outcome prediction task, and -SS and -DR indicate the results 
obtained when excluding the clustering task and the dimensionality reduction task, respectively
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were calculated by Eq.  (12). The result shows UISNet selected some important genes 
such as MAPK1, AKT1, RAF1, that have been proved related to breast cancer progno-
sis. Figure  6b shows the top 200 genes ranked based on the |log(fold change)| values 
produced by DEA (adjusted-p-values < 0.05), and the gene expression heatmap of these 
genes is shown in Fig. 6c. The names of the top 20 genes selected by UISNet and DEA 
are additionally annotated in Fig. 6a and b, respectively.

The Venn diagram in Fig. 6d shows the number of overlapping genes selected by dif-
ferent methods. The figure indicates that there are 92 overlapping genes selected from 

Fig. 5 Kaplan‒Meier survival curves drawn based on the patient subgroups classified by UISNet. The red 
lines represent high-risk patients, and the black lines represent low-risk patients

Fig. 6 Breast cancer-related gene selection results produced by different methods. a Top 200 genes selected 
by computing the importance of the features in UISNet. The x-axis represents the average importance values 
of the different genes, and the y-axis is the uncertainty weight value computed by Eq. (12). b The results were 
used to identify the top 200 genes ranked based on the |log(fold change)| of DEA (adjusted-p-values < 0.05). 
c Heatmap of the 200 identified differentially expressed genes. d Breast cancer outcome prediction 
performance achieved by using different numbers of selected gene features based on DEA, the IG-based 
method without the uncertainty strategy (IG), and UISNet. A Venn diagram was used to show the number of 
overlapping genes selected by different methods
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IG and UISNet, while the number of the common genes selected by DEA and UISNet 
is only four. Additionally, the breast cancer outcome prediction performance achieved 
by using different numbers of selected gene features based on DEA, IG, and UISNet are 
shown in Fig. 6d. It shows that while using the top 5 gene features, DEA and IG achieved 
lower CI values (0.559 and 0.542) than UISNet (0.565). When the number of used genes 
was 200, UISNet obtained the highest CI value of 0.652. The results demonstrate that by 
comparing with IG and DEA, UISNet can find genes that have a greater impact on the 
prognosis of breast cancer.

Biointerpretability assessment

According to the importance weights (IWs) given by UISNet, we selected the top 20 
genes for further analysis (Fig. 7a). Specifically, 17 of the selected genes have been vali-
dated to be associated with breast cancer. AKT1 encodes one of three human AKT 
serine-threonine protein kinase family members, and mutations in AKT1 are linked to 
breast cancer cell growth [37]. PTEN can negatively regulate intracellular phosphati-
dylinositol-3,4,5-triphosphate and exerts a tumor suppression effect by negatively reg-
ulating the PI3K-AKT signaling pathway [38]. In Lama’s study, the molecular changes 
in MAPK1 lead to overexpression of matrix metallopeptidase, which is associated with 
poor prognosis in breast cancer patients [39]. The upregulation of PRKCA has been 
found to be linked with resistance to antiestrogen treatment and the aggressive nature 
of tumors. PRKCA serves as a pivotal signaling hub and a potential therapeutic target in 
breast cancer stem cells, which exhibit comparable cell surface marker profiles to those 
observed in TNB [40]. CDC23, regulated by mir-34c, may be responsible for mir-34c-in-
duced cell cycle arrest, where miR-34c can induce G2/M cell cycle arrest in breast can-
cer cells [41]. UBA52 has been reported to potentially associate with the development of 
resistance to Lapatinib in breast cancer treatment [42].

In addition, reduced expression of the RAF1 kinase inhibitor protein has been found 
to be associated with breast cancer metastasis [43]. The regulation of CDKN1A gene 
expression by LRH-1 influences the proliferation of breast tumor cells [44]. Downregu-
lation of IKBKB expression by MicroRNA-16 enhances the sensitivity of breast cancer 
cells to paclitaxel treatment [45]. PPP2CA has been found to promote the prolifera-
tion and invasion of breast cancer cells [46]. Increased expression of PRKCA has been 

Fig. 7 Interpretability assessment of the results obtained by UISNet. a The top 20 genes selected by UISNet 
ranked based on their importance weights. b The identified breast cancer-related KEGG pathways enriched 
by using the top 20 genes selected by UISNet
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linked to resistance against antiestrogen treatment and the aggressive nature of tumors. 
Overexpression of PSMB4 promotes the proliferation and survival of breast cancer cells, 
lleading to an unfavorable prognosis [47]. The study revealed a significant upregulation 
in AP1M2, PSMD10, and RPL2 expression in breast cancer tissue compared to normal 
tissues [48–50]. RPS27A is overexpressed in breast cancer, enhanceing EBV-encoded 
LMP1-mediated proliferation and invasion through stabilization of LMP1 [51]. The 
RPS4X protein was identified as a potential biomarker for controlling cisplatin resistance 
in breast cancer treatment [52]. Although functional studies have not directly implicated 
MAP2K1, POLR2J, and SEH1L in breast cancer development and progression, they have 
been associated with other malignancies [53–55]. The indications from our model imply 
that they could potentially emerge as targets for breast cancer.

We further performed the KEGG enrichment analysis on these 20 genes (Fig. 7b), and 
found that they are enriched in many signaling pathways related to the occurrence and 
development of breast cancer, such as the mTOR and PI3K-AKT signaling pathways. 
The downstream transcription factors of the mTOR signaling pathway (with the highest 
enrichment score) include HIF1α, c-Myc, FoxO, and other important cancer regulatory 
molecules [56]. It has been proven that Paclitaxel can modulate the proliferation and 
migration of breast cancer cells via the mTOR signaling pathway [57]. The PI3K-AKT 
signaling pathway is a crucial component of many signaling pathways involving mem-
brane-bound ligands, which are crucial for the survival of tumor cells [58]. The EGFR 
tyrosine kinase inhibitor resistance pathway enriched by UISNet shows that the identi-
fied genes may affect the tyrosine kinase inhibitor resistance in breast cancer treatment. 
The dysregulated activation of the ErbB signaling pathway plays a critical role in regu-
lating cell growth, differentiation, and survival in breast cancer. Moreover, it is closely 
associated with tumor initiation, progression, and metastasis [59]. PD-L1 expression and 
PD-1 checkpoint pathway in breast cancer is closely related to immune regulation and 
tumor evasion from immune surveillance, which plays a key role in the regulation of 
immune responses [60]. The activation of the HIF-1 pathway in breast cancer is intri-
cately associated with tumorigenesis, disease progression, and acquisition of treatment 
resistance [61]. Additionally identified genes enrich several breast cancer-related KEGG 
pathways, including VEGF and Ras signaling pathway, breast cancer pathway, pathways 
in cancer, and microRNAs in cancer. These findings demonstrate that UISNet can con-
struct a breast cancer outcome prediction model with enhanced interpretability for bio-
medical applications.

Discussion
Although our method provides model biological interpretability while improving 
the prediction accuracy, there are still some questions worth discussing, as described 
below. Firstly, the high censoring rates (12.17–87.03%) in the breast cancer data affected 
the calculation of the true survival proportion and decreased the performance of our 
method. Secondly, previous studies have shown that multi-omics integration is helpful 
for improving cancer outcome prediction performance. Expanding UISNet to integrate 
multi-omics data in an interpretable manner will be a potential way to improve the pre-
diction performance of the model.
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In the future, we will update our interpretable method by incorporating more medi-
cal information, including DNA methylation and slide images. Additionally, we want 
to design an effective strategy to evaluate the true survival times of censored patients 
to reduce the adverse impact of high censoring rates on model training. Furthermore, 
considering the molecular-level similarities observed between gynecologic and breast 
tumors [62], we will utilize the UISNet model to investigate gynecologic cancers such as 
cervical cancer and ovarian cancer, with the aiming of identifying potential pan-gyneco-
logic-cancer related biomarkers for effective therapeutic interventions.

Conclusions
DL-based methods have been proven to achieve accurate performance in cancer out-
come prediction cases. Nevertheless, the lack of model interpretability limits the 
applicability of these methods. To address this challenge, we proposed a novel uncer-
tainty-based interpretable deep neural network called UISNet for breast cancer outcome 
prediction. UISNet provides interpretable solutions by computing the integrated gra-
dients of features with an uncertainty-based strategy. Furthermore, it improved model 
performance by introducing prior biological pathway knowledge and utilizing patient 
heterogeneity information. The experimental results show that UISNet achieved a 5.79% 
higher CI value than the compared state-of-the-art methods on average. Based on the 
feature interpretation results of the prediction model, 11 of the 20 identified genes have 
been proven to be associated with breast cancer. The comprehensive tests indicated that 
our proposed method is accurate and robust, and is an effective way to identify cancer-
related genes. In summary, we believe that UISNet is a valuable and meaningful founda-
tion for further cancer prognosis prediction research.
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