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Abstract 

Background: Dynamical compensation (DC) provides robustness to parameter 
fluctuations. As an example, DC enables control of the functional mass of endocrine 
or neuronal tissue essential for controlling blood glucose by insulin through a nonlin‑
ear feedback loop. Researchers have shown that DC is related to the structural uni‑
dentifiability and the P‑invariance property. The P‑invariance property is a sufficient 
and necessary condition for the DC property. DC has been seen in systems with at least 
three dimensions. In this article, we discuss DC and P‑invariance from an adaptive con‑
trol perspective. An adaptive controller automatically adjusts its parameters to optimise 
performance, maintain stability, and deal with uncertainties in a system.

Results: We initiate our analysis by introducing a simplified two‑dimensional dynami‑
cal model with DC, fostering experimentation and understanding of the system’s 
behavior. We explore the system’s behavior with time‑varying input and disturbance 
signals, with a focus on illustrating the system’s P‑invariance properties in phase por‑
traits and step‑like response graphs.

Conclusions: We show that DC can be seen as a case of ideal adaptive control 
since the system is invariant to the compensated parameter.

Keywords: Dynamical compensation property, P‑invariance, Ordinary differential 
equations, Adaptive proportional‑integral feedback

Background
Dynamical compensation (DC) implies that the output of a system does not depend on 
a parameter for any input [1]. For instance, in glucose homeostasis controlled by insu-
lin, despite parameter variations, the glucose response remains identical. Thus DC ena-
bles control of glucose despite parameter variation in insulin production. This definition 
of the DC property is a sufficient condition and implies that the parameter is structur-
ally unidentifiable [2, 3]. Note that it describes a dynamical feature that should not be 
equated simply to the parameter unidentifiability.

Given that the structural unidentifiability merely serves as a sufficient condition for DC 
property, it is possible for a system to possess the DC property while remaining structurally 
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identifiable meaning the DC property does not equate directly to structural identifiability 
[2]. Instead, the DC property characterizes a system’s capability to adjust to alterations in 
parameters following an adaptation phase. In 2017, a necessary and sufficient condition 
for the DC property was introduced using equivariances and partial differential equations, 
denoted as the P-invariance property [4]. The P-invariance property of a parameter means 
that changing the parameter does not alter the system’s behavior. DC captures the abil-
ity of a system to adapt to a parameter change such that the change has no impact on the 
behaviour.

Adaptive control is a sub-field of control systems engineering focusing on the design and 
development of control systems that automatically adjust parameters to optimise perfor-
mance, maintain stability, and deal with uncertainties in the system. Considering that DC 
makes the system invariant to the compensated parameter, this structure can be used to 
make an ideal adaptive controller. Surprisingly, DC has not been discussed in the adaptive 
control literature.

Robustness, which refers to a system’s ability to handle fluctuations, is critical in dynami-
cal systems. Several studies on adaptation and homeostasis have demonstrated the robust-
ness of biological systems, such as the robustness of bacterial chemotaxis [5, 6]. The 
application of DC and P-invariance properties is also beneficial in epidemiological mod-
els [7, 8]. Therefore, the DC property may be included in future robustness research. Karin 
et al. used the glucose homeostasis model to discuss the robustness and DC property of 
homeostasis [1].

Several mathematical models based on systems of differential equations have been devel-
oped to comprehensively analyze biological observations and identify all possible con-
nections. However, it is often more convenient to work with simpler models with fewer 
dimensions, as they are easier to interpret and analyze. In this paper, we simplify the origi-
nal model in Karin et al. to two states, offering insight into the mechanism. Then we include 
another feedback mechanism to derive an generalized model in “Methods” Section . We 
began by checking the system’s stability in “Results” section  because the system must be 
stable to check the DC and P-invariance properties. We use the phase portrait approach to 
verify the system’s stability and obtain some results, for preferred stable situations, to com-
pare the results of the DC and P-invariance properties. Finally, in the “Numerical simula-
tion” section , we considered situations in which the system is stable at desired equilibrium 
points and demonstrated the impact of adaptive control and P-invariance in the system 
when it is perturbed.

Methods
As a starting point, we used the hormonal circuit reactions model stated in Karin et al. [1]; 

(1a)
dy

dt
= u0 + u(t)− sx(t)y(t),

(1b)
dx

dt
= pz(t)y(t)− x(t),
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 where s and p are the feedback gains of x(t) and z(t), respectively. The output variable, 
y(t), is a regulated variable that is able to form a feedback loop with x(t) and z(t). The 
regulated variable y(t) controls the functional mass z(t) of tissue which secretes hormone 
x(t) in this circuit.

Given the resemblance between the DC property and the concept of an adaptive con-
troller, it is logical to design an adaptive controller that incorporates the DC property. 
Since it is easier to visualize and comprehend a two-dimensional system, we begin by 
simplifying the model 1, which includes Eqs. 1a–1c. Note that we only seek to preserve 
the DC property and do not apply model reduction techniques aiming to approximate 
the dynamics of the system. We then generalize the model to a classical feedback sys-
tem with adaptive proportional-integral feedback and demonstrate that it possesses the 
P-invariance property. We also explain the differences between DC and P-invariance 
property.

We simplified the model 1 as, 

 where z(t) is the feedback state, and y(t) is the output of the system. The block diagram 
of the simplified model is shown in the upper plot of Fig. 1. We expect that the positive 
constant s has the DC property, meaning that the output y(t) is invariant to the change 
of the parameter s. Hence we introduce z̃(t) = sz(t) and substitute z(t) in Eqs. 2a and 2b 
with z̃(t) resulting in 

 The above Equations show that the output response y(t) remains the same when the 
value of s changes. This also indicates s being unidentifiable and z(t) being unobservable 
(verified using STRIKE-GOLDD [9]).

To illustrate DC in a more general two dimensional system, we create an adaptive pro-
portional-integral feedback model 

(1c)
dz

dt
= z(t)(y(t)− y0),

(2a)
dy

dt
= u0 + u(t)− sz(t)y(t),

(2b)
dz

dt
= z(t)(y(t)− y0),

(3a)
dy

dt
= u0 + u(t)− z̃(t)y(t),

(3b)
dz̃

dt
= z̃(t)(y(t)− y0).

(4a)
dy

dt
= by(t)+ d(t)+ sz(t) lr(t)− y(t) ,

(4b)
dz

dt
= −cz(t)

(

r(t)− y(t)
)

.
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 This system can be viewed as an open-loop exponential growth system dy
dt

= by(t) , 
where d(t) and r(t) represent the disturbance and reference input, respectively. The error 
term is given by r(t)− y(t) and lr(t)− y(t) , and the adaptive proportional-integral feed-
back is sz(t)

(

lr(t)− y(t)
)

 , where sz(t) is considered as the adaptive proportional-integral 
gain. In control theory, a reference input refers to an input signal that guides the system 
response. Typically, the goal is to make the response y(t) track the reference input r(t), 
such that the error term is zero ( r(t)− y(t) = 0 ) at the equilibrium point. Furthermore, 
since we consider this equation in the context of biological phenomena, all parameters 
are assumed positive. This implies that b, s, l, and c are all positive, and for every t > 0 , 
all y(t), z(t), and r(t) are positive. The block diagram of the adaptive proportional-integral 
system is illustrated in the lower plot of Fig. 1.

To verify the DC property of our model, the system should be at an equilibrium 
point before being perturbed by any input. When a system is at an equilibrium point, 
its value does not change with time. We then triggered the system with a step-like 
input r(t) to sketch the response y(t). We adjust the value of each parameter in Eqs. 4a 
and 4b to observe how they affect the system. The stability region is discovered by 
drawing the phase portrait.

System

Controller

System

Controller

Fig. 1 Block diagrams illustrating the simplified model (upper plot) and the adaptive proportional‑integral 
feedback model (lower plot). The upper plot depicts the block diagram of Eq. 2a and 2b, presenting a 
system (green block) with a negative feedback loop where the controller (orange block) parameter θ(t) 
is influenced by z(t) and s. The lower plot represents the block diagram of Eq. 4a and 4b, illustrating the 
adaptive proportional‑integral feedback sz(t)

(

lr(t)− y(t)
)

 , where sz(t) is the adaptive proportional‑integral 
gain with two error terms r(t)− y(t) and lr(t)− y(t) . The term d(t) represents the disturbance. Note that s has 
no impact on the control signal due to P‑invariance
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As non-native English speakers, we acknowledge the work of OpenAI, L.L.C. in creat-
ing GPT3.5 and GPT4, which helped us improve the readability and language of this 
article.

Results
Here, we began by checking stability of the system, and then we compared the differ-
ences between P-invariance and DC property. Finally, we provided a numerical example 
to illustrate the result.

Phase portrait and stability

Our goal is to discover the region of attraction by drawing the phase portrait. By setting 
the derivative terms in Eqs. 4a and 4b to zero and assuming that the reference r(t) = r 
and disturbance d(t) = d remain constant, two equilibrium points can be obtained:

Under the assumption that all parameters are non-negative and the signals d and r are 
positive, we note the following: Since y1 is negative in the equilibrium point E1 , it is a 
biologically infeasible state of the system. If 0 < l ≤ 1 , then both z2 and y2 are non-neg-
ative, making E2 the equilibrium point of interest. To ensure that z2 remains finite, we 
first assume 0 < l < 1 . The local stability of a system can be analyzed by calculating the 
eigenvalues of the matrix of partial derivatives in equilibrium points, known as the Jaco-
bian matrix. The matrix of partial derivatives for system 4 and its eigenvalues are shown 
below.

The local stability of the system can be analyzed by calculating the eigenvalues at each 
equilibrium point. When the real parts of the eigenvalues are negative, the equilibrium 
point is locally stable. The Jacobian matrix is presented in an algebraic structure to cal-
culate the eigenvalues easier when analyzing the local stability of the individual equilib-
rium point.

(1) Local stability of E1 : To investigate the local stability around E1 , we computed two 
eigenvalues.

As b > 0 and −c
(

d + br
)

/b < 0 this equilibrium point is a saddle point.

(5)E1 = (y1, z1) =
(

−
d

b
, 0

)

,

(6)E2 = (y2, z2) =
(

r,
d + br

sr(1− l)

)

.

(7)J (y, z) =
[

b− sz(t) s(lr − y(t))
cz(t) −c(r − y(t))

]

,

(8)
�(y, z) = 1

2
(b−sz(t)−c(r−y(t))±

√

(b− sz(t)− c(r − y(t)))2 − 4c(z(t)(sr(1− l))− b(r − y(t)))).

(9)�1(y1, z1) = b, �2(y1, z1) = −c(d + br)/b.
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(2) Local stability of E2 : For the equilibrium point E2 the eigenvalues are

where

Three situations can happen: 

(1) τ 2 − 4δ = 0,
(2) τ 2 − 4δ < 0,
(3) τ 2 − 4δ > 0.

In both (1) and (2), stability depends on τ . Hence, if τ < 0 , then E2 is stable. Based 
on the assumption that parameters and variables are positive to be meaningful in 
biology and l < 1 , we have τ < 0 , which means that E2 is a stable equilibrium point. 
In situation (3), as δ > 0 , it will result in |τ | >

√
τ 2 − 4δ . Hence, if τ < 0 , then E2 is 

stable. Again, based on the assumption of having meaningful parameters in the equi-
librium points, l < 1 , the equilibrium E2 is stable. These findings demonstrate that 
as long as E2 is meaningful in biology, it is a globally stable equilibrium point.

Influence of the adaptive controller on stability

Our aim is to investigate the influence of the adaptive controller term on the stabil-
ity of the system. Given a system

if there exists an equivalent transformation 

 where η∗ denotes the Jacobian matrix of transformation η , the system has the P-invari-
ance property [4]. By verifying the invariance of the system 4, containing Eqs.  4a, 4b, 
we were able to discover the parameters that lead to the DC property. We also dem-
onstrated the differences between the definitions of P-invariance and the DC property. 
Based on the definition of the P-invariance property and the relationship with the DC 
property, the DC property can be classified as an adaptive control strategy in the system 
4.

(10)�1 =
τ +

√
τ 2 − 4δ

2
, �2 =

τ −
√
τ 2 − 4δ

2
,

(11)τ = trace
(

J(y2, z2)
)

=
d + blr

r(l − 1)
,

(12)δ = det
(

J (y2, z2)
)

= c
(

d + br
)

.

(13)ẋ = f (x(t),u(t), p), y = g(x(t),u(t), p), x(0) = γp;

(14a)f (ηp(x),u, p) = (ηp)∗(x)f (x,u),

(14b)g(ηp(x),u, p) = g(x,u),

(14c)ηp(γ ) = γp,
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Verification of the P‑invariance property

We verify that the system is P-invariant with respect to variation of s. In order to verify that 
the system 4 has the P-invariance property, we introduced x1(t) and x2(t) as two state vari-
ables and y(t) as the output variable of the system. For simplicity, we wrote the system 4 in 
x1 , x2 , and y as, 

 The notation here is selected to be identical to the one used by [4]. We consid-
ered the possible equivariance ηp(x1, x2) =

(

αp(x1, x2),βp(x1, x2)
)

 . In this case, 
the condition g

(

ηp(x),u, p
)

= g(x,u) means βp(x1, x2) = x2 . Therefore, we have 
ηp(x1, x2) =

(

αp(x1, x2), x2
)

 . Hence,

As a result from equation  14a, for parameter s our aim is to prove 
f (ηs(x),u, s) = (ηs)∗(x)f (x,u) . It means:

Hence:

By comparing the coefficients in Eq. 18 we have

From Eq. 19 we attained

If lr(t)− x2 �= 0 , it means

(15a)ẋ1 = −cx1
(

r(t)− x2
)

,

(15b)ẋ2 = bx2 + d(t)+ sx1
(

lr(t)− x2
)

,

(15c)

y = x2.

(16)(ηp)∗(x1, x2)

[

= ∂αp
∂x1

(x1, x2)
∂αp
∂x2

(x1, x2)
∂x2
∂x1

∂x2
∂x2

]

=
[

∂αp
∂x1

(x1, x2)
∂αp
∂x2

(x1, x2)

0 1

]

.

(17)

[

−cαs(x1, x2)(r(t)− x2)

bx2 + d(t)+ sαs(x1, x2)(lr(t)− x2)

]

= ;
[

∂αs
∂x1

(x1, x2)
∂αs
∂x2

(x1, x2)

0 1

]

[

−cx1(r(t)− x2)

bx2 + d(t)+ x1(lr(t)− x2)

]

.

(18)

− cαs(x1, x2)
(

r(t)− x2
)

=
∂αs(x1, x2)

∂x1

(

− cx1
(

r(t)− x2
)

)

+
∂αs(x1, x2)

∂x2

(

bx2 + d(t)+ x1
(

lr(t)− x2
)

)

,

(19)bx2 + d(t)+ sαs(x1, x2)
(

lr(t)− x2
)

= bx2 + d(t)+ x1
(

lr(t)− x2
)

.

(20)
∂αs(x1, x2)

∂x1
=

αs(x1, x2)

x1
,

(21)
∂αs(x1, x2)

∂x2
= 0.

(22)sαs(x1, x2)(lr(t)− x2) = x1
(

lr(t)− x2
)

,
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Therefore, there is a Jacobian matrix αs(x1, x2) = x1/s that can achieve the transforma-
tion of the system. The system could demonstrate P-invariance when s is the P-invari-
ance parameter. Next, we investigated whether the parameter b has the P-invariance 
property, meaning that changing b will not influence the behavior of y(t). As a result 
from equation 14a, for parameter b our aim is to prove f (ηb(x),u, b) = (ηb)∗(x)f (x,u) . 
It means:

Thus, it is essential to solve

By comparing the coefficients in Eq. 25, we have

From Eq. 26 we have

If lr(t)− x2 �= 0 , it means

and yields

There is no solution of αb(x1, x2) that can be obtained from Eq. 30 and satisfies the two 
conditions in Eqs. 27 and 28. This implies that the system is not P-invariant in b. Next, 
we verify that the system is not P-invariant with respect to variation of c. In order to 

(23)αs(x1, x2) =
x1

s
.

(24)

[

−cαb(x1, x2)(r(t)− x2)

bx2 + d(t)+ sαb(x1, x2)(lr(t)− x2)

]

=
[

∂αb
∂x1

(x1, x2)
∂αb
∂x2

(x1, x2)

0 1

][

−cx1(r(t)− x2)

x2 + d(t)+ sx1(lr(t)− x2)

]

.

(25)

− cαb(x1, x2)
(

r(t)− x2
)

=
∂αb(x1, x2)

∂x1

(

− cx1
(

r(t)− x2
)

)

+
∂αb(x1, x2)

∂x2

(

x2 + d(t)+ sx1
(

lr(t)− x2)−
)

,

(26)bx2 + d(t)+ sαb(x1, x2)
(

lr(t)− x2
)

= x2 + d(t)+ sx1
(

lr(t)− x2
)

.

(27)
∂αb(x1, x2)

∂x1
=

αb(x1, x2)

x1
,

(28)
∂αb(x1, x2)

∂x2
= 0.

(29)bx2 + sαb(x1, x2)
(

lr(t)− x2
)

= x2 + sx1
(

lr(t)− x2
)

,

(30)αb(x1, x2) =
x2 + sx1

(

lr(t)− x2
)

− bx2

s
(

lr(t)− x2
) ,

(31)
∂αb(x1, x2)

∂x1
= 1,

(32)
∂αb(x1, x2)

∂x2
=

(1− b)
(

slr(t)
)

(

s
(

lr(t)− x2
)

)2
.
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verify that the system 4 has the P-invariance property, we introduced x1(t) and x2(t) as 
two state variables and z(t) as the output variable of the system. For simplicity, we wrote 
the system 4 in x1 , x2 , and z as, 

 The notation here is selected to be identical to the one used by [4].
We considered the possible equivariance ηp(x1, x2) =

(

αp(x1, x2),βp(x1, x2)
)

 . In this 
case, the condition g

(

ηp(x),u, p
)

= g(x,u) means βp(x1, x2) = x2 . Therefore, we have 
ηp(x1, x2) =

(

αp(x1, x2), x2
)

 . Hence,

As a result from equation  14a, for parameter c our aim is to prove 
f (ηc(x),u, c) = (ηc)∗(x)f (x,u) . It means:

Hence:

By comparing the coefficients in Eq. 37 we have

From Eq. 38 we attained

If cx2  = 0 , it means

(33a)ẋ1 = bx1 + d(t)+ sx2
(

lr(t)− x1
)

,

(33b)ẋ2 = −cx2
(

r(t)− x1
)

,

(33c)
z = x2.

(34)(ηp)∗(x1, x2) =
[

∂αp
∂x1

(x1, x2)
∂αp
∂x2

(x1, x2)
∂x2
∂x1

∂x2
∂x2

]

=
[

∂αp
∂x1

(x1, x2)
∂αp
∂x2

(x1, x2)

0 1

]

.

(35)

[

bαc(x1, x2)+ d(t)+ sx2(lr(t)− αc(x1, x2))

−cx2(r(t)− αc(x1, x2))

]

=
[

∂αc
∂x1

(x1, x2)
∂αc
∂x2

(x1, x2)

0 1

][

bx1 + d(t)+ sx2(lr(t)− x1)

−x2(r(t)− x1)

]

.

(36)
bαc(x1, x2)+ d(t)+ sx2

(

lr(t)− αc(x1, x2)
)

=
∂αc(x1, x2)

∂x1

(

bx1 + d(t)+ sx2
(

lr(t)− x1
)

)

(37)+
∂αc(x1, x2)

∂x2

(

− x2
(

r(t)− x1
)

)

,

(38)− cx2
(

r(t)− αc(x1, x2)
)

= −x2
(

r(t)− x1
)

.

(39)
∂αc(x1, x2)

∂x1
=

bαc(x1, x2)+ d(t)+ sx2
(

lr(t)− αc(x1, x2)
)

bx1 + d(t)+ sx2
(

lr(t)− x1
) ,

(40)
∂αc(x1, x2)

∂x2
= 0.

(41)cx2αc(x1, x2) = x2
(

(c − 1)r(t)+ x1),
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and yields

There is no solution of αc(x1, x2) that can be obtained from Eq. 42 and satisfies the two 
conditions in Eqs. 39 and 40. This implies that the system is not P-invariant in c.

Verification of the DC property

As a demonstration to show that P-invariance property is more general than DC prop-
erty, we used the DC property definition by Karin et al. [1] in the system 15, containing 
Eqs. 15a–15c. By choosing v1 = sx1 and v2 = x2 , for s  = 0 we have: 

Therefore, we can assume s = 1 , which means DC property with respect to s  = 0.
By choosing v1 = x1 and v2 = bx2 , for s  = 0 we have: 

 Therefore, we cannot assume b = 1 meaning we cannot find a transformation for b. 
Since the DC property is a sufficient condition, we cannot prove that the system has DC 
property with respect to b. However, as P-invariance property is a sufficient and neces-
sary condition for DC, we proved that the system does not have DC for variation in b.

By choosing v1 = cx1 and v2 = x2 , for c  = 0 we have: 

(42)αc(x1, x2) =
(c − 1)r(t)+ x1

c
,

(43)
∂αc(x1, x2)

∂x1
=

1

c
,

(44)
∂αc(x1, x2)

∂x2
= 0.

(45a)v̇1 = −cv1
(

r(t)− v2
)

,

(45b)v̇2 = bv2 + d(t)+ v1
(

lr(t)− v2
)

,

(45c)

y = v2.

(46a)v̇1 = −cv1
(

r(t)− 1

b
v2
)

,

(46b)v̇2 = bv2 + bd(t)+ bv1
(

lr(t)− 1

b
v2
)

,

(46c)

y = v2.

(47a)v̇1 = −cv1
(

r(t)− v2
)

,

(47b)v̇2 = bv2 + d(t)+
s

c
v1
(

lr(t)− v2
)

,
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Therefore, we cannot assume c = 1 meaning we cannot find a transformation for c. 
Since the DC property is a sufficient condition, we cannot prove that the system has DC 
property with respect to c. However, as P-invariance property is a sufficient and neces-
sary condition for DC, we proved that the system does not have DC for variation in c.

Numerical simulation
In this section, we discuss and exemplify the theoretical results of our research by 
numerical simulations. We verify the phase portrait, influence of the adaptive controller, 
and the P-invariance property by using step-like responses for input r(t) and disturbance 
d(t). To investigate the P-invariance property with respect to the parameters s and b, the 
system 4 is first brought to its equilibrium. Next, by perturbing the system with a step-
like response d(t) and changes in s and b separately, we check whether it returns to the 
equilibrium or not.

As analyzed in “Phase portrait and stability” Section  , equilibrium point E1 is always 
a saddle point, and to have stability at equilibrium point E2 , the main condition is 
0 < l < 1 . Therefore, we chose initial conditions such that all solutions converge to E2 , 
i.e., a stable equilibrium point.

Hence the system 4 is: 

We simulated the step-like response with initial input r(0) = 11 and a single pulse with 
amplitude 5 from time 0 to 400.

We verified the results with different parameters for s, b and c.
The phase portrait for the original parameters in 48 with different values of s, b and c is 

shown in Fig. 2.
For s = 0.25 , two red dots in Fig. 2a represent the equilibrium points E1 = (−0.033, 0) 

and E2 = (11.000, 4.012) , with eigenvalues

Since E2 is a stable equilibrium point, all trajectories in its region of attraction approach 
it.

If we multiply s by 6 times ( s = 1.5 ), we obtain the equilibrium points E1 = (−0.033, 0) 
and E2 = (11.000, 0.669) in Fig. 2b, with eigenvalues

(47c)

y = v2.

(48)b = 0.3, d(0) = 0.01, c = 2, r(0) = 11, l = 0.7, s = 0.25

(49a)
dy

dt
= 0.3y(t)+ 0.01+ sz(t)

(

7.7− y(t)
)

,

(49b)
dz

dt
= −2z(t)

(

11− y(t)
)

,

(50)�(E1) = {0.300,−22.067}, �(E2) = {−0.351+ 2.549i,−0.351− 2.549i}.

(51)�(E1) = {0.300,−22.067}, �(E2) = {−0.351+ 2.549i,−0.351− 2.549i}.
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Again, since E2 is a stable equilibrium point, all trajectories in its region of attraction 
approach it.

In Fig. 2c, we choose b = 0.6 , which is twice as large as the original one, and it alters 
the equilibrium points to E1 = (−0.017, 0) and E2 = (11.000, 8.012) , with eigenvalues

Since E2 is a stable equilibrium point, all trajectories in its region of attraction approach 
it.

Finally, if we multiply c by two ( c = 4 ), we get the equilibrium points E1 = (−0.033, 0) 
and E2 = (11.000, 4.012) in Fig. 2d, with eigenvalues

(52)�(E1) = {0.6,−22.033}, �(E2) = {−0.701+ 3.568i,−0.701− 3.568i}.

0 5 10 15
0

5

10

15

(a) s = 0.25, b = 0.3, c = 2

0 5 10 15
0

5

10

15

(b) s = 1.5

0 5 10 15
0

5

10

15

(c) b = 0.6

0 5 10 15
0

5

10

15

(d) c = 4
Fig. 2 Phase portraits with different values of s, b and c show that the stable equilibrium E2 has almost the 
same region of attraction in all cases but the trajectories differ. The region of attraction is determined by E1 . (a) 
The phase portrait for parameters 48. (b) The phase portrait for parameters 48, except s that is changed from 
0.25 to 1.5. (c) The phase portrait for parameters 48, except b that is changed from 0.3 to 0.6. (d) The phase 
portrait for parameters 48, except c that is changed from 2 to 4
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All trajectories in the region of attraction approach E2 as it is a stable equilibrium point.
After verifying the stability of the system, we investigated the P-invariance property 

under different situations.
In all Figs.  3, 4 and 5 r(t) and d(t) are the same and show the time-varying step-

like response of the reference input r(t) and disturbance d(t). These inputs were also 
subject to additional noise from a standard normal distribution. We tested different 
combinations of the reference r(t) and disturbance d(t) to exemplify the P-invariance 
property under different scenarios. Both the input r(t) and the disturbance d(t) began 
with the starting values defined at 48 and remained constant from time 0 until time 50. 
The input r(t) changes while disturbance d(t) remains constant when time is between 
50 and 150. Both the input r(t) and disturbance d(t) remain constant between time 

(53)�(E1) = {0.300,−44.133}, �(E2) = {−0.351+ 3.622i,−0.351− 3.622i}.

0 50 100 150 200 250 300 350 400
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15

20

0 50 100 150 200 250 300 350 400
0

5

10

15

0 50 100 150 200 250 300 350 400

0

10

20 Difference

0 50 100 150 200 250 300 350 400
0

5

10

15

20
s=0.25
s=1.5

Fig. 3 Visualization of the impact of DC and lack thereof on the output using time‑varying step‑like changes 
in the reference input r(t) and disturbance d(t) in different combinations. Gaussian noise was added to the 
constant value of r(t) and d(t) to demonstrate that the system output remains identical independent of the 
value of s also for complex signals. y(t) and z(t) show the comparison of the step response when s is 0.25 and 
1.5. As we have started y(t) and z(t) with a distance from the equilibrium point, it takes time to converge to 
the stable situation resulting in having some difference between but then the output y(t) remained identical–
the difference (green dashed line) equals zero. A hallmark of the system is P‑invariant with regard to s 
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150 and 200. In the time interval (200, 300), the disturbance d(t) changes while the 
input r(t) remains constant. When time is between (300, 350), both the input r(t) and 
disturbance d(t) change. Finally, both converge to a new amount ( r = 13.75, d = 5 ) 
and remain constant in the time interval (350, 400).

The purple trajectories in Fig. 2 and the trajectories in Figs. 3, 4, and 5 share identical 
parameters and initial conditions. The distinguishing factors lie in the inputs r(t) and 
d(t). In Fig. 2, the inputs are set to constant values, mirroring the initial values in Figs. 3, 
4, and 5. As a result, we are in a stable situation at the start, however, it may take some 
time to achieve equilibrium point. In all Figs. 3, 4 and 5 z(t) and y(t) show the responses 
to the input and disturbance by r(t) and d(t). The green dashed line represents the differ-
ence of changes in y(t), which remains zero when s changes, but is non-zero when b or 
c changes. This is a consequence of the system having P-invariance for parameter s, but 
not for b and c.
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b=0.3
b=0.6

Fig. 4 Visualization of the impact of DC and lack thereof on the output using time‑varying step‑like changes 
in the reference input r(t) and disturbance d(t) in different combinations. Gaussian noise was added to the 
constant value of r(t) and d(t) during certain periods to ensure excitation. y(t) and z(t) show the comparison 
of the step response when b is 0.3 and 0.6. The output y(t) differs and the difference (green dashed line) is 
non‑zero. A hallmark of the system is not being P‑invariant with regard to b 



Page 15 of 17Ashyani et al. BMC Bioinformatics           (2024) 25:95  

Discussion
Our two-state simplified and generalized model based on Karin et al. work [1] preserves 
the DC property when the parameter s is changed. We have demonstrated this using the 
P-invariance definition by Sontag [4]. With this approach, we have also shown no DC 
for the parameters b and c, because the definition of P-invariance is both sufficient and 
necessary. These results are not only relevant for the theoretical understanding of non-
linear dynamical systems but also open avenues for future research in hybrid systems. 
Exploring the application of our model in the context of hybrid systems, particularly in 
synthetic biology, presents a promising direction for further investigation.

Our example system is an exponential growth system with an adaptive proportional-
integral controller. Exponential growth is a common feature of many physical systems, 
such as the early stage of cell growth or disease spread. We have shown that our adap-
tive proportional integral feedback with DC in the control parameters s can stabilize the 
system and ensure that the response tracks the reference input despite variation in the 

Difference

c=2
c=4

0 50 100 150 200 250 300 350 400

10

15

20

0 50 100 150 200 250 300 350 400
0

5

10

15

0 50 100 150 200 250 300 350 400

0

10

20

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Fig. 5 Visualization of the impact of DC and lack thereof on the output using time‑varying step‑like changes 
in the reference input r(t) and disturbance d(t) in different combinations. Gaussian noise was added to the 
constant value of r(t) and d(t) during certain periods to ensure excitation. y(t) and z(t) show the comparison of 
the step response when c is 2 and 4. The output y(t) differs and the difference (green dashed line) is non‑zero. 
A hallmark of the system is not being P‑invariant with regard to c 
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control parameters. The downside of this is that the closed loop systems behavior can-
not be tuned by changing the gain of the controller as customary in e.g. PID-controllers. 
Moreover, we have demonstrated the stability of the system under a variety of conditions 
and plotted the phase portrait for a representative example.

Conclusion
In summary, we have demonstrated an adaptive controller with P-invariance in its 
parameter s. Thus showing that DC can be seen as a case of ideal adaptive control where 
the system is invariant to the compensated parameter. This can be beneficial for design-
ing robust controllers that can handle environmental fluctuations, in particular in Syn-
thetic biology, as well as for understanding biological systems during modeling and 
analyzing.
Acknowledgements
The authors gratefully acknowledge valuable comments by Prof. Filippo Menolascina from the University of Edinburgh, 
UK. We also extend our sincere appreciation to the anonymous reviewers for their insightful comments and suggestions.

Author Contributions
All authors contributed to the manuscript’s completion. AA focused on investigation, mathematical analysis, and writing. 
YHW participated in investigation, mathematical analysis, and numarical simulation. HWH contributed to investigation, 
and numerical simulation. TN led conceptualization, funding, methodology, mathematical analysis, project administra‑
tion, resource management, and supervision.

Funding
We would like to thank the Ministry of Science and Technology in Taiwan for their financial support (Grants Number 
MOST 105‑2218‑E‑006‑016‑MY2, 105‑2911‑I‑006‑518, 107‑2634‑F‑006‑009, 110‑2222‑E‑006‑010, and National Science 
and Technology Council 111‑2221‑E‑006‑186 and 112‑2314‑B‑006‑079), as well as NCKU Sustainable Interdiciplinary 
Integrated Project.

Availability of data and materials
All data and code for the numerical simulations are available at https:// github. com/ nordl inglab/ Dynam icalC ompen 
sation‑ Viz

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts of interest to declare.

Received: 5 January 2024   Accepted: 22 February 2024

References
 1. Karin O, Swisa A, Glaser B, Dor Y, Alon U. Dynamical compensation in physiological circuits. Mol Syst Biol. 

2016;12(11):886. https:// doi. org/ 10. 15252/ msb. 20167 216.
 2. Villaverde AF, Banga JR. Dynamical compensation and structural identifiability of biological models: analysis, impli‑

cations, and reconciliation. PLoS Comput Biol. 2017;13(11): e1005878.
 3. Villaverde AF. Symmetries in dynamic models of biological systems: mathematical foundations and implications. 

Symmetry. 2022;14(3):467. https:// doi. org/ 10. 3390/ sym14 030467.
 4. Sontag ED. Dynamic compensation, parameter identifiability, and equivariances. PLoS Comput Biol. 2017;13(4):1–17. 

https:// doi. org/ 10. 1371/ journ al. pcbi. 10054 47.
 5. Barkai N, Leibler S. Robustness in simple biochemical networks. Nature. 1997;387(6636):913–7. https:// doi. org/ 10. 

1038/ 43199.
 6. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis. Nature. 1999;397(6715):168–71. https:// 

doi. org/ 10. 1038/ 16483.
 7. Sauer T, Berry T, Ebeigbe D, Norton MM, Whalen AJ, Schiff SJ. Identifiability of infection model parameters early in an 

epidemic. SIAM J Control Optim. 2022;60(2):S27–48. https:// doi. org/ 10. 1137/ 20M13 53289.

https://github.com/nordlinglab/DynamicalCompensation-Viz
https://github.com/nordlinglab/DynamicalCompensation-Viz
https://doi.org/10.15252/msb.20167216
https://doi.org/10.3390/sym14030467
https://doi.org/10.1371/journal.pcbi.1005447
https://doi.org/10.1038/43199
https://doi.org/10.1038/43199
https://doi.org/10.1038/16483
https://doi.org/10.1038/16483
https://doi.org/10.1137/20M1353289


Page 17 of 17Ashyani et al. BMC Bioinformatics           (2024) 25:95  

 8. Browning AP, Warne DJ, Burrage K, Baker RE, Simpson MJ. Identifiability analysis for stochastic differential equation 
models in systems biology: identifiability analysis for stochastic differential equation models in systems biology. J R 
Soc Interface. 2020;17(173):37–44. https:// doi. org/ 10. 1098/ rsif. 2020. 0652.

 9. Díaz‑Seoane S, Rey Barreiro X, Villaverde AF. STRIKE‑GOLDD 4.0: user‑friendly, efficient analysis of structural identifi‑
ability and observability. Bioinformatics. 2023;39(1):btac748.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1098/rsif.2020.0652

	Ideal adaptive control in biological systems: an analysis of -invariance and dynamical compensation properties
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Results
	Phase portrait and stability
	Influence of the adaptive controller on stability
	Verification of the -invariance property
	Verification of the DC property


	Numerical simulation
	Discussion
	Conclusion
	Acknowledgements
	References


