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Introduction
Cancer continues to be one of the leading causes of death worldwide with its incidence 
showing an upward trend in recent years [1]. Developing new therapeutic drugs with a 
selective antitumor effect is both scientifically significant and clinically valuable. Due to 
the strong heterogeneity of cancer, similar anticancer drugs can induce different reac-
tions in patients with the same type of cancer [2]. That highlights the significance of 
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individualized cancer treatment, that is, based on patients’ genotype information and 
physiological characteristics, a precise drug regimen is recommended for patients to 
improve therapeutic effect and reduce drug side impacts [3, 4].

Particularly, cancer cell line(CCL) genomics plays an important role in personalized 
cancer drug design research. Cancer cell lines are a series of cell cultures isolated from 
patients and cultured in vitro [5], which are homologous to the primary tumor and are 
ideal models for studying tumor biology, pathogenesis, and drug sensitivity [6]. At the 
same time, the development of high-throughput sequencing technology [7] promotes 
the development and accumulation of cancer cell line database [8, 9]. Commonly data 
used in academic research databases such as Cancer Cell Line Encyclopedia (CCLE) [9] 
and Genomics of Drug Sensitivity in Cancer (GDSC) [8] have included a large amount 
of cell line genetic data, which provide researchers with a variety of omics data includ-
ing genome, transcriptome, methylomic data, and quantitative indexes of drug response 
across cancer cell lines. Semi-maximum inhibitory concentration (IC50) is a widely used 
index. Analyzing the intrinsic characteristics of cancer-related genes and their interac-
tions with anticancer drugs can reveal potential characteristics of anticancer molecules, 
thus simplifying the early screening of anticancer drugs, and improving the discovery 
efficiency of specific anticancer drugs.

Nowadays, numerous computational models have been devised for predicting can-
cer drug response by integrating omics characteristics with molecular descriptors and 
quantitative indicators [10]. The introduction of energy association in similarity-based 
data-driven models has proven beneficial for optimizing graph prediction tasks [11]. For 
instance, network-driven methods capture potential representations by constructing 
similarity networks [12, 13]. The dual-layer cell line-drug network model simultaneously 
constructs a cell and drug bisimilarity network, and then predicts drug response through 
a weighted model [12]. MOFGCN constructs heterogeneous networks by combining cell 
line similarity, drug similarity, and known cell line-drug association to learn potential 
cell lines and drug characteristics [13]. However, the effectiveness of these methods can 
be limited by their restricted generalization and computational efficiency. These factors 
can potentially affect their effectiveness and reliability in practical applications.

Methods of machine learning for cancer-drug prediction include but are not limited 
to logistic regression [14], support vector machines [15], multilayer neural networks [16] 
and random forests [17]. Besides, deep learning-based methodologies employ complex 
deep neural network architectures to extract intricate information from multi-source 
data. CDRscan adopts a two-step convolution architecture, which processes the muta-
tion data of cell lines of drug molecular fingerprinting machine respectively and then 
performs virtual docking to complete the modeling [16]. The tCNNs uses dual convolu-
tional neural networks to learn potential representations of drug and genomic mutation 
data respectively [18]. MOLI integrates multiple omics features through specific cod-
ing subnetworks for drug response prediction [19, 20]. Furthermore, DeepTTA utilizes 
transformers to facilitate drug representation learning and multilayer neural networks 
for transcriptomic data prediction, yielding superior performance [21].

The above methods have progressively evolved to incorporate a wider range of feature 
extraction techniques to address the increasing complexity of multi-omics integration. 
However, as data representation is constrained by certain limitations, some potential 
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information might be inevitably lost during incomplete feature learning. For exam-
ple, molecular fingerprints and SMILES are encoded based on molecular structure, so 
some molecular details such as stereoisomerism, charge distribution, and solvent effects 
are lost [22]. Recently, graph-based approaches have emerged as a promising solution, 
capitalizing on the natural ability of drugs to be represented as graphs and utilizing the 
power of graph convolutional networks (GCNs). DeepCDR use uniform graph convolu-
tional network (UGCN) architecture to unify the characterization of drugs and integrate 
multiple omics features to achieve excellent prediction results [5]. GADRP constructs 
a sparse drug cell line pair (DCP) network containing similar information of drug, cell 
line, and DCP based on graph convolutional networks (GCNs) and autoencoder (AEs) 
to further improve the IC50 prediction performance [23]. Despite recent advancements, 
the incorporation and integration of molecular chemical bond information into the 
feature transfer process have been impeded by the intricate nature of molecular edge 
characterization and the constraints associated with updating methods in graph neural 
networks. Given the significance of molecular chemical bond information as a crucial 
component of molecular data, it is meaningful and necessary to optimize and improve 
the edge updating fusion algorithm.

We summarize the limitations of previous studies as follows:

• Exisiting works ignore the chemical bond information in a drug molecule, which 
is essential to distinguish the interaction between two chemical atoms. This infor-
mation also has the potential to influence the outcome of drug-cancer cell line 
interactions directly.

• Previous works either applied string-based methods, such as SMILES or graph-
based methods to represent drug molecules [24]. However, both these two meth-
ods can provide complementary information for drug discovery. Fully utilizing 
both information can help learning a better potential representation of drugs.

• Most previous works only used a single genomic profile to represent a cancer 
cell line while ignoring the rich information contained in the multi-omics data or 
CCL. The scope of genomic multiomics features is still greatly expandable. Some 
genomic features that have been proved to be highly informative with cancer have 
not been integrated and utilized.

To overcome the limitations above, we propose a novel multi-source heterogene-
ous graph convolutional neural network, referred to as DeepAEG. This architecture 
encompasses a generic data enhancement module based on sequence recombination 
and a complete updated graph convolutional neural network with edge features, sup-
plemented by several subnetworks dedicated to advanced feature extraction from 
multiomics data on drugs and genes, respectively. The combined feature set is input 
into a one-dimensional convolutional network to complete the regression task of pre-
dicting IC50 sensitivity values of CCLs to drugs. The main contributions of this work 
are summarized as follows:

• We develop a hybrid graph convolutional network by updating both the chemi-
cal atom(node) embeddings and bond(edge) embeddings simultaneously. The co-
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updating strategy provides a new perspective to learn a comprehensive drug rep-
resentation, ensures that deep information about the drug is completely retained.

• We extend the existing data modality by introducing classical transformer module 
at the feature extraction level. Transformer module is exploited for capturing the 
string-based features underlying the SMILES sequences of a drug. The transformer 
module and GCN module provide complementary information, leading to a more 
comprehensive drug representation. A more comprehensive characterization and 
feature extraction of drug molecules has the potential to enhance the accuracy of 
IC50 predictions and other downstream tasks. Additionally, we extend our multi-
omics analysis by introducing copy number variation data, which expands the syner-
gies present in multi-omics profiles of CCLs.

• We propose a molecule augmentation strategy to overcome the vulnerability in the 
string-based representation by SMILES and enhance the prediction performance. 
This method can also be applied to other downstream tasks related to drug feature 
extraction.

Materials and methods

Overview of DeepAEG network

We propose an end-to-end deep learning framework including edge update strategy and 
data enhancement strategy for IC50 prediction, named DeepAEG, which uses trans-
former and a graph convolutional neural network containing edge information to extract 
drug characteristics, and combines with four subnetworks to extract advanced informa-
tion at the cancer omics level (copy number, DNA methylation, gene mutation, Gene 
expression) to predict the efficacy of anticancer drugs. The structure of the prediction 
model is shown in Fig. 1.

DeepAEG can incorporate multiple omics features. The model uses a pair of drug-can-
cer cell line gene profiles and the corresponding ground truth IC50 data and IC50 quan-
tified predicted value as output. On the one hand, the drug is transformed into a higher 
level of potential expression through graph representation, and on the other hand, vec-
tor representation based on substructure sequence extraction can be obtained through 
transformer. The drug characteristics formed by the two combinations are spliced with 
the transcriptome information extracted from the four fully connected networks, and 
then fed into the linear network layer composed of 1D CNN. We use the AdamW opti-
mizer with a learning rate of 1e−3 , batch size of 256, and mean square error as a loss 
function. The concrete construction of the model are implemented in keras.

Graph convolutional neural network based drug feature extraction

The unique chemical structure of every drug allows for its natural representation 
as a graph. Chemical atoms and bonds are represented by the vertices and edges, 
respectively. So we can naturally represent the drug set as {Dn = (Vn,An)|Mn=1} where 
Vn ∈ R

Nn×Cnode and An ∈ R
Nn×Nn×Cedge are the feature matrix and adjacency matrix con-

taining edge information of the nth drug. Nn is the number of atoms in the nth drug, 
Cnode and Cedge are the number of feature channels of nodes and edges respectively. Each 
row of the characteristic matrix corresponds to the attribute of an atom. If one element 
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of the adjacent matrix is a one-hot vector, it means that there is an edge between the 
nodes represented by the horizontal and vertical coordinates and the element is the 
attribute of the edge. If it is 0, there is no edge. To compensate for the lack of edge infor-
mation in the UGCN, we introduce a novel CGCN architecture that simultaneously pro-
cesses node and edge information to comprehensively preserve the deep information in 
the drug graph representation. The CGCN applied to the ith drug is defined as f (Di) 
with a layer-wise operation as:

where V l is the node feature matrix in the lth layer, σ(.) is the activation function. Wl+1 
and bl+1 are learnable parameters. El

k is the kth feature matrix of edges. In this repre-
sentation, the adjacency matrix An can be viewed as a combination of subadjacency 
matrices, the number of which is determined by the dimension of the edge features. The 
adjacency matrix An can be expressed as:

Furthermore, we update the edge features in two steps. In the first step we define a vec-
tor ei,j to represent the relationship between nodes i and j:

(1)
V (l+1) = Update V l , σ(E

(l)
k V lW

(l+1)
k + b

(l+1)
k
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Fig. 1 The framework of DeepAEG. DeepAEG mainly includes three parts: data enhancement, drug feature 
mining and gene expression feature extraction. The drug feature mining module is divided into CGCN 
module and transformer module. SMILES expression of cancer drugs is data-enhanced after input and 
converted into advanced latent characterization by the Encoder and Transformer sections of the GCNC, 
respectively. The features of cancer cell profiles extracted by the sub-networks are connected and input into 
the classifier network
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e
(l+1)
i,j  is the relation vector between node i and node j of the l+1th layer, σ(.) is the acti-

vation function,Vi(l) and Vi(l + 1) are the node feature vectors of layer l and layer l+1 
respectively, Wl+1

ij  and bl+1
ij  are learnable parameters. Then, the feature vector Eij of the 

edge between the node i and the node j is updated by:

Update represents the update function, El
ij represents the edge feature matrix between 

node i and node j in layer l. Overall, we extend the work of UGCN by setting l=2 as the 
default to form a two-layer CGCN network. To ensure the effectiveness of the model, 
only the first layer will be set to carry out edge update steps, while the second layer will 
not carry out edge update steps. All of the initialization strategies we cover in the discus-
sion section will follow the middle layer with edge updates and the bottom layer without 
edge updates.

Transformer based drug feature extraction

In order to avoid the loss of drug molecular information caused by using only molec-
ular descriptors, we introduced Explainable Substructure Partition Fingerprint 
(ESPFs) to decompose drugs into discrete substructures [25]. The similarity principle 
has shown that molecules that cause similarity in gene expression in cell lines have 
equivalent molecular structures or partially overlapping pharmacophores. Therefore 
we utilize a transformer model to extract substructure data from the input SMILES 
sequences of drugs.

We first constructed a word collection D containing SMILES string characters and 
tagged the entire pharmaceutical corpus. We define the tokenized set as T. The labeled 
set T is updated with the new label at the highest frequency of continuous occurrence 
until no frequent label exceeds the threshold µ or the size of D reaches the maximum 
length δ . This process result in a sequence of substructures S = {S1, S2, . . . , Si} of a 
drug with i atoms. In order to further capture contextual semantic information using 
encoder module in transformer model, we define substructure sequences as matri-
ces MS ∈ Rl×ζ , where l represents the length of the substructure, and ζ represents 
the maximum length of the substructure sequence of the drug. The ith column of the 
matrix MS

i  is a one-hot vector representing the substructure index of the ith substruc-
ture of the drug sequence. Meanwhile, in order to capture the position information 
of the drug substructure, we define a one-hot vector Ii ∈ Rζ , which representing the 
location information of the substructure with elements 1 and 0. Therefore, we gener-
ate a new representation Di by summing the representation of the substructure infor-
mation and the position information of the drug:

where Wc and Wp are learnable parameters. The potential relationship Zi between the 
substructures is calculated by the multiple attention layers of the transformer:

(4)E
(l+1)
ij = Update

(

El
ij , e

(l+1)
ij

)

.

(5)Di = WcM
s
i +WpIi.
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The output is fed into a fully connected Feed-forward Network (FFN) to obtain the final 
expression of each drug:

where W1 , W2 , b1 and b2 are learnable parameters.

Data preparation and data augmentation

The data for our study are aggregated from three publicly available data sets. The GDSC 
database (www.cancer Rxgene.org) is a comprehensive drug sensitivity database con-
taining drug sensitivity data from multiple cancer types (IC50). The CCLE database 
contains a large amount of human CCL omics data. The gene expression, gene meth-
ylation, gene mutation and copy number data used in the experiment are obtained from 
this dataset. After excluding drug samples that could not extract SMILES node and edge 
features, PubChemID and CCLE database data could not be paired, and samples lacking 
corresponding CCL omics data, a total of 106,496 instances containing 561 cell lines and 
221 drugs were finally collected. Considering all the 561× 221 = 123981 drug and cell 
line interaction pairs, approximately 14.10%(17485) of the IC50 values are missing. Each 
instance is an interaction between a drug and a CCL and corresponds to a cancer type 
defined in the Cancer Genome Atlas (TCGA) study. The IC50 values processed through 
natural log transformed.

SMILES is a molecular encoding method that combines the connectivity structure of 
a molecule, the atoms and bonds of a molecule, the ring size of a molecule, the stereo-
chemical information of a molecule and other information. Different SMILES expres-
sions may represent the identical molecule, yet exhibit consistent connectivity and 
molecular structure. This fact makes data augmentation possible in molecular property 
prediction, which enables the model to better mine the deep information of SMILES and 
extract task-relevant molecular features. We amplify the SMILES in the task by SMILES 
permutation [26]. Each augmentation data molecule recombines with the genomic data 
corresponding to the original molecule to form a new drug-genome pair and partici-
pates in the model training. We regard the new data pair as an independent instance to 
participate in the training. We only performed data augmentation on drug molecules in 
the training set to avoid data leakage problems in data augmentation.

For the multiomics analysis of CCLs, we consider four main messages from the COS-
MIC Cancer Gene Screening [27]. For the genome mutation data, binary feature vectors 
“1” and “0” are used to represent the mutated position and non-mutated position of the 
gene at the site. The mutation level of the gene is represented by the total number of 
mutations at multiple sites of the gene. Gene expression data are obtained by log2 con-
version of TPM value of gene expression and quantile normalization. DNA methylation 
data are obtained directly from 1kb bisulfite sequencing data of the upstream TSS pro-
moter. The copy number can be determined by comparing the sample DNA sequence 
with the reference genome sequence in gene sequencing. The four types of data are 

(6)Zi = Softmax(
(DiWq)(DiWk)

T

√
d

)(DiWv).

(7)FFN (x) = max(0,ZiW1 + b1)W2 + b2.
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processed into a feature matrix after the null data is removed by mean interpolation. 
Specifically, for CCL C1 , its expression sequence Xc1 can be expressed as:

where n represents the number of pathogenic genes considered in CCLs, and Xc1,gi rep-
resents the expression data of the ith pathogenic gene in various genomic characteristics 
of CCLs.

Gene multigroup subnetwork

On the basis of the original study, we followed the previous practice of Chang et  al. 
[16], combining multiple omics information through a genome-specific neural net-
works, and we connected the representation of specific omics features learned 
at the subnetwork layer together through a late integration approach. Each sin-
gle genomic data is a single element feature matrix composed of genes and Celllines. 
Since loci are always distributed linearly along chromosomes, and the individual 
omics data processed have similar data formats, we designed a genomic network con-
sisting of four one-dimensional convolutional networks, each for processing a single 
genomic data and learning its high-level spatial potential representation. In short, we 
directly use a fully connected network for feature representation, which is denoted as 
{yexp = fexp(xexp), ymet = fmet(xmet), ymut = fmut(xmut), ycopy = fcopy(xcopy)} . The expres-
sion is used to process the data of gene expression, methylation, gene mutation, and 
copy number of each sample respectively.

The result can learn the contribution weights of each genome through the attention 
mechanism. The obtained genomic feature vectors are connected with the drug and cell-
line learning results to form the final interaction instance feature vectors.

Results and conclusion
Performance of DeepAEG

We design a series of experiments to evaluate the performance of our proposed model 
on cancer drug response prediction. We compared our method with six other meth-
ods, including: Ridge Regression, MOLI [19], CDRscan [16], tCNNs [18], DeepCDR [5] 
and DeepTTA [21]. We create drug and cancer cell profile data from GDSC and CCLE 
databases and established a set of instances of drug-cancer cell line interactions. These 
interaction instance sets are shared inputs for all baseline models and DeepAEG. It is 

(8)Xc1 =
{

Xc1,g1,Xc1,g2, . . . ,Xc1,gn

}

∈ R
n×4.

(9)
Xc1,gi =

[

expc1,g i,mutc1,g i,methc1,g i, copyc1,g i
]

∈ R
4,

i ∈ (1, . . . , n).

(10)















fexp : xexp ∈ R
1×dexp �→ yexp ∈ R

1×d .

fmet : xmet ∈ R
1×dmet �→ ymet ∈ R

1×d .

fmut : xmut ∈ R
1×dmut �→ ymut ∈ R

1×d .

fcopy : xcopy ∈ R
1×dcopy �→ ycopy ∈ R

1×d .

(11)Xgene = Attention(yexp, ymet , ymut , ycopy).
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important to note that all our baseline methods use the same data set and use the unad-
justed hyperparameters of each method as the model Settings to ensure the fairness of 
model performance comparisons. However, the performance indicators of each baseline 
model were different from those of the original paper. We employ three commonly used 
metrics root mean square error (RMSE), Pearson’s correlation coefficient (PCC) and 
Spearman’s correlation coefficient (SCC) to evaluate the performance of the model. The 
experiment results are shown in Table 1.

Drug and cell line independent prediction

To further evaluate DeepAEG’s predictive performance, we further applied the model 
to a single cancer type or a single anticancer drug to evaluate DeepAEG’s performance 
in specific cancers and specific drugs. To ensure sample richness, 80% of the examples 
across 25 cancer types are randomly selected for model training. The remaining 20% are 
used for case prediction performance evaluation across multiple TCGA cancers or dif-
ferent drugs. DeepAEG consistently highly performed over all cell lines, with Pearson’s 
correlation ranging from 0.878 to 0.951. The best predicted case, thyroid carcinoma, and 
the worst predicted case, Acute Myeloid Leukemia, are shown in Fig. 2A, B.

From the perspective of drugs, we evaluated different classes of drugs to demonstrate 
the prediction performance of our model for specific drugs. The results indicate that 
DeepAEG obtains the Pearson’s correlation between all drugs in the range of 0.3708 and 
0.9268. The most effective regression predictor is GSK1070916, while the worst predic-
tor is Bicalutamide as shown in Fig. 2C, D.

Prediction of missing CDRS

Furthermore, we apply DeepAEG to the prediction task of drug-cell line response 
instances missing from the entire database. To achieve this goal, we trained all 106,494 
interactions of all 221 drug classes and 561 cell lines, and predicted 17,485 missing inter-
actions (about 14.1%). We ranked the mean response results of each drug to select the 10 
most sensitive and inhibitory drugs. The distribution of IC50 predicted values is shown 
in Fig. 3. Notably, the predicted optimal drug bortezomib is consistent with the results of 
the DeepCDR and DeepTTA deletion prediction experiments. Bortezomib, also known 
as S-341, is the first boron-containing drug that was approved by the FDA in 2003 for 
the treatment of multiple myeloma [28]. Bortezomib has been shown to be an active 

Table 1 Performance experiments of IC50 comparison of our method and existing methods

The best performance values obtained by the model are shown in bold. Three evaluation indexes, including PCC, SCC and 
RMSE, are selected to evaluate the robustness of the model. DeepAEG consistently achieves optimal performance compared 
to other past methods

Methods PCC SCC RMSE

Ridge regression 0.780 0.731 2.386

MOLI 0.807 ± 0.007 0.797 ± 0.005 2.081 ± 0.005

CDRscan 0.872 ± 0.004 0.856 ± 0.002 1.941 ± 0.014

tCNNs 0.889 ± 0.015 0.879 ± 0.006 1.781 ± 0.004

DeepCDR 0.9190 ± 0.005 0.8949 ± 0.002 1.082 ± 0.004

DeepTTA 0.9217 ± 0.004 0.8949 ± 0.005 1.0569 ± 0.002

DeepAEG 0.9333 ± 0.006 0.9776 ± 0.005 0.9067 ± 0.002
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proteasome inhibitor in a variety of CCLs. Anti-cancer mechanisms of bortezomib elu-
cidated by preclinical studies include: Up-regulate proapoptotic proteins (e.g., Noxa, 
I κB), inhibit NFκ B and its anti-apoptotic target genes, inhibit multiple anti-apoptotic 

A B

C D
Fig. 2 DeepAEG’s performance in different TCGA cancer type predictors and different drugs. The horizontal 
axis represents the predicted value, and the vertical axis represents the recorded ground truth. DeepAEG 
showed the best performance in thyroid carcinoma, while the worst-predicted cancer type is Acute Myeloid 
Leukemia. Also, DeepAEG showed the best performance in GSK1070916, while the worst-predicted drug is 
the Bicalutamide

Fig. 3 The missing drug-cancer interaction pairs are predicted and ranked according to their average IC50 
values, and the ten drugs with the highest and lowest efficacy are selected
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proteins (e.g., Bcl-XL, Bcl-2 and STAT-3), and down-regulate the expression of several 
proteins involved in DNA repair pathways, and induced endoplasmic reticulum (ER) 
stress and pro-apoptotic unfolded protein response (UPR). Bortezomib has a powerful 
chemical/radiosensitization effect that can overcome traditional tumor resistance when 
used in combination with potential chemotherapy [29]. Ebomycin is a class of 16-ele-
ment macrolide compounds that is easy to synthesize. It has been proved that Ebomycin 
induces apoptosis of human breast cancer cells by down-regulating anti-apoptotic pro-
tein [30]. The drug is also highly active against cancer cells that are resistant to paclitaxel 
and other anti-cancer drugs [31]. We also found Phenformin and AICA ribonucleotide 
as the two least effective drugs like DeepCDR [5], but both of them have been proved to 
be effective anticancer drugs [32, 33], and their anticancer effects may be achieved by 
influencing the cellular environment or combination therapy [34].

Independent experiments on drugs and cell lines

Further, we apply DeepAEG to cellline and drug independence tests to assess its capa-
bilities. The SOTA model DeepTTA is used as a baseline for comparison. DeepAEG 
achieved better performance in both cellline and drug independence tests, as shown in 
Fig.  4A, B. The results of blind drug testing decrease significantly compared with the 
previous experiment results, but still achieved the average Pearson’s correlation result of 
0.726, which is better than that for DeepTTA’s, and 79.2% of the average results of 221 
drugs are better than that of DeepTTA’s. For cellline tests, Pearson’s correlation is 0.945 
on average, better than that for DeepTTA’s, and 81.2% of 494 celllines are better than 
DeepTTA’s.

Model ablation analysis

We propose multiple methods to capture the underlying information of drug mol-
ecules, and it is necessary to evaluate each module’s contribution to the final result. 

Fig. 4 Pearson’s correlation results for DeepAEG and DeepTTA in independence tests. Each scatter represents 
a drug or cellline, and its horizontal and vertical coordinates represent Pearson’s correlation results for 
DeepTTA and DeepAEG, respectively. The scatter in the upper left corner of the function Y = X  is the case 
where DeepAEG is better than DeepTTA 
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For our model ablation analysis, we investigate the performance of including edge 
features, transformer module and data augmentation and conduct de novo training 
of DeepAEG respectively. The results indicate that edge information only contributes 
slightly to overall Pearson’s correlation. Feature extraction with a single Transformer 
module yields similar performance compared to GCN without edge features. Com-
bining Transformer and CGCN modules improves model performance, surpassing 
either module alone. To further improve model performance through data enhance-
ment, we apply Transformer and CGCN modules, doubling and tripling the data 
enhancement by reassembling each drug molecule SMILES into two or three virtual 
SMILES sequences, respectively. The specific results are shown in Table  2. Results 
show that our data enhancement strategy significantly enhances model performance.

DeepAEG predicts cancer‑related genes

In order to assess the performance of DeepAEG in acquiring biological knowledge 
and investigate its application in the field of biology, we adopted a methodology sim-
ilar to DeepCDR [5]. Given a specific drug and cell line pair, we ranked the genes 
based on their contributions to the output results and evaluated the relevance of spe-
cific genes. In order to achieve this, we use the idea of multivariate function deflec-
tion to calculate the gradient of the input single omics gene spectrum by using the 
output IC50 as a benchmark, and the calculated single omics gradient vector length 
is consistent with the number of genes, and finally sorted by the gradient vectors of 
the four genomic data features. Our entire neural network model can be expressed as:

For the ith gene, the sum of absolute values of its gradient can be expressed as:

Each partial derivative can be obtained by automatic differential calculation. And we can 
find the most influential genes by comparing the GradSum values of all genes:

(12)y = g(fexp(exp), fmet(met), fmut(mut), fcopy(copy), fdrug(drug))
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Table 2 Model ablation studies with different experiment settings

We show the contribution of the edge update module, transformer module and data enhancement features. Each module 
provides a PCC improvement of between 0.3 and 0.5% for the final results

Muti‑omics represents Multiomics characteristics of genes and T represents the transformer module. Edge represent the 
edge feature update module

The best performance values obtained by the model are shown in bold

Trainning settings PCC

Drug feature only  0.8507

Drug feature w/ muti-omics  0.9255

Drug feature w/ muti-omics w/ T  0.9268

Drug feature w/ muti-omics w/ T w/ Edge  0.9304

Double data enhancement w/ muti-omics w/ T w/ Edge  0.9318

Triple data enhancement w/ muti-omics w/ T w/ Edge  0.9333
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The five examples of drug-cancer cell line interaction genes we highlighted are shown in 
Table 3. We find that many of the genes at the top of the list were confirmed to be onco-
genes or involved in the mechanism of drug action. The drug Erlotinib has been proved 
to be effective in the treatment of breast cancer and lymphoma [35, 36]. Erlotinib has 
been substantiated as a potent inhibitor of EGFR [37], and its gene expression has also 
been demonstrated to be correlated with several cancers [38, 39]. This finding is also 
consistent with the results obtained in DeepCDR [5]. Furthermore, Crizotinib, initially 
developed as a MET inhibitor, has demonstrated efficacy for lymphoma kinase-positive 
lymphoma patients [40]. Our results on the Crizotinib-GA-10 interaction case showed 
that MET is the fourth relevant gene and it was shown to be specifically expressed in 
this cancer [41]. Besides, Dasatinib has become a potential treatment for acute lympho-
blastic leukemia by acting on SRC [42], while the Src family of non-receptor tyrosine 
kinases has been identified as a potential mediator for BCR-ABL-induced leukemia 
[43, 44]. Imatinib therapy targeting the oncogene product BCR-ABL has transformed 
chronic myelogenous leukemia (CML) from a life-threatening disease to a chronic con-
dition. Two related genes, SRC and ABL, appeared in the top-5 related genes [45]. In 
conclusion, our model demonstrates the capability to uncover interrelationships among 
drug-disease-related gene triads and has the ability to facilitate the discovery of potential 
therapeutic targets. This ability holds significant potential in advancing the development 
of precise clinical treatments and targeted cancer medications.

Conclusion
In this study, we developed an end-to-end deep learning model called DeepAEG to accu-
rately predict anti-cancer drug responses. To the best of our knowledge, DeepAEG is the 
first method to apply edge information characteristics and data enhancement to cancer 
drug response problems. Comprehensive experiments showed that fusion of edge infor-
mation features, SMILES sequence recombination, and expanded multiomics maps opti-
mized the feature extraction capability of drug-cell line reaction instances. DeepAEG 
shows the best PCC, SCC and RMSE. And the result of the missing data prediction also 
identified the potential effective drug (bortezomib, AICA) and the most relevant genes. 
The results highlights DeepAEG’s predictive power and its potential value in guiding 
cancer-specific therapies. We leave the following work as our future research directions. 

(14)imax = arg max
i

(GradSumi)

Table 3 Top-5 prioritized cancer-associated genes identified by DeepAEG

We employed neural network automatic differentiation to compute the sum of gradients and rank the absolute value 
of each gene. Notably, certain top‑5 genes have been corroborated by previous studies as being associated with drug 
responses or diseases corresponding to specific cell lines. These genes are indicated in bold

Drug Cell line TCGA type Top‑5 related genes

Erlotinib A3/KAW DLBC MTOR,ALK,RAF1,ETV5,EGFR
Lapatinib HCC1599 BRCA MDS2,FLCN ,EGFR ,VHL,FCGR2B

Crizotinib GA-10 DLBC ARHGEF10L,CDX2,CDG10,MET,CANT1

Dasatinib NALM-6 ALL IKBKB,THRAP3,CDKN1A,BCL2L12,SRC
Imatinib KG-1 LAML FOXR1,SFPQ,ERCC5,RAD17,ABL
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(1) Since coordinates can quantify bond length between two atoms, and there is a spe-
cific power law relationship between bond length, bond strength and electron density 
distribution, three-dimensional molecular coordinate expression can enrich drug molec-
ular information and potentially improve model prediction performance. (2) Through 
the knowledge map of cancer cells, the integration and fusion of knowledge in different 
fields can be realized, so as to meet the requirements for the integration and applica-
tion of multidisciplinary knowledge in the context of cancer precision medicine. Using 
DeepAEG as a guide, DeepAEG contributes to the growing field of precision medicine, 
facilitating cancer mechanism research and specific drug development.
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