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Abstract 

Background:  Blood test is extensively performed for screening, diagnoses and sur-
veillance purposes. Although it is possible to automatically evaluate the raw blood 
test data with the advanced deep self-supervised machine learning approaches, it 
has not been profoundly investigated and implemented yet.

Results:  This paper proposes deep machine learning algorithms with multi-dimen-
sional adaptive feature elimination, self-feature weighting and novel feature selection 
approaches. To classify the health risks based on the processed data with the deep 
layers, four machine learning algorithms having various properties from being utterly 
model free to gradient driven are modified.

Conclusions:  The results show that the proposed deep machine learning algorithms 
can remove the unnecessary features, assign self-importance weights, selects their 
most informative ones and classify the health risks automatically from the worst-case 
low to worst-case high values.

Keywords:  Blood test, Deep machine learning, Feature elimination, Feature selection, 
Health risks classification, Self-feature weighting, Self-supervised learning

Introduction
Blood carries crucial elements including the oxygen, carbon dioxide, nutrients and 
waste materials to whole body and also protects humans against various infections 
[1]. Over the centuries, the blood test is performed for a variety of purposes such as 
the preventive health, early diagnose and treatment observation. It is the most com-
mon healthcare tool used in almost every step of the medical processes and every 
day millions of blood tests are carried out. Even though they are easy to perform 
and cost effective, due to growing and aging population, spreading health services 
to large populations and necessitating long treatments; the number of blood test 
demands increase persistently. This causes an unbearable burden on the economies 
of the countries since managing such large number of blood tests daily require a great 
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number of medical staff and equipment [2]. In addition, errors because of the staff 
taking blood samples, technician examining in the laboratories and doctors making 
decisions are common and unavoidable. To ease and eliminate such problems, devel-
oping digital technologies with the advanced data mining and machine learning algo-
rithms are the most feasible and reasonable options. Therefore, this paper proposes a 
deep self-supervised machine learning algorithm enriched with a feature elimination, 
self-feature weighting and novel feature selection approaches for the blood test-based 
multi-dimensional health risk classification.

To gain insights from the blood test results without consulting a health professional, a 
number of approaches including the simple statistical, feature elimination, feature selec-
tion, machine learning and recently deep learning approaches are considered. In terms 
of the statistical approaches, Krouwer et al. stated that the medical errors in the blood 
glucose monitoring can likely cause patient harm and the direct statistical approaches 
including the error grids, Bland–Altman and mountain plots are able to reveal the allow-
able glucose error [3]. Skirzhytski et  al. proposed the discriminant statistical analyses 
to gain information about the pre-processed semen and blood mixtures data collected 
by Raman spectra [4]. They also performed an automatic mapping of the samples and 
cross-validation approaches to validate the statistical results. Song et al. investigated the 
link between the blood levels of 25 (OH)D and type 2 diabetes risk by applying meta-
analysis, DerSimonian-Laird’s random effect model and quadratic spline regression sta-
tistical approach [5]. Their research confirmed that the spline regression model identifies 
that the higher 25 (OH)D levels associate with a lower diabetes risk. Latz et al. focused 
on understanding the connection between the ABO blood type and significance of the 
COVID-19 from being slightly infected to intubated by implementing the univariate 
analyses and logistic regression [6]. The research outcome was that the patients with the 
blood type B and AB were prone to test positive whereas the blood type O was unlikely 
to test positive. Although the statistical approaches are useful tools to gain insights from 
the blood tests, they can usually deal with a single dimensional data and do not form a 
prediction model.

With respect to the feature elimination approaches, they are generally developed and 
implemented to discard ubiquities and normal data. For the best of the authors’ knowl-
edge, they have not been yet considered for the blood test-based analyses, but widely 
implemented in various medical problems. Alshanbari et  al. enriched the weighted 
radial kernel support vector machine with a recursive feature elimination algorithm 
to estimate and classify the COVID-19 admissions into intensive care units [7]. Simi-
larly, Yu et al. designed a risk prediction model based on a backward feature elimination 
algorithm to estimate acute on chronic liver failure in hepatitis B patients with severe 
exacerbation [8]. The algorithm requires a variety of test results including the blood test 
and aims to identify the patients at high risks early. Proitsi et al. examined the associa-
tion of the blood lipids and Alzheimer disease with random forest and bootstrap fea-
ture elimination algorithms [9]. They performed univariate and multivariate analyses 
and exhibited associations between the six blood lipids with brain atrophy. All these fea-
ture elimination approaches require labelling of the data and consider a single variable. 
However, raw blood test data is unlabelled and also multi-dimensional. Thus, it requires 
multi-dimensional self-supervised learning formulation.
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Together with the feature elimination approaches, feature selection approaches are 
developed to pick the most informative data for learning. Shankar et al. considered opti-
mal feature selection based multi-kernel support vector machine algorithm for thyroid 
disease classification [10]. The resulting algorithm yielded improvement in the classifi-
cation accuracy and computational efficiency through selecting the best features with 
the grey wolf optimization algorithm. Berminghan et al. investigated the genomic of a 
man with the unsupervised and supervised feature selection approaches including the 
ranking of trait specific genome wide association, pruning based on median distance and 
re-arranging conditional value approaches [11]. These feature selection approaches com-
bined with the Bayesian model to estimate the height, high density lipoprotein choles-
terol (HDC) and body mass index (BMI) of the Croatian and British individuals. Wang 
et al. utilized meta-heuristic random forest unsupervised feature selection approach for 
the segmentation of the retinal blood vessels which is substantially important for diag-
nosing diseases particularly the diabetic retinopathy, hypertension and cardiovascular 
[12]. Their results confirmed that automatic learning from the raw data and predicting 
the unknown patterns by selecting the most crucial features is achievable. All these fea-
ture selection approaches prioritize whether the data is informative or not. But one or 
more blood test data can have the values from the worst-case low to worst-case high, 
while the rest are normal. Therefore, high-dimensional labelling-based feature selection 
approaches should be developed for the blood test data.

In regard to the machine learning approaches applied to the blood test data, Aktar 
et  al. investigated the severity of COVID-19 patients with the decision tree, random 
forest, variants of gradient boosting machine and k-nearest neighbour machine learn-
ing algorithms [13]. The results implied that a number of clinical parameters, particu-
larly the blood samples, can discriminate the positive patients and also label the stage of 
the diseases. Similarly, Brinati et al. implemented extremely randomized trees, logistic 
regression and Naïve Bayes machine learning approaches trained with the white blood 
cells and the platelets to predict COVID-19 patients [14]. The research showed that 
the machine learning can be an alternative tool to rRT-PCR test kits for detecting the 
pandemic patients. To model blood glucose dynamics which poses challenges in accu-
rate prediction due to poor diet and time entry information, Woldaregay et al. applied 
recurrent neural network, feed forward neural network, self-organizing maps, Gaussian 
process and genetic algorithms [15]. The resulting model was capable to produce locally 
valid predictions under the certain circumstances, but generated poor global predic-
tions. Even though these machine learning algorithms can receive multiple inputs and 
generate multiple predictions, they are usually sensitive to the input data, computation-
ally costly and also their decision process is time consuming.

With relation to the deep learning approaches, Rehman et  al. modelled the Acute 
Lymphoblastic Leukemia, that can be detected from the blood test and bone marrow 
images, with the deep convolutional neural networks and compared the results with 
the traditional Naïve Bayesian, k-nearest neighbours and support vector machines 
algorithms [16]. The prediction accuracy of the model with the training data was high, 
but the testing and validation of the model were not carried out. Similarly, Doan et al. 
examined the stored red blood cells, which are usually assessed through time consuming 
and complex microscopes, with the convolutional neural networks having an additional 



Page 4 of 21Tutsoy and Koç ﻿BMC Bioinformatics          (2024) 25:103 

feature extraction layer [17]. It is highlighted that the research findings could help to 
automate complex protocols, reduce laboratory sample handling and minimize proce-
dural errors. Jin et al. proposed a multi-task deep learning network consisting of a fea-
ture extraction and tumour segmentation and a classification layer which can perform 
an instant tumour next state prediction [18]. It is expressed that the resulting deep 
learning model can capture the tumour dynamics from the longitudinal images and 
can be utilized for the treatment process of the cancer. Even though these deep learning 
approaches can handle the large amount of data efficiently, they assume that the succes-
sive data is closely dependent. However, this is not a valid assumption for the blood test 
data since each blood test value carries different information. Henceforth, new and novel 
deep learning approaches should be developed for the automatic analyses of the blood 
test data.

Based on the critical review of the recent and related literature above, the key contri-
butions of the paper can be summarized as:

•	 Designs a multi-dimensional adaptive feature elimination approach to remove the 
redundant blood test data.

•	 Forms a self-feature weighting approach to label the data from worst-case low to 
worst-case high at adaptive intervals.

•	 Develops a novel multi-dimensional feature selection approach to pick the most 
informative blood test data.

•	 Modifies four machine learning algorithms having multiple inputs and multiple out-
puts to classify the health risks based on the raw blood test data.

In the rest of the paper, section “Proposed deep machine learning algorithm” intro-
duces the proposed deep machine learning algorithm, section “Input–output train-
ing data description” forms the input and output training data, section “Deep layer 
approaches” provides the pre-processing, feature elimination, self-feature weighting 
and feature selection approaches, section “Machine learning algorithms for optimiza-
tion” presents the modified machine learning algorithms, section “Results” analyses the 
results, and finally section “Conclusion and future works” summarizes the paper and 
states the future works.

Proposed deep machine learning algorithm
Figure  1 illustrates the proposed deep self-supervised machine learning algorithm for 
the blood test-based multi-dimensional health risk classification.

The proposed algorithm initially receives the 5-dimesional raw blood test data and 
examines with respect to the age and gender to reveal the possible relationship among 
them. Then simple data pre-processing approaches including the normalization, mean 
and standard deviations are implemented. Based on these mean and standard devia-
tions, multi-dimensional feature eliminations are performed to remove the normal 
data which do not carry rich information for the machine learning based optimiza-
tion problem. Later, features are self-weighted from − 100% to 100%, representing the 
worst-case low and worst-case high blood test values, respectively. For each interval 
among the − 100% and 100%, a certain number of features are determined with the 
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multi-dimensional feature selection algorithm. Therefore, with this process, the amount 
of the data is reduced and the most informative ones are selected for the training and 
testing of the deep machine learning algorithms. Finally, the constructed data is utilized 
to optimize the prediction model with the Batch Least Squares (BLS), Iterative Neural 
Networks (INN), Least Squares with Linear Constraints (LSLC) and Shuffled Complex 
Evolution (SCE) machine learning algorithms. These 4 algorithms have a variety of prop-
erties from reducing the effects of the unknown uncertainties in the data to learning in a 
constrained space without the gradient information.

Input–output training data description
Exploring the key properties of the training and testing data greatly contribute to the 
construction of the input and output data for the machine learning algorithms. This sec-
tion briefly analyses the data with respect to the gender and age and also groups the 
multi-dimensional blood test data to process them further. The 5-dimensional blood test 
data concerned in the paper are hematocrit (HTC), hemoglobin (HGB), white blood cell 
(WBC), platelet (PLT) and mean platelet volume (MPV). The length of the raw data is 
58.490 where 53.459 and 5.031 of them are males and females, respectively. The number 
of the subjects are 38.595, 13.944, 5.949 and 19.894 in 18–40, 41–50, 51–64 and older 
than 64 age groups, respectively. The developed feature elimination approach elimi-
nates 32.624 data since they have normal values. The remaining 25.866 are distributed 
between − %100 and + %100 with the designed feature selection approach.

A. Blood test data analysis in terms of gender
Figure 2 visualizes the 5-dimensional blood test data with respect to the gender.
As can be clearly seen from Fig.  2, the number of the male and female subjects are 

53.459 and 5.031, respectively. Therefore, the majority of the subjects are male and this 
hinders us to learn in terms of the gender since it possibly leads to underfitting and over-
fitting machine learning problems. To reveal the similarities among the blood test data 
for the female and male subjects, correlation analyses, which essentially identifies the 

Fig. 1  Proposed deep self-supervised machine learning architecture
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amount of the relationship between two blood test data, can be performed. Let ht , hg , 
wb , pl , mp denote the HTC, HGB, WBC, PLT, MPV blood test data, respectively. Corre-
lation, for example Chthg between ht and hg is simply represented as

where ht and hg are the mean values of the ht and hg data, respectively. Table 1 provides 
the correlation among the whole blood test data.

As can be seen from Table 1, the female MPV values are correlated with the rest of 
the blood test data. It is significantly related with the HTC data whereas it has an insig-
nificant relationship with the PLT data. In contrast to the females, the male MPV data 
is only slightly correlated with the WBC data. Since the number of female subjects is 
just %8 of the overall subjects, the correlation impact on the machine learning solutions 
will be ignorable. Next sub-section analyses the blood test data with respect to the age 
groups.

B. Blood test data analysis in terms of age
Figure 3 shows the blood test data with respect to the age.
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Fig. 2  Blood test data with respect to gender, a gender where -1 and 1 represent the female and male 
subjects, b HTC, c HGB, d WBC, e PLT, f MPV blood test values

Table 1  Gender-based blood test data correlation. Upper and lower corner values represent the 
blood test data for the female and male subjects, respectively

Blood test HTC HGB WBC PLT MPV

HTC – 0 0 0 0.88

HGB 0 – 0 0 0.77

WBC 0 0 – 0 0.46

PLT 0 0 0 – 0.08

MPV 0 0 0.11 0 –
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From Fig. 3, it is not straightforward to reveal the relationships among the 5-dimen-
sional blood test data and the age. Therefore, Table 2 is provided to illustrate the cor-
relation between the blood test data divided into two age groups.

The number of subjects in the 18–37 and 38–64 age groups are 32.903 and 25.587, 
respectively. It is noticeable from Table 2 that the HTC and MPV data are consider-
ably correlated with both age groups. It is also noteworthy that the 38–64 age group 
MPV data is more firmly related with the rest of the data. This implies that learning 
the MPV data from the other 4 data is possible. To determine the blood test data-
based risks, 5-dimensional data should be grouped for each subject as addressed in 
next sub-section.

C. Grouping blood test data
Since the machine learning algorithms will make decisions based on the 5-dimen-

sional blood test data, it is important to group them as in Fig.  4 and process them 
altogether.

It is clear from Fig. 4 that the PLT data is larger than the other 4 data with a varying 
magnitude. Change in magnitude is a useful property for the learning problems since 
they carry information about the underlying health problems. However, the larger 
values always dominate the smaller ones and, in this case, the role of the data with 
smaller magnitude lessens. Henceforth, the data must be pre-processed and the most 
informative ones must be chosen as in next section.
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Fig. 3  Blood test data with respect to the age groups, a age groups, b HTC, c HGB, d WBC, e PLT, f MPV values

Table 2  Blood test and age correlation. Upper and lower corner values represent 18–37 and 38–64 
age groups, respectively

Blood Test HTC HGB WBC PLT MPV

HTC – 0 0 0 0.98

HGB 0 – 0 0 0.12

WBC 0 0 – 0 0.25

PLT 0 0 0 – 0.30

MPV 0.58 0.44 0.07 0.46 –
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Deep layer approaches
This section initially applies the simple data pre-processing approaches to the blood 
test data and then introduces the multi-dimensional feature elimination, self-weight-
ing and the novel multi-dimensional feature selection approaches.

A. Pre-processing of the blood test data
Since this paper aims to scale the health risks, the blood test data is normalized 

between 0 and 1. For example, normalized PLT data pln is

where i is the data sample index, plmin and plmax are the minimum and maximum values 
of the pl data, respectively. Figure 5 visualizes the raw pl and normalized pln PLT data.

As can be seen from Fig. 5a), the maximum value of the PLT data is around 3000 
whereas the maximum value of the normalized PLT data in Fig.  5b) is 1. However, 
even though the magnitude of the data is normalized, the character of the raw data is 
maintained as shown in Fig. 5.
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Fig. 4  Grouped blood test data for the subjects

Fig. 5  a Raw PLT data, b normalized PLT data
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Mean and standard deviation of each input data are utilized to eliminate and select 
the features in Sections B and D. Mean of the normalized PLT data plnm ∈ R

N  , for 
instance, is given by

The corresponding standard deviation plns  is expressed as

Figure  6 demonstrates the mean and the standard deviations of the normalized 
blood test data.

It is clear from Fig. 6 that the HTC and HGB data have larger mean values while the 
MPV has the smallest one. In addition, the WBC has the largest standard deviation, 
but the HTC, HGB and PLT have similar standard deviations where the MPV has the 
smallest. In terms of considering these mean and standard deviation values, next sub-
section forms a multi-dimensional adaptive feature elimination approach.

B. Multi-dimensional feature elimination approach
In this paper, a multi-dimensional adaptive feature elimination is performed for 

three reasons:

•	 To reduce the dimension of the input–output training and testing data. Therefore, 
computational time and burden of the algorithms are lessened.

•	 To develop an adaptive feature elimination approach. Henceforth, the overall data 
can be manipulated to satisfy the desired machine learning model accuracy.

•	 To consider 5-dimensional data altogether. In consequence, even one data is close to 
the abnormality, then the whole data of the subject is utilized.

Algorithm 1 provides pseudocode of the proposed algorithm.
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Fig. 6  Mean and standard deviations of the blood test data
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Algorithm 1  Multi-dimensional feature elimination.

Algorithm  1 specifies the eliminated features depending on the adaptive feature 
elimination value afe and Fig. 7 shows the eliminated features for afe = 1.

As can be seen from Fig.  7, all the eliminated values are inside the red dashed 
bounds specified with respect to the mean and standard deviations of each blood 
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test data. It is noticeable that all the eliminated values of the WBC and MPV data 
are around the centre whereas the rest of the data have values around the upper and 
lower limits. This occurs because the constructed feature elimination algorithm is 
5-dimesional and even one data is outside the boundaries, then the whole data of the 
subject is kept. Depending on the adaptive feature elimination value afe , the number 
of the eliminated features vary as illustrated in Table 3.

As demonstrated by Table  3, the number of the eliminated features increases with 
respect to the feature elimination value afe. Therefore, by manipulating this value, it is 
possible to determine the length of the data that will be utilized for the training and test-
ing. The remaining data is further processed in the self-feature weighting and selection 
steps introduced next.

C. Self-feature weighting approach
To select the most informative features for learning, Algorithm 2 introduces the self-

feature weighting approach.

Fig. 7  Eliminated features for afe = 1 ; a HTC, b HGB, c WBC, d PLT, e MPV. The dashed red lines represent the 
corresponding upper and lower values to make decisions

Table 3  The number of eliminated features with afe

afe 0.1 0.5 1 2 3

Eliminated features 28 8.763 32.624 55.155 57.710
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Algorithm 2  Self-Feature weighting approach.

As shown in Fig.  8, Algorithm  2 weights the blood test data between -100% and 
100% representing the subjects having the lowest and largest abnormal blood test val-
ues, respectively.

By considering these self-feature weighted blood test values, next sub-section 
selects the most informative features.

D. Novel multi-dimensional feature selection approach
Certain number of features should be selected for each label output between 

−  100% and 100%. Algorithm  3 introduces the multi-dimensional feature selection 
approach to form the training and testing data.
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Algorithm 3  Multi-dimensional feature selection approach.

The Algorithm 3 selects the required amount of informative data as in Table 4.
Table 4 confirms that the existing ip features are always less than the required 300 

features. Thus, the blood test data does not contain sufficient amount of positive 
weighted data and this deteriorates the performance of the machine learning algo-
rithms. In terms of the existing in and selected ins features, they have sufficient nega-
tive weighted data up to − 60% and then even though the required 300 features are 
not provided, the amounts are still large until − 30%. This implies that the machine 
learning algorithms will perform properly from − 100% to − 30%. This is acceptable 
since the weighted data between − 30% and − 10% are close to the normal data. Next 
section provides the machine learning algorithms which optimize the constructed 
data in this section.
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Machine learning algorithms for optimization
This section initially forms the prediction model structure and then reviews the BLS, 
INN, LSLC and SCE machine learning algorithms.

A. Prediction model structure
The prediction model ŷ is constructed as

where w is the unknown parameter vector and b is the basis function formulated as

where de ∈ R
N×5 is the re-organized training data vector in Algorithm 3. One can sum-

marize the properties of the basis function in Eq. (19) as

•	 It carries crucial information processed through the feature elimination in Algo-
rithm 2 and feature selection in Algorithm 4. Thus, it does not consist of raw data.

•	 It covers a bias, linear and higher order data with partial fractions. This allows to 
formulate a certain parameter space rather than randomly constructed one.

•	 It is comprehensive since it has a 7-dimensional parameter space.
•	 Its dimension is b ∈ R

N×35 and all of them are utilized for instant learning. Hence-
forth, uncertainties stemmed from the unknown sources are lessened.

The real output is

where dtr is self-weighted features with Algorithm 2 and selected with Algorithm 3. Next 
sub-section reviews the BLS algorithm which optimizes the unknown parameters w in 
Eq. (18).
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Fig. 8  Self-weighted features (partial view); a HTC, b HGB, c WBC, d PLT, e MPV
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B. Batch least squares (BLS) algorithm
To derive the BLS parameter learning rule for w in Eq.  (18), consider the labelled 

real output y in Eq. (20) and the prediction model output ŷ in Eq. (18). The prediction 
error e is

To generate a smooth unknown parameter space, square the prediction error e in 
Eq. (21) and manipulate as

Gradient of the quadratic prediction error in Eq. (22) with respect to the unknown 
parameters w is given by

Applying the stationary condition on Eq. (23) gives the unknown parameter vector 
w learning rule expressed as

The BLS update rule in Eq.  (24) utilizes whole data to learn the unknown param-
eters and this is a useful property for the data with large variances. However, to learn 
the time-varying character of the data, INN algorithm reviewed next is advantageous.

C. Iterative neural network (INN) algorithm
The INN algorithm updates the unknown parameters w in Eq.  (18) by iteratively 

optimizing the squared error in Eq. (21) as

(21)e = y− ŷ

(22)
e2 =

(

y− wTb
)T(

y− wTb
)

= yT y− wbTy− yTwTb+ wbTwTb

(23)∂e2

∂w
= −2bTy+ 2bTbw

(24)w =
(

bTb
)−1

bTy

Table 4  Selected features ip , ips , in , ins are existing positive, selected positive, existing negative and 
selected negative features for each labelling intervals, respectively

Intervals ip ips in ins

 ± 100% 1 1 1.303 300

 ± 90% 81 81 16.380 300

 ± 80% 11 11 4.877 300

 ± 70% 19 19 2.048 300

 ± 60% 34 34 604 30

 ± 50% 60 60 213 213

 ± 40% 75 75 101 101

 ± 30% 5 5 35 35

 ± 20% 0 0 19 19

 ± 10% 1 1 1 1
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where η is the learning rate, k is the iteration index. Solving partial derivatives in Eq. (25) 
yields

Both the BLS and INN introduced in sub-sections B and C are unconstrained opti-
mization algorithms which can assign larger importance to some parameters than the 
others. Thus, next sub-section formulates the LSLC constrained mathematical opti-
mization algorithm.

D. Least squares with linear constraints (LSLC) algorithm
The LSLC algorithm focuses on minimization of the prediction error with the equality 

and inequality parameter constraints α and their upper value p  defined as

The constrained optimization problem in Eq.  (27) can be expressed with Lagrange 
multipliers given by

Obtaining derivative of L
(

wk , �
)

 with respect to the wk is

Determining derivative of L
(

wk , �
)

 with respect to the � is

Re-organizing (29) as wk is on the left and substituting in Eq. (30) yields

Solving (31) for � and substituting (29) leads to the LSLC parameter update rule given 
by

(25)wk+1 = wk −
η

2

∂e2k
∂ek

∂ek

∂wkk

(26)wk+1 = wk − ηekbk

(27)

min
w∗
k

1

2

∥

∥yk − ŷk
∥

∥

2

subject to
∥

∥wk

∥

∥

2
≤ p�α�2

α < wk < pα

(28)L
(

wk , �
)

= 1

2

∥

∥

∥
yk − w

T

k bk

∥

∥

∥

2

2
+ �

2

(

∥

∥wk

∥

∥

2

2
− p2�α�22

)

(29)
(

b
T

k bk + �

)

wk = b
T

k yk

(30)
∥

∥wk

∥

∥

2

2
− p2�α�22 = 0

(31)

∥

∥

∥

∥

∥

bkyk

b
T

k bk + �

∥

∥

∥

∥

∥

2

2

− p2�α�22 = 0
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where ηc is the LSLC learning rate. Next sub-section reviews the SCE machine learning 
algorithm.

E. Shuffled complex evolution (SCE) algorithm
SCE in Algorithm  4 is a model and gradient free meta-heuristic algorithm which 

essentially searches for the optimal solutions in a pre-defined parameter space.
 

Algorithm 4  The SCE machine learning algorithm.

(32)wk+1 = wk + ηc
bTk

bTk bk + �
yk
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The next section analyses the results extensively.

Results
This section initially presents the parameters of the machine learning algorithms and 
then analyses the results extensively.

A. Parameters of the machine learning algorithms
Next sub-section analyses the training results obtained with the machine learning 

parameters in Table 5.

B. Machine learning results with training data 
Figure 9 shows the results with the constructed training data.
As can be seen from Fig. 9a, the BLS, LSLC, SCE algorithms can capture the overall 

character of the abnormally low blood test data whereas the INN algorithm fails to 
learn the labelled output around − 100%. This is due to iterative nature of the INN, 
which forgets the previous learning as the sample horizon approaches 0% values. It is 
also noticeable that the BLS algorithm closely follows the real output since it has abil-
ity to reduce the effects of the unknow uncertainties. With respect to Fig. 9b, due to 
insufficient and imbalanced abnormally high blood test data discussed with the con-
text of Table 4, all the machine learning algorithms except the INN cannot manage 
to learn the desired output. However, because of the large variance in learning, its 
robustness will be poor. To clearly express the efficiencies of the machine learning 
algorithms, next sub-section provides statistical analyses of the developed models.

C. Statistical analyses of the deep learning algorithms
Figure  10 compares the predictions of the deep self-supervised machine learning 

algorithms with the training and testing data.
As can be seen from Fig. 10a and e, the BLS algorithm has considerably large mean 

error with the test data since it is prone to the variations due to it matrix inversion 
requirement. With respect to the INN algorithm in Fig.  10b and f, it yields almost 
similar mean errors, but nearly two times larger standard deviations with the test 
data. In terms of the LSLC algorithm in Fig. 10c and g, it has 0.07 mean error with the 
training data and it jumps to 0.82 with the test data. However, the test data with the 
LSLC leads to smaller standard deviation than the training data. With regard to the 
SCE algorithm in Fig. 10d and h, it produces the smallest mean error both with the 
training and testing data and similar to the LSLC algorithm, it generates lower stand-
ard deviation with the test data. Next section summarizes the paper and expresses the 
future direction of the research.

Discussions
As addressed in section “Deep layer approaches” B, multi-dimensional raw blood test 
data can be separated as the normal and abnormal. The 5-dimensional raw blood test 
data is labelled as abnormal in the presence of at least one abnormal test value. This will 



Page 19 of 21Tutsoy and Koç ﻿BMC Bioinformatics          (2024) 25:103 	

enable us to make more advanced health risk decisions and will allows us to map these 
results to the possible underlying illnesses. The abnormal multi-dimensional blood test 
data is labelled automatically without requiring an expert knowledge in Section “Deep 
layer approaches” C. The labelling classes are adaptive; henceforth, they can be adjusted 
immediately in case of emergencies or changing conditions. The labelled abnormal data 
is assigned into the classes with the feature selection approach in Section “Deep layer 
approaches” D. Since this algorithm is capable of selecting sufficient amount of data, 
conventional overfitting and underfitting machine learning problems can be avoided. 
In order to determine the most appropriate machine learning algorithms which can 
capture the unknown patterns of the selected multi-dimensional blood test data, four 
machine learning algorithms are implemented and it is shown that the INN is unable to 
learn the desired classes due to its time-varying nature.

Conclusion and future works
This paper proposed a deep self-supervised machine learning algorithm enriched with 
the multi-dimensional adaptive feature elimination, self-weighting and novel feature 
selection approaches to automatically learn from 5-dimensional raw blood test data. 

Table 5  Parameters of the machine learning algorithms

Parameters Value Description

n 10 Algorithm 4

A 4 Algorithm 4

q 5 Algorithm 4

α 3 Algorithm 4

β 5 Algorithm 4

� 100 Algorithm 4

fq 0 Algorithm 4

η = ηc 0.05 Equation (26)

it 300 Algorithm 2

afe 1 Algorithm 1

Fig. 9  Learning with training data; a low, b high values
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The initial analyses of the data with the basic statistical approaches showed that there 
is no significant correlation between the gender and 5-dimensional blood test data 
(Table 1). In addition, it is proved that the MPV data is highly correlated with the HTC 
data only for the 18–37 age group (Table 2). Adaptive property and reliability of the fea-
ture elimination approach were illustrated (Table 3). Finally, a novel multi-dimensional 
feature selection approach was formed and the selected features presented (Table  4). 
The research outcomes showed that all the algorithms were able to capture the worst-
case low blood test values where the LSLC algorithm yielded the largest estimation bias 
(Fig. 9). However, for the worst-case high values, only the INN algorithm managed to 
learn the dynamics of the corresponding blood test values due to its iterative nature.

The main disadvantages of the research are that the number of the female subjects 
are much less than the male subjects, diversity of the abnormal data is quite limited, the 
amount of the worst-case positive data is insufficient compare to the worst-case nega-
tive ones. In addition, multi-layer machine learning algorithms should be examined in 
addition to the four machine learning algorithms considered in this paper. A further 
drawback of the study is that the dataset does not have any missing data, but in real-life 
applications it is possible that the blood test data can have randomly distributed missing 
data.

As a future work, the proposed deep machine learning algorithms should be expanded 
by including the treatment policies that can manipulate the future responses of the 
blood test data.
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