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Background
Large language models [1] are a remarkable advancement in artificial intelligence, dem-
onstrating exceptional capabilities in understanding and generating human language. 
Their applications span diverse domains, including software development, education, 
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Background: Protein language models, inspired by the success of large language 
models in deciphering human language, have emerged as powerful tools for unrave-
ling the intricate code of life inscribed within protein sequences. They have gained 
significant attention for their promising applications across various areas, includ-
ing the sequence-based prediction of secondary and tertiary protein structure, the dis-
covery of new functional protein sequences/folds, and the assessment of mutational 
impact on protein fitness. However, their utility in learning to predict protein residue 
properties based on scant datasets, such as protein–protein interaction (PPI)-hotspots 
whose mutations significantly impair PPIs, remained unclear. Here, we explore the feasi-
bility of using protein language-learned representations as features for machine learn-
ing to predict PPI-hotspots using a dataset containing 414 experimentally confirmed 
PPI-hotspots and 504 PPI-nonhot spots.

Results: Our findings showcase the capacity of unsupervised learning with pro-
tein language models in capturing critical functional attributes of protein residues 
derived from the evolutionary information encoded within amino acid sequences. 
We show that methods relying on protein language models can compete with meth-
ods employing sequence and structure-based features to predict PPI-hotspots 
from the free protein structure. We observed an optimal number of features for model 
precision, suggesting a balance between information and overfitting.

Conclusions: This study underscores the potential of transformer-based protein 
language models to extract critical knowledge from sparse datasets, exemplified here 
by the challenging realm of predicting PPI-hotspots. These models offer a cost-effec-
tive and time-efficient alternative to traditional experimental methods for predicting 
certain residue properties. However, the challenge of explaining why specific features 
are important for determining certain residue properties remains.
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scientific research, healthcare, finance, and law [1]. Analogous to how these models 
decode human language, deep-learning models known as protein language models have 
emerged to decipher the intricate language of life by learning the patterns embedded 
in protein sequences over evolutionary time [2–6]. The key differences between large 
language models and protein language models lie in their input data and intended appli-
cations. Whereas large language models are trained on massive textual datasets, protein 
language models harness vast protein sequence databases containing millions of amino 
acid (aa) sequences from various organisms [5]. However, certain data types such as 
per-residue binding free energy contributions [7] are experimentally arduous to collect, 
yielding limited datasets. Thus, machine learning algorithms may not extract meaningful 
insights from such sparse data. This study aims to explore the potential of protein lan-
guage models in extracting subtle information from sparse datasets, exemplified by the 
limited dataset of protein–protein interaction (PPI) hotspots, defined as residues whose 
mutations significantly impair/abolish PPIs [7].

Protein language models, like large language models, are built upon transformer archi-
tectures for representation learning and generative modeling [8]. In the transformer 
architecture, the encoder component encodes aa sequences, mapping each residue in 
the input sequence to an N-dimensional vector. The value of N is determined by various 
factors, including the model size (i.e., number of parameters), the training dataset size, 
and available computational resources [4]. Each vector encapsulates the aa type and its 
surrounding sequence context. Protein language models learn patterns and relationships 
within input protein sequences during pre-training through self-supervised masking 
tasks. In this process, aa residues in the input protein sequence are randomly masked, 
and the training objective is to predict the identity of these masked residues based on 
contextual clues from the surrounding residues. The goal is to minimize an objective 
function, which represents the negative logarithm likelihood of the true aa residue given 
the masked sequence [4, 5, 9]. Currently, one of the largest protein language models is 
ESM-2 (Evolutionary Scale Model-2) with 15 billion parameters, trained on ~ 65 million 
unique protein sequences [5].

Protein language models offer several advantages: The encoder-generated vectors 
inherently encode a spectrum of features, encompassing biochemical aa properties, 
species information, structural homology at the superfamily and fold level, sequence 
alignment within a protein family, secondary and tertiary structures, long-range con-
tacts, and protein design principles [4]. These learned representations can be indepen-
dently utilized to train deep neural networks for various classification tasks, including 
the sequence-based prediction of secondary structures and long-range contacts [4], ter-
tiary structures [5], inverse folding [10], and the impact of mutations on protein func-
tion [11–13]. For example, the representations learned ESM-2 have been used to train 
EMSFold [5], a model capable of predicting 3D structure using only a single sequence as 
input. In contrast, AlphaFold2 [14] requires time-consuming multiple sequence align-
ment. Thus, protein language model representations eliminated the need to search for 
evolutionarily related sequences to construct a multiple sequence alignment, enhancing 
prediction speed. This enabled proteome-level predictions and the discovery of new pro-
tein structures and functions [5, 6, 15]. Additionally, protein language models have often 
outperformed current prediction methods across various classification tasks [4, 5, 16]. 
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They have shown the ability to transfer knowledge learned from sequences to improve 
antibody binding affinity by suggesting high-fitness aa substitutions based solely on 
the wild-type antibody sequence [17]. They can also design proteins by generating new 
protein sequences and corresponding predicted structures that fulfill user-defined con-
straints such as secondary structure, solvent accessibility, fold and active/binding-sites 
[18]. For example, the protein language model, ProGen, can generate artificial functional 
proteins across protein families [19].

While protein language models can capture information representing different levels 
of protein organization from sequence data alone, their ability to learn and extract spe-
cific residue properties from limited data remains uncertain. This is of particular interest 
for two key reasons. First, gathering experimental data for specific aa residue properties 
such as PPI-hotspots can be time-consuming and resource-intensive, resulting in limited 
data. Second, large language models have shown the capability to adapt effectively to 
new language tasks with minimal examples (so-called few-shot learners) [20]. Thus, we 
aim to assess the possibility of using protein language models and sparse data of a certain 
property to predict that property accurately. Specifically, we assessed whether protein 
language models can discern intricate details from a limited dataset of experimentally 
known PPI-hotspots that make substantial contributions to PPIs [7, 21]. Since a resi-
due’s functional role is influenced by its local environment [22], we harnessed informa-
tion within encoder-generated vectors encompassing residue types and their sequence 
context. We propose using these vector elements as features/descriptors for machine-
learning algorithms to identify PPI-hotspots solely from protein sequences. For train-
ing and validation, we employed a dataset comprising 414 experimentally determined 
PPI-hotspots and 504 nonhot spots. This dataset had been previously used to train an 
ensemble of classifiers to identify PPI-hot spots using the free protein structure [23]. The 
results show that a subset of randomly selected features suffices for robust PPI-hot spot 
prediction, with performance comparable to models using all elements of encoder-gen-
erated vectors as features. The performance of our approach is also comparable to that 
of a model trained on 10 residue features, which requires the free protein structure as 
input. Hence, protein language models can discern the few PPI-hot spots from sequence 
alone, underscoring their potential in deciphering protein intricacies, even when data 
are sparse. By following our strategy, one can train new predictors to classify protein 
residues into desired classes (exemplified herein with hot spots or nonhot spots) using 
only sequence data, thereby avoiding the need for dedicated feature engineering, even 
with a limited training dataset.

Methods
Dataset

For training and validation, we employed a dataset consisting of 414 experimentally 
confirmed PPI-hot spots and 504 PPI-nonhot spots. The 414 PPI-hot spots are found 
in 158 nonredundant proteins with free structures and were obtained from the updated 
PPI-Hotspot +  PDBBM(1.1) [7, 23]. These PPI-hot spots were derived from two sources: 
(i) mutations in the ASEdb [24] and SKEMPI 2.0 [25] database that resulted in a reduc-
tion of protein binding free energy by ≥ 2 kcal/mol, and (ii) mutations in UniProtKB [26] 
that were manually curated to significantly impair/disrupt PPIs. The 504 experimentally 
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confirmed PPI-nonhot spots are found in 75 nonredundant proteins with free struc-
tures. They were chosen based on (i) mutations in the ASEdb [24] and SKEMPI 2.0 [25] 
database that did not alter the protein binding free energy by ≥ 0.5  kcal/mol, and (ii) 
mutations in UniProtKB [26] curated not to perturb PPIs.

Representations learned by the ESM‑2 protein language model

To capture the local environment surrounding a target residue, we considered a 101-aa 
sequence, spanning 50 residues on each side of the target residue. If the target residue 
was located near the N- or C-terminus, it was positioned at the N- or C-terminus within 
the 101-aa sequence. This process generated sequences with an average of 34 ± 7% simi-
larity. The sequence length was chosen to strike a balance—it is not overly long to bur-
den memory during computations, yet not too short to overlook information from the 
local protein environment. These 101-aa sequences were then fed into the ESM-2 pro-
tein language model. Among the various pretrained ESM-2 models, we chose the esm2_
t33_650M_UR50D trained model as a representative due to its transformer architecture 
using 33 layers and 650 million parameters [5], and extensive pre-training on UniRef50 
[7]. We direct the reader to reference [5] for details about the model’s training, valida-
tion, and performance metrics. The final layer of this model provided an N-dimensional 
(N = 1280) embedding vector for the target residue, yielding 1280 features as input for 
machine-learning algorithms to identify if the target residue is a PPI-hot spot or not.

Model training and validation with full and subset sequence features

We conducted model training and validation using all features derived from the learned 
representations and another using only a subset of these features. For model train-
ing and validation, we use an automatic machine-learning (AutoML) framework, viz., 
AutoGluon (https:// auto. gluon. ai/). We chose AutoGluon due to its robustness and 
user-friendliness, enabling us to explore various machine-learning approaches and 
their combinations simultaneously and automatically. It has been validated in differ-
ent applications [27, 28]. Furthermore, passing transformer-learned representations to 
downstream machine-learning approaches for making predictions has been success-
fully demonstrated [28, 29]. Specifically, we employed AutoGluon’s AutoTabular module, 
which automates the training and validation process via a stacked ensemble comprising 
diverse models, including XGBoost, CatBoost, GBM, random forests, and neural net-
works [30].

We chose the F1 score as a single evaluation metric for model training because it bal-
ances precision and recall. The dataset was randomly split into three sets with propor-
tions of 20%, 10%, and 70%, and models were trained on each set using the F1 score 
along with the best-quality preset. Using the first split dataset (20%), we initially trained 
a model using all 1280 features. To assess the relative importance of the 1,280 encoder-
provided features, we employed the smallest split dataset (10%) for permutation test-
ing, as implemented in the AutoGluon package: In this feature importance test, values 
for a given feature (column) were randomly shuffled across different residues (rows) and 
supplied as input to the model. The importance score for each feature is computed by 
comparing the model’s performance on the original dataset with its performance on 
the permuted datasets. Based on the importance scores derived from the permutation 

https://auto.gluon.ai/
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test results of 20 shuffled sets, features were ranked in order of their contribution to the 
model’s performance. We selected the top k-ranked features (k = 10, 20, 30, 40, 50, 100, 
200, 300, 400, 500, 700, 1000) or all 1280 features for retraining the model on the largest 
split dataset (70%). The resulting PPI-hot spot prediction model using k selected fea-
tures is referred to as PPI-HotspotPLM,k where the superscript PLM denotes Protein Lan-
guage Model and the superscript k is the number of selected features chosen. To assess 
whether prediction quality depends on the selection of specific features or the mere 
number of features, we randomly selected k features, instead of selecting them based 
on permutation testing, and trained the model on the same 70% split dataset used to 
derive PPI-HotspotPLM,k. The resulting PPI-hot spot prediction model using k randomly 
selected features is referred to as PPI-HotspotPLM,k-random.

To mitigate the influence of outlier values and ensure the stability of our results, the 
entire procedure depicted in Fig. 1 was repeated a sufficient number of times. For each 
repetition, a different random seed was used to randomly split the original database into 
three sets. Across the repetitions, we calculated the average F1 score for each model and 
compared the differences in averages for the different models to gauge the consistency 
and stability of the results. We found that 20 repetitions allowed us to detect a statisti-
cally significant difference of 0.01 in the F1 score.

Model training and validation with sequence and structure‑based features

Instead of using features from protein language models as input, we performed model 
training and validation on the same 70% split dataset as PPI-HotspotPLM,k using a set of 
10 features/residue and the free protein structure as input (Fig.  2). These residue fea-
tures encompass sequence, structural, and stability attributes including the aa type, con-
servation score, secondary structure, solvent-accessible surface area (SASA), gas-phase 
energy and its components, as well as the polar and nonpolar solvation free energy. For 
each residue, the conservation score was derived from ConSurf [31, 32], which requires 

Fig. 1 Model training and validation using features derived from the representations learned by the ESM-2 
protein language model. The target residue, together with its sequence neighbor aa residues, is passed to 
the ESM-2 encoder, which produces an N-dimensional (N = 1280) embedding vector for each residue in the 
sequence. The 1,280 elements of each vector were supplied as a set of input features for training a model on 
a 20% split dataset. All features or a reduced set of k (k < N) features were selected either randomly or based 
on AutoGluon’s feature importance test for training a model on a 70% split dataset
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search and selection of sequences for multiple sequence alignment. Using the free pro-
tein structure, the residue’s secondary structure was based on the DSSP program [33], its 
SASA was computed using FreeSasa [34], and the per-residue energy/free energy contri-
butions were estimated using the MMPBSA (Molecular Mechanics Poisson-Boltzmann 
Surface Area) module in AmberTools [35]. For details on the calculations, we direct the 
reader to the work of Chen et  al. [23] The final PPI-hot spot prediction model based 
on these 10 features is named PPI-HotspotID,10, where PPI-HotspotID is the name of the 
method for identifying PPI-hot spots using the free protein structure in reference [23] 
and the superscript 10 indicates that 10 residue features were employed.

Results
Performance of PPI‑hotspotPLM,1280 versus PPI‑hotspotID,10

Identifying PPI-hot spots is important for understanding protein function, engineer-
ing proteins, and designing PPI modulators. To identify PPI-hot spots, we trained PPI-
HotspotPLM,k models using k sequence-based features as well as PPI-HotspotID,10 using 
10 residue features on the same 70% split dataset. The mean validation F1 score of the 
PPI-HotspotPLM,1280 models using all 1280 input features was 0.69 ± 0.018, which is sim-
ilar to the validation F1 score of 0.71 ± 0.002 achieved by the PPI-HotspotID,10 (Table 1). 
However, PPI-HotspotID,10 required as input the free protein structure to compute the 
per-residue energy/free energy contributions as well as multiple sequence alignment 
to compute the conservation score, which may take up to 30 min [23]. In contrast, the 

Fig. 2 Model training and validation using sequence, structural, and stability attributes. For each residue, we 
computed the aa type, conservation score, secondary structure, SASA, gas-phase energy and the respective 
components, as well as the polar and nonpolar solvation free energy. All 10 features were used as input for 
the AutoGluon training and validation procedure

Table 1 Performance of PPI-HotspotID,10, PPI-HotspotPLM,1280, PPI-HotspotPLM,300, and PPI-
HotspotPLM,300-random on the same 70% split datasets

Method PPI‑HotspotID,10 PPI‑HotspotPLM,1280 PPI‑HotspotPLM,300 PPI‑HotspotPLM,300‑random

Architecture Ensemble Ensemble + ESM2 Ensemble + ESM2 Ensemble + ESM2

# of features 10 1280 300 300

Input Structure Sequence Sequence Sequence

Validation F1-score 0.71 ± 0.002 0.69 ± 0.018 0.71 ± 0.02 0.70 ± 0.016
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encoder generated features in less than a minute. The similarity in validation F1 scores 
suggests that unsupervised learning can capture the functional properties of residues 
encoded within aa sequences during evolution.

Performance of PPI‑hotspotPLM,k as a function of the number of features, k
We examined the effect of selecting the top k-ranked features on the performance of the 
PPI-HotspotPLM,k models with increasing k. The results in Fig. 3a show that increasing k 
led to an overall improvement in performance (increase in the F1-score) up to k ~ 300. 
Beyond this threshold, further increases in k resulted in a slight decline in the F1 score. 
We hypothesize that initially, the inclusion of additional important features contributes 
valuable information, thereby improving the training of the model, but once the number 
of features greatly exceeds the size of the training dataset, AutoGluon’s training routine 
adopts a more conservative strategy to prevent overfitting, resulting in a slight reduction 
in final validation precision. We observed a similar trend for randomly selected features, 
as shown in Fig. 3b.

Performance of PPI‑hotspotPLM,k versus PPI‑hotspotPLM,k‑random

Comparison of the F1 scores from PPI-HotspotPLM,k models using k importance-based 
features and PPI-HotspotPLM,k-random models using k randomly selected features models 
(Additional file 1: Table S1) indicates that the number of features k plays a crucial role in 
determining the final model precision. To assess whether the results from importance-
based feature selection differ significantly from those of random feature selection we 
compared the means of F1 scores for a given number of features, k, using the statistical 
t-test. No observable difference was found; e.g., for k = 300, the mean F1 scores for PPI-
HotspotPLM,300 (0.71 ± 0.02) and PPI-HotspotPLM,k-random (0.70 ± 0.016) are nearly identical 
(Table 1). This is consistent with the importance scores obtained from the feature impor-
tance test: The features deemed most important contribute no more than 0.03 to the final 
F1 score. We also attempted to enhance the importance feature test by increasing the num-
ber of shuffles in the permutation test. This led to a significant increase in computing time 

Fig. 3 Validation F1 scores for the models trained as a function of the number of features, k. Features were 
selected using either feature importance test (a) or randomly (b). The dot in the figure corresponds to the 
mean, whereas the error bar denotes the standard deviation
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for the importance feature test without any significant improvement in performance com-
pared to random feature selection.

Discussion
Our primary objective herein was not to develop a highly accurate sequence-based PPI-hot 
spot prediction method, but rather to showcase the potential of transformer-based protein 
language models in extracting critical information from sparse datasets whose total number 
of entries is comparable to or less than the number of elements (N = 1280) in the encoder-
generated vector. This is important as experimental collection of certain types of data, 
such as PPI-hot spots, remains challenging yielding insufficient data for machine learning 
algorithms to extract meaningful representations. As exemplified herein with elusive PPI-
hot spots, protein language models can offer a solution, as their encoder-generated vec-
tors, which encode protein residues and their contexts, provide valuable input features for 
subsequent machine learning training to predict certain aa residue properties. These input 
features can be substantially reduced in number through feature importance ranking or 
random sampling. Our proposed approach is practical for real-world applications: Model 
training using  AutoGluon  has proven successful even without GPU support. Although 
GPU usage is preferred for efficiency, ESM models exhibit sufficient speed to run on CPUs 
alone, requiring as little as 16 GB of memory. Furthermore, to facilitate ease of use, we pro-
vide a notebook in the GitHub repository that runs on Google Colab, enabling users to 
input their sequences and obtain predicted PPI-hot spots. Note that we sought to provide 
a fair comparison by using the same dataset to compare the PPI-hot spot predictions based 
on protein language-derived features and those based on features requiring the free protein 
structure. As other sequence-based PPI-hot spot prediction methods have been trained on 
different datasets, they could not be fairly compared with our PPI-HotspotPLM,1280 model. 
Discrepancies in predictions may arise from differences in underlying training datasets, 
specific features, or machine-learning methodologies.

Limitations and future work

An evident drawback of the approach outlined here is the lack of a clear explanation as to 
why specific features are crucial for determining certain residue properties and how they 
contribute to PPI-hot spot predictions. This limitation aligns with the inherent lack of 
interpretability of large language models; currently, understanding the inner workings of 
these models remains elusive. Another limitation is the representativeness of the dataset. 
Even though our dataset includes data not only from the ASEdb [24] and SKEMPI 2.0 [25] 
database, but also UniProtKB [26], it is still not comprehensive as experimental studies do 
not sample all representative protein interactions. Future improvements in model architec-
ture, dataset size (including more experimentally confirmed PPI-hot spots and PPI-nonhot 
spots), and computational resources may enhance the accuracy of sequence-based PPI-hot 
spot predictions.

Conclusions
We have presented a general, robust, and straightforward approach for the train-
ing and validation of predictive models using protein language models that can effec-
tively extract valuable information from sparse protein datasets. Specifically, the ESM-2 
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model showed promising results in predicting PPI-hot spots using all 1,280 features as 
well as using a subset of features fewer than the number of entries in the dataset. Future 
improvements in model architecture and increased dataset sizes may further enhance 
the accuracy of PPI-hot spot predictions, which would aid in understanding protein 
function and drug design. The ability to do this from just the sequence alone would save 
time and costs compared to traditional experimental methods. This study further dem-
onstrates that even with sparse datasets, encoder-generated vectors, which encompass 
residue information and their contexts, offer valuable input features for machine learn-
ing to make reliable predictions. In addition, we provide a notebook as part of our source 
repository, allowing users to run PPI-hot-spot predictions on their protein sequences.
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