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Abstract 

Background: Honey bees are the principal commercial pollinators. Along with other 
arthropods, they are increasingly under threat from anthropogenic factors such 
as the incursion of invasive honey bee subspecies, pathogens and parasites. Better 
tools are needed to identify bee subspecies. Genomic data for economic and ecologi‑
cally important organisms is increasing, but in its basic form its practical application 
to address ecological problems is limited.

Results: We introduce HBeeID a means to identify honey bees. The tool utilizes 
a knowledge‑based network and diagnostic SNPs identified by discriminant analysis 
of principle components and hierarchical agglomerative clustering. Tests of HBeeID 
showed that it identifies African, Americas‑Africanized, Asian, and European honey 
bees with a high degree of certainty even when samples lack the full 272 SNPs 
of HBeeID. Its prediction capacity decreases with highly admixed samples.

Conclusion: HBeeID is a high‑resolution genomic, SNP based tool, that can be used 
to identify honey bees and screen species that are invasive. Its flexible design allows 
for future improvements via sample data additions from other localities.
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Introduction
Pollinators are critical in maintaining ecosystem functions and serve as primary contrib-
utors to the world’s food security [1]. The domesticated western honey bee (HB), Apis 
mellifera Linnaeus 1758, is the premier world pollinator, its contribution to agricultural 
economies is estimated to be from $200 billion to $351 billion USD/year globally [2–5]. 
The partnership between HBs and humans has a long history [6, 7], and much of their 
prevalence across the globe is tied to our own spread as a species [8, 9]. It is this history 
that has made the study of honey bee genetics both interesting and challenging.

The importance of HBs to world food security makes this organism a critical focus 
of study. This is particularly relevant, because as with many other arthropods, HBs are 
experiencing seasonal declines [5, 10–12]. The challenges facing HB populations stem 
from a confluence of management and anthropogenic factors [13–17]. Of these, one is 
uniquely tied to their association with humans, the potential worldwide spread of novel 
pests and pathogens. The ready and easy movement of HBs across the world poses a 
challenge to their health. Movement of HBs across the world also poses a management 
challenge. Specifically, the uncontrolled introduction of novel genetic variation can be 
disruptive and negatively affect local apicultural economies. One example is the intro-
duction of Apis mellifera scutellata Lepeletier 1836 to the Americas. Beginning from 
the seventeenth century, and with A. m. mellifera, Linnaeus, 1758, honey bees were 
introduced to the American continent to benefit the honey bee industry [6, 18–22]. In 
contrast, the accidental release and dispersal of A. m. scutellata from a breeding pro-
gram in Brazil [23] forced changes in existing agricultural practices in the Americas. For 
instance, in Mexico, presence of Africanized bees resulted in preference for smaller, iso-
lated apiaries and increased number of smaller honey harvests to manage the increased 
defensiveness of the hives, e.g. [24]. Practice and regulations related to the movement of 
bees within and across countries also have changed (see [22]). Both health and manage-
ment challenges have highlighted the need to trace population sources, motivating the 
development of cost-effective tools to accurately identify the source of HB populations 
[25–28]. The honey bee was one of the first eukaryotic organisms to have its genome 
sequenced [29]. This resource along with other molecular data published since that 
time, has permitted the development of methods to track HBs, and their pests. These 
resources also assist efforts to monitor other pollinators or invasive species [30], for 
whom genome data may be sparse [31, 32].

Strategies to identify the sources of HB populations have varied. Efforts have capi-
talized on anatomical markers such as wing venation [33–39], which has been widely 
adopted and, in some instances, automatized [35, 36, 38, 39]. Genetic approaches have 
also been implemented, with initial strategies utilizing mitochondrial genes such as 
cytochrome oxidase I and II [40–42], cytochrome b [43], and ND2 [44], as well as the 
complete mitochondrial genome [45–47]. Homologous approaches using microsatellites 
[48, 49], restriction fragment length polymorphisms, RFLPs [44], random amplified pol-
ymorphic DNA, RAPDs [50], and microarray-based comparative genomic hybridization, 
aCGH [51], have also been widely used. More recently, efforts using next-generation 
sequencing (NGS) technology have become prevalent due to their greater resolution 
and accuracy [9, 29, 36, 52–61]. The approaches currently in use for population identi-
fication of HBs are useful but possess limitations, such as, time required to process the 
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information (e.g., wing venation analysis), or in cost-to-benefit ratio of information (e.g., 
NGS). Another limit is resolution, for example wing venation patterns can discriminate 
distantly related species of Apis but are not useful at the population level within spe-
cies. Mitochondrial markers can be used to discriminate major HB lineages (see [62], for 
review) but cannot readily differentiate subspecies and populations.

Over 20 and up to 33 subspecies of honey bees [62] are divided into four major lin-
eages identified by morphological and molecular data: A (African), O (Near East and 
Central Asia), M (Western and Northern Europe), and C (Eastern Europe). The African 
tropical or subtropical origin of HB, Apis mellifera is supported by various molecular 
studies. Bees spread to Europe via two routes, from North Africa via the Iberian and  
the Arabian Peninsulas and Anatolia. This resulted in a secondary contact between the 
divergent M and C lineages [52, 53, 57, 63]. Secondary contact also occurred between A 
and M lineages [64]. In fact, genetic distribution patterns can be better understood by 
considering secondary contact hypotheses in addition to clinal variation [64]. Currently 
the natural A. mellifera population extends to Central and Southwest Asia, Europe, and 
Africa. HBs were also introduced to East and Southeast Asia, Australia, and the Ameri-
cas, by humans [9, 65]. The long history of admixture of HBs due to their association 
with humans makes it a challenge to accurately discriminate individuals at the popula-
tion level.

Areas with hybridizing populations pose a particular challenge. In the Americas, 
the hybridization of A. m. mellifera and A. m. scutellata has yielded a range of popula-
tions with unique genetic variants. In some cases, the genetic variation can be desir-
able. For example in at least one documented case, A. m. scutellata hybridization and 
local adaptation on the island of Puerto Rico (PR) [66], resulted in a unique combination 
of reduced defensiveness and mite resistance traits, that enhances its survival [67–69]. 
Other unique HB populations have been documented in the Macaronesia archipelagoes 
(Azores, Madeira, Canary  Islands) [70–74], Balearic Islands [75, 76], Cyprus [75, 76], 
and Malta [77]. Complex population structure in HB populations has also been observed 
in places of historical divergence such as differences between mainland African HB pop-
ulations and those in the Southwest Indian Ocean archipelagos (Mascarene, Seychelles, 
and Comoros) and Madagascar [78]. The Hawaiian Islands have also reported a unique 
and locally common haplotype of A. m. mellifera [79], although, in this case, selection 
may have contributed to the emergence of this haplotype. In many of these cases, the 
ready and cost-effective identification of populations is limited by the lack of resolution 
of current approaches.

One method that retains resolution while reducing costs is the use of single nucleotide 
polymorphisms (SNP). Panels of SNPs that are representative of genome-wide variation 
provide subspecies-level resolution while drastically reducing processing costs [9, 53, 56, 
57, 59, 60]. Diagnostic panels have been recently used to monitor the introduction and 
dispersal of African and Africanized HBs to Australia [56]. Similar strategies have been 
used to differentiate and track the movement of HBs in other parts of the world, e.g., 
Eurasia [54], Europe [55, 80–82], Canada [83], and South Africa [36, 58]. These previous 
studies were restricted to few subspecies of a particular continent or region.

In this work we outline a SNP panel-based approach, HBeeID, which uses information 
from 272 SNPs and a knowledge-based network analysis to accurately identify HBs at 
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the population level. The tool incorporates a reference set, minimizing the work needed 
by a user, while also providing greater automation. Using this novel approach, we char-
acterize populations from across the world and use published HB data to test HBeeID’s 
performance in detecting populations within regions of high admixture and complex 
population architecture. We posit that this method can become a robust tool for the 
purpose of identifying and tracking the population source of HBs providing a reliable 
and cost-effective mechanism to ascertain local and introduced HB genetic variation.

Implementation
Newly collected samples

The HB samples used for the foundational work to develop HBeeID, henceforth referred 
to as test HBs, were obtained with the assistance of generous colleagues in the inter-
national HB research community. The samples represent a wide geographic area span-
ning twenty-one countries in Africa, America, Asia, and Europe (Fig. 1). All information 
related to samples from collector to location (GPS) was recorded digitally and on paper. 
Sample locality and collector information can be found in (Additional file 1: Tables S1, 
S2, S3). A workflow diagram of the procedure undertaken to generate the HBeeID tool 
can be seen in Fig. 2. Details of collection and preservation methods of HB samples can 
be found in Additional file 2: Methods S1.

Samples from published data

Using sequence data generated from HBs collected from Puerto Rico (PR), Mexico and 
Hawaii Avalos et al. [84] identified 2,809,085 SNPs. This set of SNPs was combined with 
published data from Wallberg et al. [53] who identified 8,284,334 SNPs among 12 popu-
lations from Europe, Africa, Southwest Asia, and the US. Prior to merging these two data 

Fig. 1 Distribution of honey bee samples. Geographic location of honey bee specimens assayed using the 
Fluidigm and Agena platforms are indicated by blue dots



Page 5 of 33Donthu et al. BMC Bioinformatics          (2024) 25:278  

sets, SNP coordinates from the latter were converted to the BeeBase Amel_4.5 genome 
version, the most recent at the time this work was done. Transformation of the coordi-
nates was done using a mapping file created by aligning SNP flanking sequences against 
Amel_4.5. As a result of this transformation, it was possible to combine SNPs from the 
studies of Wallberg et  al. [53] and Avalos et  al. [84]. The combined dataset consisted 
of the following populations with the number of samples used written in parenthesis: 
Puerto Rico (PRHB) (30); Mexico, Africanized HB (AHB) (30); Hawaii, USA, European 
HB (EHB) (30) (Avalos et al. [84], A. m. ligustica, Spinola 1806 (10), A. m. carnica, Poll-
man 1879 (10), A. m. anatoliaca, Maa 1953 (10), A. m. adansonii, Latreille 1804 (10), 
A. m. capensis, Eschscholtz 1822 (10), A. m. iberiensis, Engel 1999 (10), A. m. scutellata 
(10), A. m. syriaca Skorikov 1929 (10), HB from Sweden (10), Norway (10), Europe (20), 
and the United States (USA) (20). From the combined dataset a subset of 183,609 SNPs 
was selected that did not have any missing genotypes in all 15 subspecies or populations.

Development of the HBeeID tool to predict the assignation of unknown

Identification of diagnostic SNPs that differentiate populations

Of the 183,609 common SNPs (See file on github (https:// github. com/ taoyu dong/ 
HBeeID) mentioned in the  Implementation  section, 7,069 were free of SNPs in the 
upstream and downstream flanking 32 bases, a requirement to develop good quality 
oligos for the Agena genotyping assay. These 7,069 SNPs were used to perform several 

Fig. 2 HBeeID tool. Workflow diagram of procedure undertaken to generate the HBeeID tool

https://github.com/taoyudong/HBeeID
https://github.com/taoyudong/HBeeID
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rounds of discriminant analysis of principle components (DAPC) to identify the 
SNPs that differentiate the 15 populations from the studies of Wallberg et al. [53] and 
Avalos et al. [84]. The R package Adegenet [85] was used to cluster individuals with 
similar SNP genotypes. To determine the minimum number of SNPs that identify a 
specific population we used an iterative and sequential approach to progress from the 
broad group categories to the individual subspecies and population level. An initial 
DAPC run with all SNPs in the combined data set (Fig. 3), generated eight broad clus-
ters that included 15 populations. From this run, SNPs with the highest Linear Dis-
criminant values (LD values) that generated clearly discriminated group clusters were 
identified. These high-performance SNPs were used in subsequent DAPC runs to 
determine if at least one of the 15 populations would cluster without overlapping with 
other groups (Fig.  3). If these smaller sets of SNPs did not separate the test group, 
DAPC was re-run with additional high LD value SNPs. If the newly added SNPs facili-
tated the discrimination of the groups, they were retained, and the entire set of SNPs 
was considered diagnostic for that group. If the newly added SNPs were not found to 
be useful the process was repeated until SNPs found to be diagnostic for the popula-
tion in question were identified. This process was repeated until SNPs that differenti-
ated all the populations were determined (Fig. 3).

Fig. 3 Process to identify diagnostic SNPs. DAPC plots showing clusters of samples of different HB 
populations used during the process to identify SNPs to differentiate populations. DAPC plots were 
generated using SNPs that differentiate a All samples into eight groups; b Puerto Rico HB; c A. m. syriaca 
HBs; d Africanized HBs; and e A. m. carnica, A. m. ligustica, EU and US domestic from all other HB populations. 
Meaning of acronyms used: SSA—Sub Saharan African; gAHB—Puerto Rico Bees (gentle Africanized HB); 
BrAHB—Brazilian AHB; CMAHB—Central Mexico AHB; US and EU Domestic; SWNOR—Sweden, Norway; US 
domestic—US HB; EU domestic—EU HB; carnica—carnica HB; syriaca—syriaca HB; CALDOMH—carnica, 
anatoliaca, ligustica; iberiensis—iberiensis HB; ligustica—ligustica HB
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Development of Fluidigm SNP panel

We first tested the Agena system, and due to drawbacks associated with it we changed 
to the Fluidigm platform, and also increased the number of SNPs from 132 to 288. 
Moreover, the number of samples from Puerto Rico, one of the critical populations 
we aimed to discriminate, was also increased. Fluidigm’s high-throughput SNP geno-
typing platform (Juno Genotyping IFC (Integrated Fluidic Circuits) using SNP Type 
Assays) incorporates pre-amplification and genotyping on integrated IFC’s. Sam-
ple preparation and pre-amplification is done through thermal cycling and IFCs are 
transferred to the instruments, BioMark or EP1 reader for capturing fluorescent 
images, these are then analyzed by the Fluidigm Genotyping Analysis software to 
generate SNP calls. The subset of SNPs, determined to differentiate the 15 HB popu-
lations, with 200 SNP-free flanking bases on either side of the SNP loci were sent 
to the Fluidigm Assay Design Group for the design of SNP primers. SNPs with poor 
quality primer design scores were removed. A panel of 288 SNPs with high quality 
primer design scores were retained. Of these 288 SNPs, 16 were excluded from all 
downstream analysis because these SNPs were found to be homozygous in all sam-
ples genotyped. Four samples were found to have more than 50% of genotypes miss-
ing and were excluded from the downstream analysis. In addition, 24 samples from 
France, one sample from Panama  and one sample from Turkey were excluded from 
the analysis due to poor performance. The final assay of 272 SNP was used to ana-
lyze 874 samples. Of the 272 SNPs in HBeeID, one SNP could not be mapped to the 
Amel_HAv3.1. The remaining 271 SNPs were distributed throughout the 16 A. mel-
lifera linkage groups (chromosomes). Linkage group 1, the largest of A. mellifera, had 
the highest number of SNPs (40) while the lowest number of SNPs (10) were mapped 
on linkage groups 13 and 16, two of the smaller chromosomes (Table 1). The average 
distance between SNPs ranges from 359 Kbp to 1.4 Mbp.

Table 1 List and size of chromosomes of A. mellifera Amel HAv3.1 assembly and distribution of 
HBeeID 271 diagnostic SNPs. One SNP was not mapped to any linkage group

LinkageGroup (Chromosome) RefSeq ID Size (MB) #SNPs

1 NC_037638.1 27.75 40

2 NC_037639.1 16.09 13

3 NC_037640.1 13.62 16

4 NC_037641.1 13.4 24

5 NC_037642.1 13.9 16

6 NC_037643.1 17.79 11

7 NC_037644.1 14.2 14

8 NC_037645.1 12.72 18

9 NC_037646.1 12.35 22

10 NC_037647.1 12.36 13

11 NC_037648.1 16.35 21

12 NC_037649.1 11.51 11

13 NC_037650.1 11.28 10

14 NC_037651.1 10.67 12

15 NC_037652.1 9.53 20

16 NC_037653.1 7.24 10
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Primer sequences designed by Fluidigm for these SNPs are found in Additional file 3: 
Table S4, primers for the Agena assay are in Additional file 3: Table S5 and the accom-
panying methods are in Additional file 2: Methods 1. Genotype data for the 874 samples 
for the 272 SNPs, along with sample location information, is given in Additional file 4: 
Tables S6 and S7. Samples were processed using the Fluidigm Biomark HD and SNPtype 
Genotyping assays according to the manufacturer’s recommended protocols.

Sample processing was as follows: (1) Each sample underwent an initial preamplifica-
tion using a pool of SNPtype assays set as follows: [2 ul of each SNPtype Assay (STA) 
and LSP primer were pooled (96 of each), 16 ul of water was added for a total of 400 ul, 
STA reactions were assembled as follows: 2.5 ul Qiagen 2 × Multiplex PCR master mix, 
0.5 ul SNPtype STA primer pool, 0.75 ul Water and 1.25 of Genomic DNA]; (2) Each 
sample was amplified with 14 cycles of PCR using the following protocol: (95C 15 min; 
14 cycles of 95C 15 s, 60C 4 min); (3) 96 well plates were prepared with SNPtype assay 
mixes followed by 10X assays: [SNPtype Assay mixes: SNPtype Assay (ASP1/ASP2) 3 
ul, SNPtype LSP 8 ul, Water 29 ul, for a total of 40 ul]; [10 ×  assays: 2 × Assay Load-
ing Reagent, 2.5, Water 1.5 ul, SNPtype Assay mix 1.0 ul, for a total of 5.0 ul]. (4) The 
plate of sample mixes was prepared as follows: [Biotium 2 × Fast Probe Master Mix 3.0 
ul, SNPtype 20 × sample loading Reagent 0.3 ul, SNPtype Reagent 0.1 ul, ROX 0.036 ul, 
Water 0.064 ul, DNA (STA amplification) 2.5, or a total of 6 ul]. A 96.96 Dynamic Array 
IFC was loaded according to the manufacturer’s protocol with the 10X assays and sam-
ple mixes. A Fluidigm IFC dynamic array was primed and loaded on 96.96 Fluidigm HX 
Control. Following priming and distribution of all reagents on the IFC, the plate was 
transferred to the Fluidigm Biomark for amplification and imaging using the Biomark 
HD SNPtype 96 × 96 V1 protocol. The metadata for all the samples genotyped using the 
Fluidigm platforms is given in Additional file 1: Table S2.

Development of knowledge base network

Given the distribution and representation of samples in our data set, we posit that they 
can be used to develop a novel, more nuanced, identification tool. To that end, we used 
a Knowledge Base Network of clusters generated based on a hierarchical agglomera-
tive clustering (HAC) algorithm using geographic sources for our sample set to better 
characterize HB samples. The HAC is a specific type of clustering algorithm, where each 
sample is regarded as a cluster at the beginning, and these gradually merge with those 
that are similar, forming larger clusters. Since HAC starts from the individual samples in 
the dataset, it is also called a “bottom-up” clustering approach. In this paper, one of the 
most used HAC algorithms, the Ward method [86], is adopted, and implementation in 
R, the Agnes function of the cluster package [87] is deployed to analyze the data matrix 
of the 272 SNP genotypes for the 874 reference HB samples.

Using HAC, the similarity between pairs of samples and the hierarchical structure 
in the dataset can be easily visualized and interpreted using a dendrogram (Fig.  6). 
A single sample is the smallest cluster. Related samples will merge to progressively 
form larger clusters until the single largest cluster point is reached. As the clusters 
are merged and the number of samples in the cluster increases, the similarities among 
the samples within a cluster decrease. The height of the placement in the dendro-
gram reflects the relative similarities among samples. The higher the position of the 
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horizontal line the lower the similarity of the samples, and vice versa. Samples closer 
to each other are more similar. In the dendrogram, nodes were manually labeled to 
indicate the geographic locations and/or subspecies of the HB samples present at 
the branch tips, illustrating the effectiveness of the HAC method for developing the 
Knowledge Base Network (Fig. 4). Script to generate the proportional graphs in Fig. 4 
is provided in Additional file 2: Methods 1.

Development of DAPC objects for each node of the dendrogram

The Knowledge Base Network (KBN), whose development is described in the previous 
section of Implementation, consists of a representation of the relationships between 
the reference samples at different levels of organization. The reference samples pro-
ceed from a general grouping of all samples to specific subgroups of closely related 
samples. At the origin of the KBN, all the 874 reference samples are present as one 
cluster with their assignation as belonging to either African or European lines. This 
assignation was based on results from the hierarchical agglomerative cluster, which 
used similarities of SNP genotypes to group the reference samples. Groups of sam-
ples were then labeled as per their corresponding geographic origin. As an unknown 
sample proceeds through each node of the KBN, it is compared to each node’s specific 

Fig. 4 Visualization of hierarchical clustering. Diagram illustrating the agglomerative hierarchical clustering 
performed, using SNP genotypes, for the development of the Knowledge Base Network used to form HBeeID. 
Labels indicate the position of the respective groups and the level at which they clustered. The proportional 
graphs below show the genotype profile of honey bee samples for the 272 SNPs for selected nodes. The 
length of the bars represents the proportion of 0 (Green), 1 (Gray), or 2 (Pink) genotype in the honey bee 
samples that comprise each node. The higher the bar the higher the proportion of the corresponding state



Page 10 of 33Donthu et al. BMC Bioinformatics          (2024) 25:278 

grouped reference samples. And, depending on its affinity, it is diverted to the subse-
quent node whose reference samples it most closely matches. The process is repeated 
until the unknown sample reaches the end of the network.

To create a tool that allows the assignation of unknown samples, it was necessary to 
generate a structure that contained genotype information of the respective reference 
samples that belonged to each node. This structure, which we refer to as HBeeID, con-
sists of a series of R objects generated for each node that include the genotype informa-
tion of the reference samples as per their respective groups to which they are assigned. 
Each of the R objects was generated by using the cross-validation function {xvaldapc}, 
which uses the group assignation of 90% of the samples as the training dataset {training.
set = 0.9} and the remaining 10% as test samples.

HBeeID consists of R code reflecting a series of predict-functions which at each node 
take the appropriate R object, described above, as input along with the SNP genotypes of 
an unknown sample to be identified. After processing at each node, the unknown sample 
is then directed to the following nodes to which it has the greatest affinity. The process 
continues until the final assignment for the unknown sample is reached.

Development of the HBeeID tool to predict the assignation of unknown samples

The HBeeID tool presented herein is an R-based tool that utilizes genotype SNP data 
to determine the assignation of unknown samples by matching the SNP profile of the 
unknown sample with that of the reference samples. The reference dataset used by 
HBeeID to predict the assignation of the unknown samples consists of 874 reference 
samples and their respective genotypes for 272 SNPs. The process of matching the SNP 
profile of the unknown samples with reference samples takes place at different levels 
(Tier I—Level A, B, C, D, and E and Tier II), as illustrated in Fig. 4. At the Tier I-level A, 
Predict Function takes as input the DAPC object containing information as to the geno-
types of the 874 reference samples assigned to the A_1 (Africa Line) and A_2 (Europe/
Asia Line) nodes along with the 272 SNP genotypes of the unknown samples. The 
unknown samples are assigned to either the A_1 or A_2 line based on the similarity of 
SNP genotype profiles. Assignment at subsequent levels (B-E) and nodes proceeds in the 
same manner. The unknown samples receive their final assignation at the terminal nodes 
of level D for the Europe/Asia Line, and Level E for the Africa Line. The final assigna-
tions for the unknown samples are then exported. Unknown samples that in Tier I are 
assigned to nodes B_1_1 (scutellata/capensis); C_1_2_1 (Madagascar/Seychelles), and 
D_1_2_2_2 (Malta/Tunisia) receive two assignations. To obtain single assignations, the 
genotypes of these samples along with DAPC objects containing the genotypes of refer-
ence samples were given as input to the TIER II level.

Population genomics

Principle component analysis

Principle Component Analysis (PCA) was used to visualize the segregation of the 
874 HB samples utilized to generate HBeeID (JMP, Version 14. SAS Institute Inc., 
Cary, NC, 1989–2021) (Fig.  5a). The main text includes an image of component 1 
of the PCA analysis (Fig. 5a), but we strongly encourage the reader to also see the 
results of this analysis as an interactive three-dimensional PCA plot in Additional 
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file 5, where the relationship between samples can more accurately be seen in three-
dimensional space, using different perspectives, and by selecting samples from dif-
ferent countries.

Prior to the analysis, a singular value decomposition (SVD) imputation was per-
formed on the 272 SNP genotypes across all 874 samples to replace missing geno-
types with imputed values. Imputed genotypes for the 272 SNPs for all 874 samples 
were given as input to the principal component function under the multivariate 
methods of JMP to generate Principal Component 1 (PC1) and Principal component 
2 (PC2), these were imported into the graph builder function to generate PCA plots 
that visualized the relationship of the reference samples to each other. Principle 
component analysis is a variable reduction technique that finds a linear combination 
of variables that explains the variance among the samples. The PCA plots therefore 
represent the similarities of samples when considering all the SNPs included in the 
analysis and allow us to plot in only two dimensions.

To further illustrate the genetic variation of collected samples, a subset of all sam-
ples from Africa, Italy, Malta, Israel, the Iberian Peninsula, Turkey, and the Republic 
of Georgia were further demarcated as per the HB group assignation given results 
from using reference set III (Fig. 5b), in addition HB samples were identified in the 
PCA as per their HB group assignation of A, C, M, or O (see Impact of reference 
datasets on assignations) obtained in the GeneClass2 analysis run with reference set 
III (Fig. 5c).

Fig. 5 a, b, c. a Genotypic relationship of honey bee samples. PCA plot generated using 874 HB samples 
genotyped with 272 SNPs using the Fluidigm genotyping platform. The reader is encouraged to see the 
interactive 3D version of this figure available to download in the supplementary section as Additional 
file 5_3D interactive plot and on github or Additional file 5 (html interface). b PCA plot of a subset of all 
samples from Africa, Italy, Malta, Israel, the Iberian Peninsula, Turkey, and the Republic of Georgia demarcated 
as per the HB group assignation given when using reference set III. c PCA of HB samples identified as per their 
assignation to the A, C, M, or O groups obtained in the GeneClass2 analysis run with reference set III
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Identification of SNPs from publicly available datasets

To evaluate the performance of the HBeeID, we used sequences of HB samples from 
published studies as unknowns, and identified SNP’s to be used for the testing.

Sequence data from Harpur et  al. [52], Cridland et  al. [57], Harpur et  al. [88] 
were downloaded using the NCBI BioProject IDs, (PRJNA216922; PRJNA385500; 
PRJNA363032, respectively) provided in the manuscripts. Read quality check 
was performed using FASTQC (http:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc). To trim low quality bases as well as any traces of adapter bases 
from the sequencing reads trimmomatic [89] software was used with parameters 
ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:5 LEADING:30 TRAILING:30 SLIDING-
WINDOW:3:15 MINLEN:30. This ensures trimming of bases with quality score 
below Q30 from the 5’ and 3’ ends of the reads and also removes the entire 3’ part of 
the read when the average quality score in a window of 3 bases falls below Q15.

High quality trimmed reads from all the samples were aligned against the HB ref-
erence genome, (Amel_HAv3.1) downloaded from NCBI Genome database, using 
BWA-MEM aligner (version 0.7.17) [90] using -M which marks shorter split hits 
as secondary and -R that allows to specify read group information, along with all 
default parameters. Read alignments in SAM format were converted into BAM for-
mat using SAMtools (version 1.7) [91]. Unsorted alignments in BAM format were 
sorted and then indexed using SAMtools. Picard tools (http:// picard. sourc eforge. 
net/) function MarkDuplicates was used to tag duplicate reads within the BAM file. 
To identify raw variants for each sample, alignment files in BAM format that are 
coordinated sorted and marked with duplicates were base quality score recalibrated 
using the Genome Analysis Tool Kit (GATK) version 3.8. Recalibrated BAM files 
were given as input to GATK HaplotypeCaller using parameters –emit_mode gvcf 
to generate GVCF format output,—phasing 1 to include phasing information in the 
output, and –ploidy 2 to consider the input sample as diploid. This resulted in the 
generation of a VCF file for each sample. Individual VCF files from all the samples 
were given as input to Sentieon [92] using –algo GVCFtyper option to perform joint 
variant calling which generated a single VCF file with genotype information for all 
the raw variants in all the samples. To quality filter the variants, variantFiltration 
program of GATK was run using parameters: QUAL < 30 to retain only variants 
that could be false positives with a probability of 0.001, QualByDepth(QD) < 2.0, 
variants below this threshold were empirically determined to fail machine learn-
ing based VQSR filtering, RMSMappingQuality (MQ) < 4.0, which indicates the 
root mean square quality of all the reads at the variant site is very low, MQRank-
Sum < − 12.4, suggests that mapping qualities of the reads carrying reference allele 
are significantly higher than those reads supporting the alternate allele, ReadPos-
RankSum < − 8.0, which indicates that alternate allele are mostly identified near the 
ends of the reads, FisherStrand (FS) > 60.0, which is an indication of a bias between 
forward and reverse strands for reference and alternate alleles and StrandsOddRa-
tio (SOR) > 3.0, another measure to determine strand bias. Script to convert haploid 
genotypes in VCF format to phased diplotized genotypes in VCF format is provided 
in Additional file 2: Methods 1.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://picard.sourceforge.net/
http://picard.sourceforge.net/
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Testing of HBeeID with published honey bee data sets

To test the performance of HBeeID we used a data set produced in our laboratory and 
six other published data sets listed in Implementation (Impact of reference datasets on 
assignations). SNPs for all data sets were extracted using the Amel version HAv3.1 and 
the genotype data converted to [0, 1 or 2], where [0] represents the homozygote state 
for the reference allele, (1) represents the heterozygote genotype, and (2) represents the 
homozygote state for the alternate allele. The file was formatted in the manner suitable 
for submission to HBeeID. See Additional file 2: Methods 1, for details on how to run the 
HBeeID workflow and for file formatting details.

All data sets lacked some of the SNPs present in HBeeID and ranged from three in 
Wallberg et al. [53] to 74 in Kadri et al. [93] (Table 2). Each HB sample had additional 
missing SNPs that ranged from 3 to 96 (1 to 35%). A cutoff of 96 missing SNPs was used 
for the samples included in the HBeeID assessment. Their SNP genotype data, extracted 
and formatted in a way suitable for giving as input to HBeeID can be found in Additional 
file 6: Table S8.

Impact of reference data sets on assignations

To illustrate the impact of using different data sets on the assignation of honey bees, 
especially hybrid individuals, unknown samples genotyped using Fluidigm were also 
analyzed with GeneClass2 [94, 95], a program that requires the input of a reference data 
set. Samples were genotyped with the 251 SNPs in common with the reference samples 
from a total of 272 SNPs in the Fluidigm assay. Assignations of the unknown samples are 
to the closest available in the two reference sets of samples given as input to GeneClass2. 
Three reference data sets were used in order to show the effect of using different refer-
ence taxa combinations on the resulting assignations: Reference Set I: African/African-
ized/EHB Hawaii: 30 PRHB from Puerto Rico; 28 AHB from Mexico and 30 EHB from 
Hawaii, Avalos et  al. [84]; 10 AHB from Brazil and ten each of three subspecies from 
Africa (SSA, Sub Saharan Africa), A. m. adansonii, A. m. scutellata, and A. m. capensis, 
Wallberg et al. [53]. Reference Set II: African/Africanized/EHB Hawaii/EHB Europe and 
US/Asia: The above data plus the remaining samples from Wallberg et  al. [53]: A. m. 
anatoliaca (10); A. m. mellifera EU Domestic (20); A. m. mellifera US Domestic (10); A. 
m. carnica (10); A. m. iberiensis (10), A. m. ligustica (10); A. m. syriaca (10), A. m. mellif-
era, Sweden, Norway, Europe (20). Reference Set III: African/European/Asian: Collapsed 
populations of main groups from Wallberg et al. [53]; Group M: A. m. mellifera, Sweden 
(10), Norway, Europe (10), A. m. iberiensis (10); Group C: A. m. ligustica (10), A. m. car-
nica (10); Group O: A. m. anatoliaca (10), A. m. syriaca (10); Group A: A. m. adanso-
nii (10), A. m. scutellata (10), and A. m. capensis (10). These specific samples were used 
as references because they include African and America-Africanized samples including 
the island of Puerto Rico as well as European and Near East HBs. Genotype data from 
the three sets of reference samples were run separately, along with the genotypes of the 
unknown worldwide collection of HB test samples as input for GeneClass2.

GeneClass2 assigns an individual to a group with the smallest genetic distance [94]. A 
summary of the GeneClass2 assignation results for all the unknown test samples from 
the three runs are listed in Table  3. Group categories were assigned following those 
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in Wallberg et  al. [53]. The assignations and geographic distribution of samples from 
Argentina and Florida for reference sets I, II and III are visualized in Fig.  6. The SNP 
genotypes and individual assignations for all samples run with the three different refer-
ence sets can be found in Additional file 7: Table S9. The SNP genotypes in GenePop 
format for all samples for the three different data sets can be found in Additional files 8, 
9, 10, 11: Tables S10–S13.

Published datasets and how they were used in this study

SNP genotype data obtained from Wallberg et al. [53] and Avalos et al. [84] were used 
in the iterative DAPC analysis   (see previous section)  to identify diagnostic SNPs that 
differentiate HB populations. Data from HB samples generated for this current work; 
along with those from Wallberg et al. [53]; Cridland et al. [57]; Harpur et al. [52]; Avalos 
et al. [84]; Kadri et al. [93]; and Harpur et al. [88] with SNPs that overlapped with the 272 
SNPs that form HBeeID, were used to test the performance of this new tool.

Fig. 6 Assignation of honey bees with different reference data. Geographic distribution of samples from 
Argentina and Florida (US) and their genetic assignations obtained with GeneClass2 using three different 
combinations of samples from Avalos et al. [84] and Wallberg et al. [53] as reference
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Results and discussion
Population genomics

Visualization of genetic relationship of sampled honey bees

The genotype data of the 874 HB samples generated with 272 SNPs was visualized using 
Principal Component Analysis (PCA). The PCA in Fig. 5a, shows that the HB samples, 
with few exceptions outlined below, segregate based on their geographic origin. The 
reader is encouraged to view the same information in the interactive three-dimensional 
PCA plot in Additional file 5, where the relationship between samples can be seen more 
readily in three-dimensional space, using different perspectives, and by selecting sam-
ples from different countries.

A bird’s eye view of the distribution of samples in the PCA shows them to be in the 
rough shape of an arrowhead, with Italian samples (from Sardinia) at the very tip to the 
left, those from the Republic of Georgia (Samegrelo-Zemo Svaneti region) and some 
Turkey samples (Thrace and Black Sea regions) at the bottom left and African HBs from 
South Africa, Kenya, Madagascar, and Zambia (with six exceptions) in a tight cluster at 
the bottom right side of the base of the arrowhead. The countries whose samples form 
discreet clusters are South Africa, Madagascar, Kenya, Morocco, Tunisia, Republic of 
Georgia, Portugal, Spain, and Panama. The samples of the remaining countries occur in 
varied levels of diffused state.

Most samples from a given geographic location are in relative proximity with some 
notable exceptions. Four samples from Sicily and two from Sardinia, Italy are found at 
the bottom left along with the African HBs while six samples from Zambia are in the dif-
fuse zone of Italian samples.

Departing from the tight African cluster, at the bottom left, and moving towards the 
European-like samples at the center of the arrowhead are samples with diminishing 
levels of African genetic composition. The first samples positioned along this path are 
samples from Morocco and Tunisia as well as Africanized samples from the American 
continent, namely, Costa Rica, Panama, Bolivia, Mexico, and Argentina. The samples 
from the latter two countries have a higher diversity of Africanization levels demon-
strated by their long trailing pattern from the African cluster towards the nucleus of 
samples from Puerto Rico at the center-right of the arrowhead. Samples from Argentina 
are also found in the center of the arrowhead together with samples from the US, Italy, 
and other ligustica-like samples.

In proximity to the largely America-Africanized cluster are samples from Tunisia and 
the Seychelles. At the end of the African-Africanized trail, straddling the region between 
the America-Africanized and the US and other European-like samples, we find the large 
cluster of 169 samples from the Island of Puerto Rico (PR). This locally adapted island 
population has been well documented as being of gentle demeanor [67, 84]. None of the 
samples from Puerto Rico are found in the trail of Africanized samples departing from 
the African cluster or within it. A reflection of the higher European genetic component 
of this unique island population.

At the center of the arrowhead, we find the 99 samples from the USA, of which 
95 are from Florida and four from Michigan but originally of Georgia stock. These 
are joined by a subset of samples from southern Argentina, an area documented as a 
hybrid zone between European and Africanized HBs [96]. In addition, in the center of 
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the arrowhead, are some of the samples from Italy. At the bottom edge of this center 
group begins the diffused group of samples from Malta, which stretch all the way to 
the end of the America-Africanized trail of samples and in proximity to samples from 
the Seychelles and Mexico. The high genetic diversity of the Maltese samples is not 
surprising for an island that has historically served as a crossroad between Europe 
and north Africa.

The samples from the Seychelles form a diffused cluster at the end of the trail of the 
America-Africanized samples. The distinction of the Seychelles HBs from other Afri-
can HBs, concurs with the findings that HBs from this archipelago form a separate 
African A1 sub-lineage [78]. The Seychelles group is in the vicinity of the America-
Africanized samples as well as samples from Tunisia and three of the samples from 
Malta. Despite their geographic proximity to the Seychelles, the Madagascar samples 
group within the African cluster of HBs at the extreme right of the arrowhead. These 
results also concur with the assignations of SSA for Madagascar HBs and AHB and 
groups A and O, for HBs from the Seychelles. A difference that is likely the result of 
human introductions to the latter, as the Seychelles is an island archipelago that has 
been part of ancient trade routes along the eastern African coastline.

The samples from the Republic of Georgia and some of the samples from Turkey form 
a tight cluster at the bottom left corner of the arrowhead. The remaining Turkish sam-
ples form a stream that orients towards the A. m. ligustica-like samples in the center. The 
Turkish region of Anatolia has served as a region of biodiversity and a bridge between 
Africa, Europe and Asia, and has been documented to be the home of four subspecies, 
i.e., A. m. caucasica Pollmann 1889, A. m. syriaca, and A. m. meda Skorikov 1929. An 
additional fifth subspecies, A. m. carnica, occurs in the Thrace region [49, 97, 98].

The samples from Israel form a diffuse group that straddle a region to the right of 
the ligustica-like samples at the center and the end of the stream of samples from 
Turkey where samples from Thrace and Marmara are located. The native population 
of HBs in Israel was identified as A. m. syriaca [65]. The samples we tested indicate 
that there remains a Southwestern Asian influence in these populations, exempli-
fied by their proximity to Turkish samples, while also sharing genetic similarity to the 
European-like samples. During the 20th Century, with the development of modern 
beekeeping in Israel, the original A. m. syriaca population was largely replaced with 
A. m. ligustica. The latter is currently actively bred in Israel. However, queens of A. m. 
caucasica, A. m. carnica and Buckfast have also been introduced. It is also believed 
that the wild A. m. syriaca population became extinct following the introduction of 
Varroa sp. [99]. Our results concur with those of Henriques et al. [100], who identi-
fied samples from Israel as belonging to the C-Lineage.

The European-like samples at the center of the arrowhead are composed of samples 
from Italy, US, Argentina as well as six of the 44 samples from Zambia, indicating the 
presence of European HBs in this latter area. As commented earlier, the HB samples 
from Argentina are very diverse, and they can be found distributed from the African 
cluster and trailing along the America-Africanized path all the way to the European-
like cluster at the center. This distribution reflects the cline that has been documented 
from the north Brazil-Argentinian border, with more Africanized populations, to the 
genetically European influenced populations to the south [96].
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The endemic HB samples from Portugal and Spain, classified as A. m. iberiensis [59, 
60, 65], form their own unique cluster, separate and distant from all other samples, at the 
extreme right, beyond the samples from Puerto Rico.

The PCA analysis of the 874 HB test samples identified discreet populations, con-
firmed the finding of others and the existence of a high degree of admixture in popu-
lations of HBs worldwide. It is difficult to determine categories for the demarcation of 
admixed HB populations especially when the ancestry of a population is unknown.

Impact of reference datasets on assignation

A means by which the identity of an unknown HB test sample can be determined is by 
comparison to a set of reference samples. To illustrate the effect of using different refer-
ence data sets on honey bee annotation, we tested the ability of the 272-SNP Fluidigm-
based assay to discriminate the 874 test HBs using the GeneClass2 software with three 
different combinations of reference samples from published data [53, 84] (see Implemen-
tation sections). The GeneClass2 software uses the Monte Carlo resampling algorithm 
to determine the probability of a sample belonging to a specific reference population 
[94]. We tested how the assignments of samples changed based on the reference popula-
tions used. The composition of the three reference data sets are outlined in Implementa-
tion (Testing of HBeeID with published honey bee datasets).

A summary of the assignations obtained using the three data sets is shown in Table 3, 
and for Argentina and Florida where multiple localities were sampled results are visual-
ized in Fig. 6.

An overview of these results shows that countries whose samples formed very discreet 
groups in the PCA analysis such as the Sub-Saharan samples (i.e. Kenya, Madagascar, 
South Africa) were similarly assigned with all three reference data sets. In like manner, 
samples from Spain and Portugal, with the exception of reference set 1 which did not 
include A. m. iberiensis samples as reference, were consistently assigned as A. m. iberien-
sis. The Africanized samples from Bolivia, Costa Rica, and Panama were also consist-
ently assigned as Africanized or African with all three reference sets. The samples from 
the Republic of Georgia and most Turkish samples were assigned as A. m. anatoliaca 
when these were included in reference set two and three. The geographic distribution 
and assignations of the Florida and Argentina samples in Fig. 6 show a southerly distri-
bution of Africanized samples in Florida and northern distribution in Argentina depart-
ing from its border with Brazil.

The samples that showed the most marked change in assignation depending on the 
presence of different European HB reference samples are those from locations that har-
bor hybrid European-like populations such as Argentina, Italy, Israel, Florida, Puerto 
Rico and Seychelles illustrating the high degree of admixture in these populations. The 
ambiguity of these results demonstrate that reference-based discriminations can be lim-
ited by availability of data and the accuracy of the classification of individual reference 
samples. The assignations of HBs from the American continent designated as European, 
are particularly inscrutable given the lack of precise knowledge of the provenance of the 
American continent HB-derived reference samples. We know that at least nine HB sub-
species may have been introduced to the US since 1622 [21]. In contrast, little is known 
about specific populations/subspecies introduced to Central and South America outside 
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of A. m. scutellata to Brazil [23]. European HB species were likely introduced to the 
American continent since the colonial period (1492–1810). The earliest records are of 
introductions in the 1600 s to the Caribbean islands of Barbados and Bermuda [6].

Our PCA analysis confirms prior findings that there is a high degree of admixture in 
populations of HBs in the American continent and worldwide. An attempt to use the 
GeneClass2 assignations or PCA analysis to demarcate genetically similar groups would 
be largely arbitrary and unsatisfactory. An illustration of the difficulty inherent in such 
an attempt can be seen in Fig. 5b where, for ease of illustration, samples from only a sub-
set of countries have been demarcated as per the assignations obtained with GeneClass2 
using the reference set III groupings A, C, M, O from Wallberg et al. [53]  in Implemen-
tation (Impact of reference datatsets on assignations). Moreover, the classification of all 
the HB samples tested using these same four groups can be seen in Fig. 5c, which illus-
trates a continuous stream pattern of diversity in the world populations that we sampled 
and successfully captured with the 272 SNPs in our assay.

HBeeID: development, performance, and evaluation

HBeeID development strategy

To develop an effective tool to discriminate unknown HBs, it is important to possess 
reference samples that encompass, as closely as possible, the total genetic variation 
among the groups one intends to differentiate. However, such attempts are tempered by 
budget limitations. Our funding made it possible to collect and genotype 874 HB sam-
ples from 20 different countries. This work tested the efficacy of the number of samples, 
the method to identify diagnostic SNPs and the assay type we used to identify unknown 
HBs. To avoid possible arbitrary determinations of groups, we chose to cluster the 874 
HB samples based on similarity of genotypes. Patterns of similarities between HB sam-
ples are derived from both geographic proximity and ancestral relationships. Therefore, 
they can be best described as hierarchical structures. We therefore elected to use the 
Hierarchical Agglomerative Clustering (HAC) method, which pairs samples based on 
their similarity, to assign HB samples of similar genotype profiles to different branches of 
a dendrogram. This method facilitates the delineation of samples into groups and avoids 
their arbitrary determination (Fig. 7). The HAC method was then used to develop the 

Fig. 7 Visualization of agglomerative clusters. Dendrogram that visualizes the agglomerative clusters 
generated using the Ward clustering method for 874 samples genotyped for the 272 selected SNPs in 
HBeeID. The countries and their respective abbreviations are listed below the dendrogram
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Knowledge Base Network (KBN) to predict unknown HB samples (Fig. 4). The dendro-
gram that visualized the relationship of the 874 HB reference samples when using their 
respective 272 SNP genotypes and the HAC method can be seen in Fig. 7. The organiza-
tion and relationship of the 874 HB reference samples, based on hierarchical agglom-
erative clustering, closely resembles the distribution and relationship of these same HBs 
samples and data when visualized using PCA.

The 874 HB reference samples, their respective 272 SNP genotypes, along with the 
KBN, an R-based script that utilizes a knowledge base of clusters, form the HBeeID 
identification tool. HBeeID can make population assignations of unknown HB samples 
using genotypes based on the 272 selected SNPs. Instructions on how to prepare, format 
files, and run HBeeID can be found in Additional file 2: Methods 1. Data used to identify 
diagnostic SNPs for HBeeID are at Github (https:// github. com/ taoyu dong/ HBeeID).

Testing the performance of HBeeID

The performance of HBeeID was tested using data from this current work, as well as that 
from six published research studies from Wallberg et al. [53]; Cridland et al. [57]; Har-
pur et al. [52]; Avalos et al. [84]; Kadri et al. [93]; and Harpur et al. [88]. Results from the 
tests can be found in: Additional file 12: Table S14 and a summary of the tests for all the 
data sets can be found in Table 2.

Data from the 34 samples from this current work had 257 (94%) of the 272 SNPs that 
constitute the HBeeID SNP panel, but other samples had additional missing SNPs that 
ranged from 58 to 82 of the total number of possible SNPs (21% to 30%) (Table 2). Even 
with this reduced number of SNPs, HBeeID correctly predicted that 33 of the 34 sam-
ples originated from Puerto Rico. One sample with 67 (25%) missing SNPs was assigned 
to the European ligustica-like (EU_lig_like). The assignation of unknown samples by 
HBeeID is influenced by the differing levels of European and African genome compo-
nents of a sample, and the number of missing individual SNPs and their specific combi-
nation, as these differ in their weight to differentiate HB populations.

The 70 HB samples from Cridland et al. [57] represent HBs from California (CA) with 
European and/or Africanized identifications and had 259 SNPs (95%) of the 272 HBeeID 
SNPs. Twenty-six of the 70 samples from this dataset were excluded from the analysis 
because they had more than 96 missing SNPs. The remaining 44 samples had a range of 
17–96 (6–35%) missing SNPs. Of these, 26 were collected from northern CA, 14 from 
southern CA, and four from Avalon Island, CA. Of the 26 northern CA samples, one 
was given the incorrect assignation of PRHB while the remaining were assigned cor-
rectly as EU_lig_like. Of the 14 samples from southern California, with widely differ-
ent levels of Africanization (see Cridland et al.)[57], those from Avalon were correctly 
identified as EU_lig_like (Table  2). To generate assignations Cridland et  al. [57] used 
3,890,276 SNPs. To evaluate these same samples HBeeID was limited to at most 259 and 
as few as 176 SNPs. The 272 SNPs in HBeeID, while being distributed on all 16 of the HB 
chromosomes, cover a mere fraction of the genomic region of the 3,890,276 SNPs used 
by Cridland et al. [57]. Moreover, if for a given sample the genomic regions represented 
by the SNPs in HBeeID are not Africanized in a specific admixed individual, HBeeID’s 
capacity to ascertain whether the sample is Africanized will be reduced.

https://github.com/taoyudong/HBeeID
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Of the 88 individuals in the data set from Avalos et al. [84], 264 SNPs (97%) were pre-
sent of the 272 in HBeeID. The number of missing genotypes for these samples ranged 
from 8 to 22 (3% to 8%). Of the 28 samples identified initially as Mexican-Africanized, 
HBeeID identified 25 samples as America-Africanized, one as Puerto Rico, one as Mad-
agascar/Seychelles, and one as EU_lig_like resulting in 97% accuracy in predicting the 
origin of these samples. This data set included an additional 60 samples, 30 labeled as 
US-European and 30 as Puerto Rico. For both set of samples, the total number of miss-
ing genotypes ranged from 8 to 20 (3% to 7%). HBeeID predicted the identity of these 
samples with 100% accuracy (Table 2).

The 30 samples from Kadri et al. [93] were derived from a pool of 360 individual HBs 
with an original identification of Brazil-Africanized. These 30 samples had 198 SNPs 
(73%) of the 272 in HBeeID. Of the different data sets tested, this had the lowest num-
ber of SNP genotypes that overlapped with those in the HBeeID SNP panel. Four of the 
samples were eliminated due to having more than 96 missing SNP genotypes, leaving 
26 samples for analysis. Of these 26 remaining samples, 22, with missing genotypes that 
ranged from 73 to 96 (27% to 35%), were predicted by HBeeID as America-Africanized 
and four samples, with missing genotypes ranging from 74 to 89 (27% to 32%), were 
identified as A. m. scutellata (Table 2).

The assignation of African HBs that could be built into HBeeID was limited by the 
genomic data resources available in the public domain at the time this work was con-
ducted and the level of funding to generate the data herein. Hence, it was only possible 
to develop the capability to identify an African or Africanized HB as either A. m. scutel-
lata, A. m. capensis, America-Africanized or Puerto Rico-Africanized. As such, the sam-
ples from Kadri et al. [93] were identified with 100% accuracy (Table 2).

The 131 specimens from Wallberg et al. [53] include ten HB subspecies and African-
ized HBs from Brazil. These samples had 269 SNPs (99%) of the 272 in HBeeID and the 
least number of missing genotypes, ranging from three to ten (1% to 4%). Given the cur-
rent limited available reference sequence data resources for closely related European 
subspecies such as A. m. carnica and A. m. ligustica, HBeeID identifies these two sub-
species as EU_lig_like. With this limitation, HBeeID assigned, with 100% accuracy, sam-
ples of A. m. ligustica, A. m. carnica, A. m. mellifera EU domestic samples, and A. m. 
mellifera US domestic from Wallberg et al. [53] as EU_lig_like (Table 2). Of the ten A. m. 
iberiensis samples, nine were identified as A. m. iberiensis and one as EU_lig_like, a 90% 
accuracy. Of the 20 A. m. mellifera samples from Sweden and Norway, 19 were identified 
as A. m. iberiensis and one as EU_lig_like. Wallberg et al. [53] determined these samples 
from Norway and Sweden to be part of the M lineage together with A. m. iberiensis, thus 
the prediction accuracy of HBeeID for these samples is 95%. The 11 A. m. anatoliaca 
samples were identified with 100% accuracy as being samples originating from Turkey or 
the Republic of Georgia. HBeeID identified the samples of Brazilian-Africanized origin 
as America-Africanized and the A. m. scutellata from South Africa as A. m. scutellata 
with 100% accuracy. The ten samples of A. m. adansonii were assigned as A. m. scutel-
lata. For African HBs, HBeeID is designed to give the assignation of A. m. scutellata/A. 
m. capensis in Tier I, and when samples proceed to Tier II, they are differentiated 
between A. m. scutellata and A. m. capensis. Given that A. m. adansonii is not part of 
HBeeID and is taxonomically closer to A. m. scutellata, it received this latter assignation 
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at the Tier II level (Fig. 4). Thus, within its limitation, HBeeID identified A. m. adansonii 
samples to the closest available African comparison, that of A. m. scutellata. As HBeeID 
chose the closest match available, the A. m. adansonii samples were also identified with 
100% accuracy. Of the ten specimens from South Africa classified as A. m. capensis, five 
were identified as A. m. capensis and five as A. m. scutellata, resulting in a 50% accuracy 
(Table 2). A hybrid zone exists between these two subspecies and the precise demarca-
tion of this boundary is likely fluid making it difficult to ascertain the identity samples 
from this region [101, 102].

The 39 samples in Harpur et al. [52] had 258 SNPs (95%) that overlap with the 272 in 
the HBeeID SNP panel. In addition, some samples had missing genotypes that ranged 
from 14 to 24 (5 to 9%). Of the ten A. m. jemenitica Ruttner, 1976 samples, HBeeID iden-
tified nine as America-Africanized and one as A. m. scutellata. Similarly, to A. m. adan-
sonii mentioned above, A. m. jemenitica is not built into the reference base of HBeeID. 
Thus, the tool will assign samples of this subspecies to the closest available reference, 
namely A. m. scutellata. Of the eleven A. m. scutellata samples, nine were identified 
as A. m. scutellata and two as America-Africanized. The nine samples of A. m. carnica 
were identified to the closest available category in HBeeID, namely, as EU_Lig_like. The 
four samples from Spain were correctly identified as A. m. iberiensis. The five samples 
from Poland, all listed as belonging to the M lineage, were identified by HBeeID as fol-
lows: sample 218 (0.940% purity, levels from Wallberg et al. [53] as EU_Lig_like; sample 
207 (0.999%. purity) as A. m. iberiensis, samples 226 and 217 (0.999% purity) as Puerto 
Rico and sample 227 (0.932% purity) also as Puerto Rico. HBeeID recognized the simi-
larity of sample 207 to A. m. iberiensis, while for the remaining, which had from 15 to 18 
missing SNPs, it assigned to the closest available match of EU_Lig_like and Puerto Rico. 
The total percentage match for the samples from Poland was 20%.

Of the 125 A. m. mellifera samples from Canada from Harpur et al. [88] 124 were cor-
rectly identified as EU_Lig_like and one sample was identified as America-Africanized. 
The HBeeID prediction accuracy for these samples was 99% (Table 2).

Conclusion
The work presented herein demonstrates that selected, sparse genome information, as 
low as one in one million, can be used to assign individuals to populations effectively. 
HBs genotyped using the 272 SNP, Fluidigm-based assay, can differentiate unknown 
HBs from Africa, America, and Europe with a high degree of accuracy. This was dem-
onstrated via a PCA analysis and genetic assignations obtained using the software pro-
gram GeneClass2. Furthermore, 272 SNP-based genotype data from the 874 test HBs 
were used together with a hierarchical clustering method to delineate groups with simi-
lar genotype profiles, and these in turn used to develop a knowledge base network that 
formed HBeeID.

The evaluation of the HBeeID SNP diagnostic tool using one in-house and six publicly 
available data sets demonstrates that HBeeID is robust in its prediction of HB sample ori-
gin even when a large percentage of SNPs are missing (ca. 25%) in the unknown sample 
being tested. HBeeID can predict samples of pure and nearly pure European origin that 
are part of its reference base with a high degree of accuracy (> 95%). The tool also has a 
very robust capacity to predict samples that originate from Puerto Rico (near 100%) and a 
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good capacity (90%) to discriminate HB samples with Africanized or African ancestry. Its 
prediction accuracy decreases when used to assess highly mixed individuals and popula-
tions represented by few individuals or not represented in the reference database.

The samples from the seven data sets used to test HBeeID only had a subset of the 272 
SNPs that comprise the tool. Thus, the capacity of HBeeID to correctly assign ances-
try to unknown samples, despite these limitations is remarkable. The prediction capacity 
of the HBeeID tool can be continuously improved by adding genotype data of samples 
tested. In addition, widening the geographic provenance of samples, and increasing the 
number of SNPs in HBeeID would further increase its predictive capacity and resolu-
tion. To develop the current HBeeID tool samples were obtained from a wider geo-
graphic area (i.e., Americas, Africa, Europe, Eurasia) than previous SNP based attempts 
to discriminate HBs in world geographic areas, e.g., Eurasia [54], Europe [71, 72, 81, 82], 
Canada [83], South Africa [58].

Future directions

Whole genome sequencing of HBs is costly and time consuming. In comparison, the 
screening of a HB sample using HBeeID’s 272 SNP-based assay is several orders of mag-
nitude less. As a result, HBeeID will be of benefit to applied fields such as agriculture, pol-
lination, conservation, public health and beekeeping and breeding. HBeeID could be used 
for stock confirmation in queen production as well as effectively utilized to track accidental 
HBs that are part of commercial goods at border crossings [22]. Moreover, HBeeID could 
be a valuable tool to assess fluctuations in the genetic diversity of populations as they adapt 
to environmental conditions due to climate change and detect species that are threat-
ened [17]. The methodology used to develop HBeeID could also be used as template for 
tools for other organisms of ecological and economic importance. The ongoing increase 
in genomic data collection for bees and other organisms [103, 104] permits the develop-
ment and makes it possible to improve the resolution of tools such as HBeeID. Increasing 
the number and geographic distribution of samples used as reference will extend HBeeID 
capacity to identify other subspecies of HBs within the O, M, C and Y lineages. In turn, 
HBeeID and similar tools can help to harness and utilize the ever-increasing genomic data.
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