
EPI‑Trans: an effective transformer‑based 
deep learning model for enhancer promoter 
interaction prediction
Fatma S. Ahmed1,2*, Saleh Aly2,3* and Xiangrong Liu1 

Background
Enhancers, promoters, and other regulatory elements in non-coding genomic regions 
play important roles in transcriptional control. The enhancer and promoter interactions, 
in particular, regulate gene expression in a coordinated way. Although enhancers and 
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promoters may be physically separated in the genome, they can be closely associated and 
connected by chromatin looping in a 3D space. Some enhancers also interact with the 
target promoters by avoiding communicating with neighboring promoters in response 
to histone or transcriptional genomic changes. A precise mapping of such remote con-
nections is of particular relevance for comprehending gene expression pathways and 
determining target genes of genome-wide association studies(GWAS) loci [1–3]. Experi-
ments that capture chromosomal conformation (3C, 4C, and Hi-C) or extend ChIP-
sequencing techniques like paired-end tag sequencing (ChIA-PET) are costly and only 
provide results for a small number of cell types [4–7]. An alternative is provided by com-
putational techniques that predict EPIs using machine learning models based on empiri-
cally acquired EPI data utilizing distinct DNA sequence and/or epigenomic annotation 
data [8–11].

In many pattern recognition tasks, neural networks have been successfully applied 
[12], and deep learning has become a common method for building predictive models 
based on DNA sequences [12–16], and other bioinformatics studies [17, 18]. The advan-
tage of the deep learning framework is that it can predict certain functional annotations 
by automatically extracting valuable features from the genome sequence and identifying 
nonlinear correlations in the sequence [19]. Mostly, EPI identification and detection are 
carried out either by wet experiments in the laboratory or by various data mining tech-
niques. Wet experiments require complex designs and require much time to perform. 
Therefore, they are inefficient for EPI screening.

In recent years, several computational techniques based on machine learning have 
been presented and shown to be effective in quickly and efficiently identifying EPIs. 
These techniques may be broadly categorized into two groups: the first group is based 
on genomic data and the second one is based on sequence. In the techniques of the first 
set, classifiers are trained using characteristics extracted from genomic data to discrimi-
nate between EPIs. For instance, Whalen et  al. [11] introduced TargetFinder, a model 
was trained with different genomic data to predict EPIs, including transcription factor 
ChIP-seq, histone marks, DNA methylation, DNase-seq, CAGE, and gene expression 
data. However, since it needs a specific understanding of how to choose genetic features, 
this type of method is constrained. The second group relies solely on information from 
sequences to identify EPIs. For example, Yang et al. [20] introduced a prediction tech-
nique that trained a model of a boosted tree ensemble to derive features directly from 
genomic sequences using word embedding. The identification of EPIs by an attention-
based neural network model, known as EPIANN, was also pioneered by Mao et al. [21]. 
EPIANN incorporates a location-based feature decoding algorithm and an attention 
mechanism to enhance performance. Singh et al. [22] introduced the SPEID, a predic-
tion model based on deep learning, which combines long short-term memory (LSTM) 
with the convolutional neural network (CNN). Zhuang et al. [23] simplified the SPEID 
model and constructed a predictive model SIMCNN, that uses CNN in conjunction with 
transfer learning to train its model.

Several methods have been developed that combine CNN with recurrent neural 
networks to predict enhancer–promoter interactions (EPIs) solely based on DNA 
sequence information. Hong et al. [24] presented EPIVAN, which encodes enhancers 
and promoters using DNA vectors pre-trained with whole human genome sequences. 
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They then extracted local and global characteristics using a 1D convolution network 
and gated recurrent units, and they used the attention mechanism to increase the 
contribution of key features. Min et al. [25] proposed EPI-DLMH, a model that uti-
lizes a two-layer convolutional neural network (CNN) and a bidirectional network 
with gated recurrent unit (GRU) to extract local and long-range dependencies from 
promoter and enhancer sequences. An attention mechanism is then employed to 
focus on the most significant features, and a matched heuristic mechanism is used to 
analyze the relationship between promoters and enhancers. Furthermore, Wang et al. 
[26] developed EPnet, a deep learning model that uses a combination of CNN and 
bidirectional GRU to extract important features from the DNA sequences. The per-
formance of the model as a whole is enhanced by the output module’s subsequent use 
of a CNN and dense layer combination to further enhance these important proper-
ties. Recently, Fan and Peng [27] introduced a technique known as StackEPI, which 
merges several feature representations and classical machine learning algorithms, 
employs a stacking ensemble approach, and performs the prediction process solely 
based on promoter and enhancer gene sequences.

The majority of the aforementioned approaches use Convolution Neural Network 
(CNN)-based architecture [28], and other tools like Long Short-Term Memory (LSTM) 
[29] and Gated Recurrent Units (GRU) [30]. Recurrent neural network (RNN)-based 
models capture the dependency between states to focus on the sequential proper-
ties of DNA. Some hybrid strategies were also developed to combine the benefits 
of the two model designs [31–33]. For a better EPI model, an optimal computational 
approach should take into account all contextual details to extract efficient features 
from sequences. However, neither the CNN nor the RNN architectures can meet these 
demands [34, 35]. Since CNN’s capacity to extract local characteristics is limited by fil-
ter size, it often fails to grasp semantic dependency in long-range settings. While RNN 
(LSTM, GRU) models are capable of learning long-term dependency, they are severely 
hindered by gradient and low-efficiency issues since they process all prior states sequen-
tially and condense contextual information into a bottleneck of lengthy input sequences. 
To address the drawbacks described above, the transformer mechanism [36] is utilized 
by Yu et  al. [37] to build a new model called EPI-mind. Transformer is an attention-
based architecture that draws global dependencies between input and output and has 
attained cutting-edge effectiveness in most natural language processing tasks. Although 
EPI-mind achieved good performance, there is still room to do more improvement. 
Where EPI-mind used two transformers, one for the enhancer sequence and another 
one for the promoter sequence, then combined the output features of the two trans-
formers. Since the main purpose of the transformer is to handle one sequence and 
extract the relationship between the words or tokens for DNA sequence, we proposed 
a new model called EPI-Trans which first combines the output feature vectors from the 
convolution layers of the enhancer and promoter then fed these merged features to the 
transformer module as a single sequence. The transformer in this case jointly extracts 
the features of the enhancer and the promoter and hence learns the relationship between 
them more accurately. The Query, Key, and Value matrices used as input to the multi-
head attention is the combination of the enhancer and promoter features. In addition, 
using a single transformer module and a single encoder inside the transformer reduces 
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the computation complexity and speeds up the training of the model, thus our model is 
less complicated, more accurate, and provides higher performance.

Methods
Data

In this study, we compared our model with previous approaches using the same Tar-
getFinder EPIs dataset [11]. The data comprises enhancer/promoter sequences from six 
human ENCODE cell lines: K562 (mesoderm-lineage cells derived from a patient with 
leukemia), GM12878 (lymphoblastoid cells), HeLa-S3 (ectoderm-lineage cells derived 
from a patient with cervical cancer), HUVEC (umbilical vein endothelial cells), IMR90 
(fetal lung fibroblasts), and NHEK (epidermal keratinocytes). Whalen et al. [11] detected 
active promoters and enhancers in each cell line by utilizing segmentation-based anno-
tations from ENCODE and Roadmap Epigenomics, along with gene expression data 
from ENCODE. The researchers classified all enhancer–promoter pairs as either inter-
acting or non-interacting, using high-resolution genome-wide measurements of chro-
matin contacts in each cell line. Interacting pairs were considered as positive examples, 
while non-interacting pairs were considered as negative examples. A significant num-
ber of these pairs were also identified using capture Hi-C. A sample of non-interacting 
pairs was taken, with 20 pairs per interacting pair, to match the enhancer–promoter 
distances of the interacting pairs. All distances were less than 2 Mb. They constructed 
feature lists for all enhancer–promoter pairings in each cell line by utilizing functional 
genomics data, including metrics for open chromatin, DNA methylation, gene expres-
sion, and ChIP-seq peaks for transcription factors, architectural proteins, and modified 
histones. The signal was measured at the promoter, enhancer, and at the genomic region 
between them. In addition, they calculated characteristics for the preserved arrange-
ment of the enhancer and promoter, as well as the resemblance between the annotations 
of transcription factors and target genes, which are linked to interactions that have been 
empirically confirmed.

The length of the enhancer and promoter sequences is 3000 bp and 2000 bp respec-
tively. Each cell line has a 1:20 ratio of positive to negative examples, with 20 negative 
instances chosen for every positive example. Using an imbalanced dataset for training in 
a supervised deep learning model would result in an excessive emphasis on the predomi-
nant class, leading to a decreased accuracy of the minority class and a negative model 
bias prediction. To solve this problem, we employed the same data augmentation tech-
nique used in [21] to balance the classes by amplifying the training set’s positive samples 
20 times. This was achieved by sliding a window with a fixed size from the right or left 
over the DNA sequences while ensuring that the extended region still contains most of 
the functional parts. The result was a balanced dataset, as shown in Table 1.

Model structure

We propose a transformer-based approach for the automatic detection of EPIs using 
DNA sequences. Figure 1 illustrates the proposed predictive framework, which consists 
of four key steps: sequence embedding, feature extraction, transformer, and EPI pre-
diction. Firstly, enhancer and promoter sequences are fed into the model as input and 
embedded as feature matrices using the dna2vec embedding method. Then, a hybrid 
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multilayer convolutional neural network is employed to learn high-level features from 
these feature matrices. These features are subsequently passed through the transformer 
module and then the prediction layer to determine the existence of an interaction 
between enhancers and promoters. We present the proposed framework in detail in the 
following.

Sequence embedding

In this study, we used the k-mer representation method to analyze long DNA sequences. 
Following the representation of the k-mer, promoters and enhancers were separated 
using a k-bp window with a sliding step size of s. Previous studies have shown that set-
ting k to 6 yields optimal results for computational effectiveness and information com-
plexity of the vectors [20]. Thus, we set k and s to 6 and 1 respectively. For example, the 
sequence ‘ACG​GTT​TA’ was divided into ‘ACG​GTT​’, ‘CGG​TTT​’, and ‘GGT​TTA​’ using 
k-mer representation. There are two methods to embed the DNA sequences, dna2vec 
and one-hot embedding methods. Although one-hot vector encoding is a simple and 
easy-to-compute method, it is susceptible to the curse of dimensionality problem. The 
dimension of the one-hot vector is specifically exponential to the length of k. For exam-
ple, a 6-mer needs a bit vector with a 46 (4096)-dimensional size. Because the majority 
of deep learning algorithms prefer lower-dimensional continuous vectors as input, this 
presents a challenge in biological sequence analysis [19].

To address these issues, we utilized the dna2vec embedding method [38, 39]. Dna2vec 
embedding is based on the word2vec model [40], which produces low-dimensional vec-
tors of high quality to represent k-mer words. The dna2vec approach introduced an 
innovative technique for computing distributed representations of k-mers with vary-
ing lengths. These k-mers exhibit consistency across various lengths, meaning that they 
are inside the same embedding vector space. The algorithm maps k-mers of length 3–8, 
where 3 is the minimum length and 8 is the maximum length, into a vector space with 
100 dimensions. The model employed a shallow neural network with two layers to train a 
collective DNA k-mer embedding. The model was trained using the hg38 human assem-
bly from chromosome 1 to chromosome 22 [41]. Thus, we used dna2vec to represent the 
enhancer/promoter sequences with 6-mer tokens, resulting in a 3000× 100− D matrix 
for the enhancer sequences and a 2000× 100− D matrix for the promoter sequences. 
Figure 2 shows the embedding process of the enhancer/promoter sequences using the 

Table 1  Number of positive samples, augmented positive samples, and negative samples for each 
cell line in the training and testing datasets

Cell Lines Training Dataset Test Dataset

Pos Samples Aug. Pos Samples Neg Samples Pos Samples Neg Samples

GM12878 1902 38040 37980 211 4220

HeLa-S3 1566 31320 31320 174 3480

HUVEC 1372 27440 27360 152 3040

IMR90 1129 22580 22500 125 2500

K562 1780 35600 35550 197 3950

NHEK 1162 23240 23040 129 2560

Total - 178220 177750 - -
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dna2vec embedding method (please note that this is an example, and the actual length of 
the enhancer and promoter sequence is 3000bp and 2000bp respectively).

Feature extraction

We utilized a 2-layer CNN network to process input from the promoter and enhancer 
sequences. Specifically, we employed two separate CNNs: one dedicated to the enhancer 
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and the other to the promoter. Each CNN consisted of a single 1D convolution layer 
followed by a single max-pooling layer. Learning local features from enhancer and pro-
moter input is achieved through the 1D convolution layer, with the subsequent max-
pooling layer serving to reduce feature dimensions. Following the convolution operation, 
an activation layer utilizing the ReLU function is applied. The model captures distinct 
features for both the enhancer and promoter sequences, and these features are then con-
catenated using a merge layer. To mitigate overfitting, batch normalization and dropout 
layers have been incorporated into the model after the merge layer.

Transformer

We employed the transformer technique, initially proposed by Vaswani et  al. [36], to 
extract high-level or global features. Due to the transformer mechanism’s inherent abil-
ity to capture positional information, it can automatically acquire additional features. 
Figure 3 illustrates the transformer mechanism, comprised of four modules: positional 
encoding, multiple-head attention, position-wise feedforward network, and add &norm. 
Vaswani et al.’s work provides a detailed explanation of the transformer mechanism.

There are some constraints that govern the hyperparameters of both the 2-layer CNN 
and the transformer. Firstly, the number of filters in the 1D convolutional layer is tied 
to the model dimension of the transformer. The add &norm layer, positioned at the 
beginning of the transformer, combines the input of the transformer with the output of 
the multi-attention heads. Consequently, the number of filters must match the model 
dimension. Secondly, within the transformer, since the model dimension is divided 
among the multi-head attentions, it is imperative that the model dimension be a multi-
ple of the number of attention heads.

Numerous experiments have been conducted to validate the hyperparameters, tak-
ing into account the specified constraints for both the transformer and the CNN. The 
hyperparameter values yielding the best performance have been selected based on these 
experiments. Consequently, the filter size for the 1D convolution layer in the enhancer 
and promoter is set to 80 and 61, respectively, with a stride of 1 for both. The 1D 

Fig. 2  Process of enhancer/promoter sequence embedding using dna2vec embedding method
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max-pooling layer has a pool size of 15 and 10 for the enhancer and promoter, respec-
tively, with the stride size being equal to the pool size. Both the model dimension of 
the transformer and the number of filters in the 1D convolution layer are set to 72. The 
transformer module is configured with 1 encoder stack, 9 multi-head attentions, and 256 
hidden units for the feedforward layer.

Sequence prediction

The final step in the process entails forwarding the generated feature vector to a fully 
connected layer (dense layer) comprising 50 neurons to generalize from these features 
into the output space. To prevent overfitting, where a network memorizes training 
instances and noise rather than capturing the underlying relationship, our model needs 
regularization. The standardizing and normalizing processes on the layer input from the 
dense layer are carried out via batch normalization, as a result, the network is prevented 
from becoming dependent on a certain subset of inputs. Then the output of the batch 
normalization is passed to ReLU activation function. Finally, the feature vector is passed 
through a single unit with a sigmoid activation function to produce the final output. The 
resulting probability score indicates the likelihood that the input sequences will result in 
an interaction between the enhancer and promoter.

Model training and testing

The interaction between the enhancer and the promoter is determined by the specific-
ity of the cell line. Different cell lines have different rules for this interaction. Hence, a 
model constructed from one cell line may not be transferable to another. We train and 
test a model separately for each cell line. To assess the performance of our proposed 
model compared to existing models, we used identical training and test sets for each 

Multi-head Attention

Add & Norm

Feed-Forward NN

Add & Norm

+ ~

Positional 
Encoding

Input

Output
Fig. 3  Structure of the transformer module
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cell line as employed in previous works. The subsequent procedures outline the training 
methodology employed for each cell line. 

1.	 The imbalanced dataset D was split into a training set (90% of D) and a test set (10% 
of D) using stratified sampling to ensure that the class distribution was preserved in 
both sets.

2.	 To address the class imbalance in the training set, the minority class was oversam-
pled as mentioned above in the data section, resulting in a balanced dataset ( Daug).

3.	 The balanced training dataset Daug was split into training set Dtrain (95% of Daug ) and 
validation set Dval (5% of Daug).

4.	 The proposed model was trained on the training set Dtrain , and validated on the vali-
dation set Dval for a suitable optimization algorithm and hyperparameters tuning.

5.	 The model was tested in the test set Dtest using the standard evaluation metrics area 
under the receiver operating characteristic curve (AUROC) and the area under the 
precision–recall curve (AUPR).

Numerous experiments were conducted using various optimizers [42], including Nes-
terov-accelerated adaptive moment estimation (Nadam) [43], Stochastic Gradient 
Descent (SGD), Adaptive Moment Estimation (Adam), RMSprop, and Adamax. Differ-
ent values for the learning rate (0.01, 0.001, and 0.0001) and batch size (16, 32, 64, 128, 
and 256) were employed during model training. The experiments were executed for 15, 
20, 25, and 30 epochs. Additional file 1: Tables S1 and S2, S3 and S4, S5 and S6, and S7 
and S8 present the results obtained with different optimizers, learning rates, batch sizes, 
and epochs, respectively, in terms of AUROC and AUPR in the supplementary materials.

In light of the conducted experiments, the ultimate values for the hyperparameters 
were chosen based on the superior average performance of AUROC and AUPR across 
the six cell lines. Therefore, the Nadam optimizer was employed to minimize the loss 
with a learning rate of 0.001. The model used a mini-batch size of 64 samples during 
backpropagation with binary cross-entropy loss, and the number of epochs was set to 
20. The model was trained on a server with a GeForce GTX 2080 Ti GPU with 11GB 
RAM and a total memory of 251 GB. The server runs Ubuntu 18.04 LTS, and the soft-
ware installed includes cuda 10.2, conda 4.7.10, Python 3.7, and the versions of the other 
used software libraries and frameworks mentioned in a text file called “requirements.
txt” at the GitHub repository.

Evaluation metrics

The assessment criteria employed in this study were area under the precision–recall 
curve (AUPR) [44] and area under the receiver operating characteristic curve (AUROC) 
[45], which allowed for comparison with state-of-the-art methods. ROC is a curve that 
plots the sensitivity (TPR) against specificity (FPR) at various threshold values. In other 
words, it shows the performance of a classification model at all classification thresholds. 
The area under the ROC curve region is known as AUROC. The model’s performance 
improves as the AUROC value approaches 1 and the curve approaches the top left cor-
ner. Because the ROC curve is unaffected by the distribution of positive and negative 
data, the AUROC is an effective assessment metric for the model used for imbalanced 
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data. The precision–recall curve represents the trade-off between the precision of the 
model’s detection of positive examples and the model’s capacity to cover positive cases, 
with precision as the vertical axis and recall as the horizontal axis. The AUPR is the area 
under the precision–recall curve. The model’s performance improves as the AUPR value 
approaches 1 (or as the curve approaches the upper right corner).

Results and discussion
Performance of cell line specific model

The model that uses this specific training methodology is referred to as EPI-Trans-spe-
cific. For cross-cell line evaluation, the AUROC and AUPR of EPI-Trans-specific are dis-
played in Tables  2 and 3, respectively. Results reveal that EPI-Trans-specific performs 
well at predicting EPIs when the sets used for training and testing are from the same cell 
line. In the cross-cell line test, the model performed significantly worse compared to its 
performance when trained and tested on the same cell line. When employing the same 
cell line for training and testing the EPI-Trans-specific model, the performance in terms 
of AUROC is 0.938, 0.963, 0.939, 0.898, 0.931, and 0.984, and in terms of AUPR is 0.797, 
0.854, 0.736, 0.733, 0.783, and 0.927 for cell lines GM12878, HeLa-S3, HUVEC, IMR90, 
K562, and NHEK, respectively. The results suggest that predicting enhancer–promoter 
interactions (EPIs) on other cell lines based solely on the sequence perspective of a spe-
cific cell line is not accurate. The model trained on a particular cell line can only learn 
the interaction patterns between enhancers and promoters specific to that cell line. Con-
versely, this implies that enhancer–promoter interactions are cell-line specific.

Performance of generic model trained on all cell lines

In the previous experiments, training six distinct EPI-Trans-specific models, one 
for each cell line proved to be time-consuming. The second generic strategy is more 

Table 2  Performance of EPI-Trans-specific model using AUROC performance index on six cell lines

The best performance in each cell line is given in boldface

Train/Test cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

GM12878 0.938 0.683 0.668 0.647 0.643 0.590

HeLa-S3 0.598 0.963 0.645 0.584 0.593 0.603

HUVEC 0.627 0.700 0.939 0.643 0.626 0.613

IMR90 0.629 0.581 0.614 0.898 0.610 0.619

K562 0.616 0.641 0.655 0.630 0.931 0.640

NHEK 0.586 0.580 0.655 0.558 0.629 0.984

Table 3  Performance of EPI-Trans-specific model using AUPR performance index on six cell lines

The best performance in each cell line is given in boldface

Train/Test cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

GM12878 0.797 0.151 0.171 0.165 0.128 0.094

HeLa-S3 0.098 0.854 0.235 0.105 0.109 0.174

HUVEC 0.098 0.233 0.736 0.132 0.169 0.171

IMR90 0.106 0.097 0.117 0.733 0.106 0.127

K562 0.140 0.161 0.170 0.126 0.783 0.143

NHEK 0.109 0.126 0.156 0.115 0.122 0.927
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effective, involving the training of a single model using collective data from the six cell 
lines and is more akin to traditional transfer learning [46]. We have developed a generic 
model, EPI-Trans-generic by training a single model using combined dataset from all six 
cell lines. This model can predict the EPIs for any cell line used in the training.

We hypothesized that enhancer–promoter interactions (EPIs) might exhibit certain 
shared features across different cell lines, in addition to the cell line-specific features. 
The generic model is effective in capturing common features among cell lines, par-
ticularly when the training set includes sufficiently distinct cell lines. According to this 
hypothesis, a new training set, D All is produced by combining and disrupting the train-
ing sets of the six cell lines. D All includes all the enhancer–promoter pairs of the aug-
mented/balanced datasets of the six cell lines, and the ratio for enhancer–promoter pairs 
is 1:1:1.2:1.4:1.6:1.7 of the six cell lines IMR90:NHEK:HUVEC:HeLa-S3:K562:GM12878, 
respectively, so it contains almost close ratio from all six cell lines. D All is considered a 
balanced dataset where the number of negative samples is 177,750 and the number of 
positive samples is 178,220 as shown in Table 1.

The generic model is trained using D All dataset for 20, 25, and 30 epochs, followed by 
separate evaluations on each specific cell line test set. Additional file 1: Tables S9 and 
S10 in the supplementary materials present the performance results for various epoch 
numbers in terms of AUROC and AUPR, respectively. The generic model is trained for 
25 epochs, as it achieved the best average performance in terms of both AUROC and 
AUPR. This model demonstrates performance with AUROC results of 0.944, 0.963, 
0.944, 0.933, 0.942, and 0.975 for cell lines GM12878, HeLa-S3, HUVEC, IMR90, K562, 
and NHEK, respectively. Correspondingly, AUPR results are 0.643, 0.749, 0.584, 0.611, 
0.658, and 0.723 for the mentioned cell lines, as indicated in Table 4. On the contrary, 
upon comparing the results of the EPI-trans-generic model with those of the EPI-Trans-
specific model in terms of AUPR, as depicted in Table  6, it becomes evident that the 
performance of the EPI-trans-generic model is inferior to that of the EPI-Trans-spe-
cific model for all the cell lines. This observation aligns with the earlier discussion that 
emphasized the dependence of enhancer–promoter interactions (EPIs) on specificity 
features within a specific cell line. While the EPI-Trans-generic model excels in captur-
ing common features, it is less adept at capturing particular features compared to the 
EPI-Trans-specific model. Despite this, the EPI-Trans-generic model remains a robust 
generic model for predicting EPIs across the diverse set of six cell lines.

Performance of the EPI‑Trans‑best model that used EPI‑Trans‑generic model 

as a pre‑trained model

From the results of the EPI-Trans-generic model, it is evident that cell line-com-
mon features were successfully captured while cell line-specific features could not be 
effectively captured. Despite its adaptability across the six cell lines, the performance 

Table 4  Performance of EPI-Trans-generic model in the index of AUROC and AUPR on six cell lines

Cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

AUROC 0.944 0.963 0.944 0.933 0.942 0.975

AUPR 0.643 0.749 0.584 0.611 0.658 0.723
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of the EPI-Trans-generic model was somewhat inferior to that of the EPI-Trans-spe-
cific model. Therefore, to enhance the performance of the generic model, we applied 
an alternative training method called the “best training method” allowing the generic 
model to learn specific cell line features. The model trained using this training strat-
egy is referred to as EPI-Trans-best. The process of training is defined as follows: 

1.	 Using the EPI-Trans-generic model mentioned in the previous section as a pre-
trained model.

2.	 Fine-tuning the parameters of the generic model by training it on the training set of 
a particular cell line for n epochs (where n = 20, 25, and 30). Additional file 1: Tables 
S11 and S12 in the supplementary materials show the detailed results due to using 
different epochs in terms of AUROC and AUPR respectively. The number of epochs 
is selected to be 30 for the best model because the average AUROC and AUPR are 
the best when using this value.

3.	 Using the testing set of that particular cell line to evaluate the new model.

The performance of the new model was assessed after applying the best train-
ing strategy. Tables 5 and 6 shows the results of the EPI-Trans-best model in terms 
of AUROC and AUPR respectively using each of the six cell lines. The best model 
achieves higher performance than the EPI-Trans-specific model in five cell lines in 
terms of AUROC, where the performance reaches 0.946, 0.964, 0.952, 0.941, and 
0.956 for cell lines GM12878, HeLa-S3, HUVEC, IMR90, and K562 respectively. The 
new training strategy increases the performance of EPI-Trans-specific by 0.8%, 0.1%, 
1.3%, 4.3%, and 2.5% respectively. On the other hand, when comparing the perfor-
mance of the best model with the generic model, an improvement is observed in 
all cell lines for both metrics AUROC and AUPR. This demonstrates that the best 
model effectively learns from the generic model.

Table 5  Comparison between the three models of EPI-Trans in the index of AUROC

The best performance in each cell line is given in boldface

Model/Cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

EPI-Trans-spec 0.938 0.963 0.939 0.898 0.931 0.984
EPI-Trans-gen 0.944 0.963 0.944 0.933 0.942 0.975

EPI-Trans-best 0.946 0.964 0.952 0.941 0.956 0.983

Table 6  Comparison between the three models of EPI-Trans in the index of AUPR

The best performance in each cell line is given in boldface

Model/Cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK

EPI-Trans-spec 0.797 0.854 0.736 0.733 0.783 0.927
EPI-Trans-gen 0.643 0.749 0.584 0.611 0.658 0.723

EPI-Trans-best 0.778 0.857 0.724 0.758 0.758 0.901
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Computational complexity of the proposed EPI‑Trans models

In this section, we provide insights into the computational aspects of our proposed EPI-
Trans models. The training and test times for each cell line are detailed in Additional 
file 1: Tables S13 and S14. Table 7 consolidates the average training and test times, offer-
ing a comprehensive view across all samples for the six cell lines. A comparative analysis 
of the average training duration for all samples reveals that the EPI-Trans-general model 
requires more time (5.3  h). This extended duration is attributed to the use of a larger 
number of samples in training, incorporating data from all cell lines. On the contrary, 
the average testing time for all three models remains nearly identical, as they undergo 
evaluation on the same dataset with an equal number of samples for each cell line.

Comparing the performance of the EPI‑Trans model with state‑of‑the‑art models

For fair comparison, we employed the same evaluation strategy used in state-of-the-art 
methods. We utilized the same TargetFinder EPI datasets that were used by previous 
state-of-the-art methods. In addition, we adopted the same strategy to split the data-
sets into training and testing datasets (i.e. same spilled ratio and same random seed), 
employing the same data augmentation technique to balance the training data, and using 
the same metrics (AUROC and AUPR) to evaluate the performance.

The performance of the best model “EPI-Trans-best” is compared with other cut-
ting-edge techniques such as EPI-Mind, SPEID, PEP-WORD, EPIANN, SIMCNN, 
and EPI-DLMH. The results of these models are directly obtained from Yu Ni et al.’s 
work [37]. The comparison results are shown in Tables 8 and 9 in terms of AUROC 
and AUPR, respectively. In terms of AUROC, our proposed EPI-Trans-best model 
outperforms other models in three cell lines, including HeLa-S3, HUVEC, and K562, 
achieving impressive performance scores of 0.964, 0.952, and 0.956, respectively. Fur-
thermore, the EPI-Trans-best model improves the performance of the HeLa-S3 cell 

Table 7  The average training and test time of EPI-Trans models for all samples and per a sample 
respectively

Model Avg Training Time All Samples (hour) Avg Testing Time 
Per a Sample 
(msec)

EPI-Trans-spec 0.849 0.504

EPI-Trans-gen 5.304 0.508

EPI-Trans-best 1.004 0.508

Table 8  Comparison between EPI-Trans-best model and other models in terms of AUROC

The best performance in each cell line is given in boldface

Model/cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK AVG

EPI-Trans-best 0.946 0.964 0.952 0.941 0.956 0.983 0.957
EPI-Mind-best 0.951 0.961 0.945 0.922 0.946 0.987 0.952

SPEID 0.916 0.923 0.904 0.915 0.922 0.950 0.922

PEP-WORD 0.842 0.843 0.845 0.898 0.883 0.917 0.871

EPIANN 0.919 0.924 0.918 0.945 0.943 0.959 0.935

SIMCNN 0.941 0.949 0.933 0.951 0.943 0.962 0.947

EPI-DLMH 0.949 0.952 0.948 0.948 0.955 0.977 0.955
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line by 0.3%, 4.1%, 12.1%, 4%, 1.5%, and 1.2% over the performance of EPI-Mind, 
SPEID, PEP-WORD, EPIANN, SIMCNN, and EPI-DLMH, respectively.

Similarly, the model improved the performance of the HUVEC cell line by 0.7%, 
4.8%, 10.7%, 3.4%, 1.9%, and 0.4% over the aforementioned models. Finally, the per-
formance of the K562 cell line improved by 1%, 3.4%, 7.3%, 1.3%, 1.3%, and 0.1% 
respectively over the aforementioned models. For NHEK cell line, the proposed 
model is better than five out of six models which are SPEID, PEP-WORD, EPIANN, 
SIMCNN, and EPI-DLMH, and it achieved an increment of 3.3%, 6.6%, 2.4%, 2.1%, 
and 0.6% respectively, but it is worse than EPI-Mind only by 0.4%. For GM12878 cell 
line, it is better than the four models SPEID, PEP-WORD, EPIANN, and SIMCNN 
by 3%, 10.4%, 2.7%, and 0.5% respectively, and it is worse than the two EPI-Mind 
and EPI-DLMH models by 0.5% and 0.3% respectively. Finally, for IMR90 cell line is 
better than the three EPI-Mind, SPEID, and PEP-WORD models by 1.9%, 2.6%, and 
4.3% respectively, but it achieved less performance than the other three EPIANN, 
SIMCNN, and EPI-DLMH models and the performance decreases by 0.4%, 1%, and 
0.7% respectively.

On the other hand, the results showing the AUPR performance of the proposed EPI-
Trans-best model and state-of-the-art methods for each cell line can be found in Table 9. 
The proposed model achieved the highest AUPR performance for HeLa-S3 cell line, 
with a score of 0.857 which is better than EPI-Mind, SPEID, PEP-WORD, EPIANN, 
SIMCNN, and EPI-DLMH by 1.4%, 6%, 5.4%, 15.5%, 12%, and 3.3%, respectively. While 
for NHEK, it achieved superior performance over the five SPEID, PEP-WORD, EPI-
ANN, SIMCNN, and EPI-DLMH models, and the performance increased by 4.9%, 2.1%, 
4%, 1.9%, and 0.8% respectively, but it is worse than EPI-Mind by 0.2%. Also for HUVEC 
cell line, the performance is better than the five EPI-Mind, SPEID, EPIANN, SIMCNN, 
and EPI-DLMH models by 1.4%, 20.1%, 10.8%, 8.4%, and 0.4% respectively, and it less 
than PEP-WORD model by 3.6% only. For GM12878, it outperforms SPEID, EPIANN, 
and SIMCNN models by 0.5%, 5.5%, and 7.2% respectively, and its performance is worse 
than EPI-Mind, PEP-WORD, and EPI-DLMH by 1.8%, 2.9%, and 4.1% respectively. The 
performance of the IMR90 cell line is better than the SPEID and SIMCNN models by 
2.6% and 2.1% respectively, but it is worse than EPI-Mind, PEP-WORD, EPIANN, and 
EPI-DLMH by 1.1%, 11%, 1.2%, and 6% respectively.

Finally, the AUPR performance of the proposed EPI-Trans-best model for K562 cell 
line is better than EPIANN and SIMCNN models by 8.5% and 7.9% respectively, but 

Table 9  Comparison between EPI-Trans-best model and other models in terms of AUPR

The best performance in each cell line is given in boldface

Model/cell lines GM12878 HeLa-S3 HUVEC IMR90 K562 NHEK AVG

EPI-Trans-best 0.778 0.857 0.724 0.758 0.758 0.901 0.796

EPI-Mind-best 0.796 0.843 0.710 0.769 0.756 0.903 0.796

SPEID 0.773 0.797 0.523 0.732 0.771 0.852 0.741

PEP-WORD 0.807 0.803 0.760 0.868 0.836 0.880 0.826
EPIANN 0.723 0.702 0.616 0.770 0.673 0.861 0.724

SIMCNN 0.706 0.737 0.640 0.737 0.679 0.882 0.730

EPI-DLMH 0.819 0.824 0.720 0.818 0.826 0.893 0.817
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its performance is less than EPI-Mind, SPEID, PEP-WORD, and EPI-DLMH by 0.2%, 
1.3%, 7.8%, and 6.8% respectively. Overall, the average AUROC of EPI-Trans-best 
over the six cell lines is 95.7% which is better than the average AUROC of all other 
models, and the average AUPR is 79.6% which is better than SPEID, EPIANN, and 
SIMCNN models. So our EPI-Trans-best model outperforms most of the models in 
terms of AUROC and AUPR.

Conclusion
This study introduces a novel deep-learning model that incorporates CNN and trans-
former mechanism. Initially, the proposed model employs the dna2vec embedding tech-
nique to convert tokens of enhancer/promoter sequences into vectors. Subsequently, a 
2-layer CNN network extracts local features. Finally, a transformer processes the merged 
features of the enhancer and promoter as input. The inclusion of a transformer mech-
anism facilitates the extraction of features that effectively capture the extensive inter-
connections between enhancer and promoter sequences, thus enhancing the accuracy 
of predicting their relationship. Consequently, the model exhibits superior performance 
compared to other cutting-edge approaches across the majority of cell lines. Addition-
ally, a generic model is proposed, capable of predicting enhancer–promoter interactions 
(EPIs) for any cell line used in training. The model’s performance is further enhanced by 
fine-tuning parameters through training on specific cell-line datasets. This enables the 
model to capture the unique features of the specific cell line, in addition to common fea-
tures shared among all cell lines.
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