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Abstract 

Background: RNA sequencing combined with machine learning techniques has pro-
vided a modern approach to the molecular classification of cancer. Class predictors, 
reflecting the disease class, can be constructed for known tissue types using the gene 
expression measurements extracted from cancer patients. One challenge of cur-
rent cancer predictors is that they often have suboptimal performance estimates 
when integrating molecular datasets generated from different labs. Often, the quality 
of the data is variable, procured differently, and contains unwanted noise hamper-
ing the ability of a predictive model to extract useful information. Data preprocessing 
methods can be applied in attempts to reduce these systematic variations and harmo-
nize the datasets before they are used to build a machine learning model for resolving 
tissue of origins.

Results: We aimed to investigate the impact of data preprocessing steps—focusing 
on normalization, batch effect correction, and data scaling—through trial and compar-
ison. Our goal was to improve the cross-study predictions of tissue of origin for com-
mon cancers on large-scale RNA-Seq datasets derived from thousands of patients 
and over a dozen tumor types. The results showed that the choice of data preprocess-
ing operations affected the performance of the associated classifier models con-
structed for tissue of origin predictions in cancer.

Conclusion: By using TCGA as a training set and applying data preprocessing meth-
ods, we demonstrated that batch effect correction improved performance measured 
by weighted F1-score in resolving tissue of origin against an independent GTEx test 
dataset. On the other hand, the use of data preprocessing operations worsened classifi-
cation performance when the independent test dataset was aggregated from separate 
studies in ICGC and GEO. Therefore, based on our findings with these publicly avail-
able large-scale RNA-Seq datasets, the application of data preprocessing techniques 
to a machine learning pipeline is not always appropriate.
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Background
Classical cancerous tissue classification was primarily based on the clinical interpreta-
tion of the morphological characteristics of a tumor specimen, however technological 
advancements made possible molecular approaches to prediction of tissue of origin 
for cancer that utilize genome-wide expression data [1]. Machine learning applications 
can be used to relate a patient’s gene expression measurements to an endpoint variable 
of interest such as the patient’s cancer type [2]. There is a wealth of publicly available 
human expression data for thousands of cancer patients representing over 30 cancer 
types because of the efforts by the TCGA consortium [3]. Other large efforts by various 
consortia such as GTEx, ICGC, and GEO have also deposited transcriptomics datasets 
into freely accessible databases derived from diverse tissues and conditions [4–6]. These 
open repositories provide RNA-Seq data sources that can be integrated with machine 
learning strategies to construct a classifier model for the prediction of cancer tissue 
types. Due to the large size and complexity of the RNA-Seq datasets, machine learn-
ing is a practical means to make sense of this abundance of data. To extract useful bio-
logical information from gene expression data, we employed the support vector machine 
(SVM), a popular machine learning model among other researchers working with TCGA 
data [7].

Data preprocessing tasks such as normalization, batch effect removal, and data scaling 
are crucial for classifier inputs and will affect predictive performance estimates. Nor-
malization is an essential step in RNA-Seq analysis that adjusts global properties of raw 
expression measurements to minimize systematic variations; its purpose is to allow the 
expression levels to be appropriately compared across samples with differences only due 
to biological factors [8]. Batch effects are the unwanted variation between groups (i.e., 
batches) of samples and unrelated to the outcome of interest [9]. The impact of batch 
effects is particularly severe in studies that measure the expression levels of thousands of 
genes at once, such as RNA-Seq. This could be due to the numerous sources of variation 
in the multi-step process of data generation for the high-throughput technology [10]. 
Data scaling is another data preprocessing step often necessary to put the feature set 
into a common frame, before the rescaled dataset is used as input in a classifier. Features 
in a similar range allow each feature to contribute equally to the impact on the model 
performance [11].

Despite the wealth of RNA-Seq experiments accumulated, RNA-Seq data are largely 
utilized for unsupervised learning purposes in identifying subtypes or clusters, and 
not utilized enough for classification. The main reason for this limited utility of RNA-
seq datasets for classification or prediction, especially in the clinical setting, is the 
prevalence of batch effects in these datasets. The variation originates from various 
sources in the multi-step process of generating the RNA-seq data, including variables 
related to the sample conditions, sample collection including ischemic time, RNA 
enrichment protocol, RNA quality, cDNA library preparation, sequencing platform, 
sequencing quality, and total sequencing depth [12]. Despite the potential for exten-
sive unwanted variation, the measurement at the final stage is digital and high-reso-
lution, ensuring that all the latent variation is reliably captured and reflected in the 
data. This becomes a serious issue for classification, leading to inflated performance 
measures in case of shared batch effects between training and test datasets. It also 
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results in low generalization against unseen test data in case of unique batch effects 
and distributional differences in the newly generated data [13].

There have been previous approaches that try to correct for specific sources of vari-
ation. For example, several studies have devised models to correct for the sequence 
specific biases that arise from the preparation of cDNA libraries [14, 15]. Another 
study has proposed a uniform alignment and quantification pipeline to address the 
variation arising from the computational analysis [16]. Alternatively, there have been 
efforts to correct for unwanted variation in a general and agnostic approach through 
batch correction. It is generally advised to apply batch effect adjustment in cross-
batch prediction, as the resulting performance is better than no batch effect removal 
at all. This has been demonstrated by evaluating many types of batch effect correc-
tion algorithms on microarray datasets [17]. There is no clear consensus on the most 
reliable batch effect correction algorithm, as no single method has consistently out-
performed others across all performance metrics [18]. Quantile normalization has 
previously been used for microarray data by assimilating the test data to the training 
data before applying prediction rules to improve cross-study performance [19]. Tech-
nical phenotype information on expression data, when available, can be incorporated 
into analyses to improve performance [20]. Alternative models of ComBat, a popular 
batch effect correction algorithm, have been developed. The original ComBat model 
pools all samples to estimate the mean and variance batch effect resulting in trans-
formations of both the training and test datasets [21]. The reference-batch ComBat 
method uses one batch as a reference for the batch effect adjustment of the non-refer-
ence batch [22]. In this context, the training set (reference batch) is fixed and the test 
dataset (non-reference batch) will be corrected toward the distribution of the unad-
justed training data. This approach, in theory, should improve the performance of the 
future prediction of unseen test samples with new batch effects.

Here we evaluate various preprocessing methods for cross-study classification 
performance using a case study of tissue prediction trained on a TCGA and tested 
against GTEx or ICGC/GEO datasets. To the best of our knowledge, there is cur-
rently no comparison study that empirically assesses the effectiveness of data pre-
processing techniques outlined in this paper on the predictive performance of the 
molecular classification of cancerous tissue across large-scale RNA-Seq datasets. We 
hypothesize that certain combinations of these data preprocessing techniques applied 
to a high throughput dataset will be able to reduce prediction error as compared to 
a baseline model. Our specific aims for this work are to quantify the differences in 
performance between utilizing unmodified transcriptomic data versus the preproc-
essed datasets and understand which data preprocessing procedures are essential to 
this effort.

To this end, we set out to construct and evaluate machine learning pipelines based on 
various combinations of normalization, batch effect correction, and data scaling applied 
to the original datasets (Fig. 1).

Understanding the effects of the data preprocessing procedures on our pipelines for 
tissue of origin classification is necessary to obtain better performance estimates. This 
can provide valuable insight to other researchers building tools for multiclass predictors 
using high-throughput molecular data for predicting tissue of origins.
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Materials and methods
All data analyses were performed using Bash, R, and Python in Jupyter Notebooks [23].

Genome‑wide expression datasets

We downloaded publicly available RNA-Seq data files representing a panel of 14 
malignancies from the Genomic Data Commons for TCGA human expression data, 
composed of 7192 primary tumor and 678 normal tissue samples for a total of 7870 
samples; and V7 release of GTEx that contained 3340 matching healthy tissue sam-
ples [3, 4]. Only TCGA cancer types with more than 100 samples were considered 
sufficient for the learning phase of the training set to use in the machine learning 
classifier (see below). Note that we use the labels of TCGA to denote the tissue of ori-
gin, although the tissues can be both cancerous or non-cancerous depending on the 
study. The kidney cancers of TCGA were coalesced into one tissue type (i.e., KICH, 
KIRC, KIRP → KIRC). Colon and rectum cancers were merged as well (i.e., COAD, 
READ → COAD). ESCA and STAD samples were also integrated into a single tissue 
type (i.e., ESCA, STAD → GI) based on the similarity of their molecular profiles in 
these adjacent organs [24]. GI cancer samples were filtered to exclude esophageal 
squamous cell carcinoma, Epstein-Barr virus, and undifferentiated cancer types [25]. 
PAAD cancers were filtered to only include the samples that were curated to be true 
pancreatic ductal adenocarcinoma [26]. Additionally, we obtained ICGC and GEO 
RNA-Seq data files for 674 cancer and 202 non-cancer samples representing six tis-
sue types, then combined the two datasets (hereafter referred to as "ICGC/GEO") for 
a total of 876 samples [5, 6]. A summary of the GEO datasets and the alignment tool 

Fig. 1 Flow chart of data preprocessing, machine learning, and evaluation approaches. Large-scale RNA-Seq 
datasets were freely available to be obtained from TCGA, GTEx, ICGC, and GEO and assigned to training and 
test sets. The original datasets are part of data preprocessing combination #1 and serve as the ’baseline’ for 
comparison. The transformed datasets of data preprocessing combinations #2 through #16 are based on 
various combinations of normalization (Unnormalized, Quantile Normalization, Quantile Normalization with 
Target, and Feature Specific Quantile Normalization), batch effect correction (No batch effect correction or Batch 
effect correction), and data scaling (Unscaled or Scaled) procedures applied to the original datasets. Each of the 
data preprocessing combinations is used to build an associated machine learning classifier
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used for each study is provided in Table S1. Reads for the TCGA, GTEx, and ICGC 
consortia were mapped to the human reference genome with STAR [27]; ICGC also 
used HISAT2 for alignment [28].

Training and testing datasets

We performed a commonly used 80:20 split of the TCGA dataset: 80% of the TCGA 
data (6295 samples) were randomly assigned for training, while the remaining 20% (1575 
samples) were used for internal evaluation testing [29]. Samples were drawn propor-
tionally for each tissue type without replacement. Additionally, we tested against two 
independent test sets: one consisting of 100% of the GTEx dataset (3340 samples) and 
the other made up of 100% of the ICGC/GEO dataset (876 samples). A summary of the 
number of RNA-Seq samples for each tissue in the training and testing sets is provided 
in Table 1.

Gene expression units and number of genes used for features

We obtained gene expression values in units of transcripts per million and then trans-
formed the expression values to the logarithm base 2 scale [30, 31]. We found 50,370 
genes belonging to TCGA, GTEx, and ICGC/GEO datasets by finding the common 
ENSEMBL gene IDs. We determined 253 genes with zero expression across all samples 
in the training set and filtered out these genes from all training and test sets to ultimately 
use 50,117 expressed genes as features for downstream analyses.

Data preprocessing combinations of RNA‑Seq datasets

We investigated a total of 16 data preprocessing combinations based on variations of 
normalization (Unnormalized, Quantile Normalization [QN], Quantile Normalization 
with Target [QN-Target], or Feature Specific Quantile Normalization [FSQN]), batch 
effect correction (No batch correction or Batch correction), and data scaling (Unscaled or 
Scaled). The RNA-Seq datasets, either the original or modified, include the training set 
(80% of TCGA) and test sets (20% of TCGA, 100% of GTEx, and 100% of ICGC/GEO). 
Data preprocessing combination #1 (Unnormalized, No batch correction, and Unscaled) 
is made up of the original RNA-Seq datasets and serves as the baseline for comparison 
to each set of modified RNA-Seq datasets from data preprocessing combinations #2 
through #16.

Normalization procedures

We considered three types of normalization steps to be applied on the original datasets. 
First, quantile normalization (QN), where each training and testing dataset was sepa-
rately transformed to have identical distribution by replacing the expression level value 
with the ranked means according to their ranks within each sample. Second, quantile 
normalization with target (QN-Target), required that we transform the training set (i.e., 
the target) with QN and then the test datasets were transformed to be identical in distri-
bution to the target distribution. For QN and QN-Target, we utilized the normalize.
quantiles and normalize.quantiles.use.target functions, respectively, 
from the R package preprocessedCore [32]. Third, for feature specific quantile 
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normalization (FSQN), we used the quantileNormalizeByFeature function of 
the R package FSQN to transform each feature of the test sets based on its corresponding 
feature in the training set [33].

Table 1 Summary of cancer tissue types and number of RNA-Seq samples used in this study

Abbreviation TCGA name Tissue type Training set Test set #1 Test set #2 Test set #3

(80% of 
TCGA)

(20% of 
TCGA)

(100% of 
GTEx)

(100% of ICGC/
GEO)

Number 
of cancer/
normal 
samples

Number 
of cancer/
normal 
samples

Number 
of normal 
samples

Number of 
cancer/normal 
samples

BLCA Bladder 
urothelial 
carcinoma

Bladder 339 85 11

BRCA Breast invasive 
carcinoma

Breast 937 234 304

CESC Cervical squa-
mous cell car-
cinoma and 
endocervical 
adenocarci-
noma

Cervix 239 60 6

COAD Colon adeno-
carcinoma

Colon 533 133 281

GI Esophageal 
carcinoma 
and Stomach 
adenocarci-
noma

Gastro-
intestinal 
(Esophagus/
Stomach)

370 93 706 15

HNSC Head and 
neck squa-
mous cell 
carcinoma

Salivary 
glands

430 108 101

KIRC Kidney renal 
clear cell 
carcinoma

Kidney 805 201 48 77

LIHC Liver hepa-
tocellular 
carcinoma

Liver 334 84 187 349

LUAD Lung adeno-
carcinoma

Lung 737 184 470 85

PAAD Pancreatic 
adenocarci-
noma

Pancreas 122 31 263 342

PCPG Pheochromo-
cytoma and 
paragan-
glioma

Adrenal gland 123 31 204

PRAD Prostate 
adenocarci-
noma

Prostate 426 106 158 8

THCA Thyroid carci-
noma

Thyroid gland 442 111 486

UCEC Uterine 
corpus 
endometrial 
carcinoma

Uterus 458 114 115

(TOTAL) 6295 1575 3340 876
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Batch effect correction procedures

Data preprocessing combinations that included batch effect correction were performed 
after normalization. Of the TCGA expression data, a type of batch effect we termed 
"protocol batch effect" arose from the use of different processing centers. Samples were 
processed at either British Columbia Cancer Michael Smith Genome Sciences Centre 
(BCGSC), which only included GI samples, or University of North Carolina (UNC) for 
samples of every other tissue type. We obtained the batch information of the sequenc-
ing center for the TCGA samples by using the R package TCGAutils to convert uni-
versal unique identifiers to TCGA barcodes [34]. Some notable differences in protocol 
included mRNA isolation, number of reads generated, number of reads discarded, and 
read length. For BCGSC, the MultiMACS mRNA isolation kit was used to generate a 
median of 227 million reads, of which 177 million were discarded, with 75 bps per read. 
For UNC, the TruSeq RNA Library Prep kit was used to generate a median of 149 mil-
lion reads, of which 97 million were discarded, with 48 bps per read. Other types of 
batch effect are attributed to the data on disease state of cancer versus non-cancer sam-
ples (“disease batch effect”) and inter-project TCGA versus GTEx samples (“consortium 
batch effect”). The different batch effect types present in the current study are depicted 
in Figure S1. A separate approach was used to adjust for each type of batch effect we 
defined, executed in succession (Figure S2).

Batch effect correction algorithms

We investigated three batch effect correction algorithms applied on the RNA-Seq data-
sets with the fixed constraints of Unnormalized and Unscaled data preprocessing proce-
dures. First, we called the removeBatchEffect function from the R package limma to 
modify both the training and testing datasets by removing batch effects from the gene 
expression data [35]. Second, we used the ComBat function from the SVA package in 
R, with default parameters, to transform the training and testing datasets due to known 
batches [21]. Third, we utilized a variation of the ComBat function known as "reference-
batch ComBat" to indicate a reference dataset that is most representative [22]. In this 
approach the specified reference batch (training dataset) remained unchanged. Con-
versely, only the gene expression values for the non-reference batch (testing dataset) 
were corrected toward the distribution of the fixed reference batch. We set the ref.
batch option to the batches containing the highest number of samples for each of the 
three types of batch effect (UNC, cancer, and TCGA) as the reference datasets to correct 
for the protocol, disease, and consortium batch effect types, respectively.

Batch effect adjustment approach for different batch types

Once we determined that limma was the best performing batch correction algorithm 
when GTEx served as the independent test set (see Results), we further investigated the 
specific types of batch effect that were necessary to be removed to achieve an increase 
in overall performance. With the fixed constraints of limma as the batch correction 
algorithm, and Unnormalized and Unscaled data preprocessing procedures, we explored 
all possible variations. This included adjustments for each of the batch types separately 
(protocol batch effect only, disease batch effect only, consortium batch effect only) and 
in combinations (protocol and disease batch effects; protocol and consortium batch 
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effects; disease and consortium batch effects; protocol, disease, and consortium batch 
effects).

Data scaling procedures

Data preprocessing combinations subject to data scaling took place after normalization 
and batch effect correction steps. We utilized the MinMaxScaler class of scikit-
learn Python package with the feature range of 0–1 [36]. The data scaling factors 
determined for the training set were also applied on the test set. Separately determining 
scaling factors for the training and test datasets would generate an erroneous test set for 
downstream analysis [37].

Machine learning algorithm

For our machine learning algorithm, we used SVM that aim to find a hyperplane capable 
of separating the data with the widest possible margin [38]. We utilized the SVC class 
of scikit-learn with the class weight parameter set to "balanced" to adjust weights 
inversely proportional to class frequencies [39].

Dimension reduction techniques

We performed principal component analysis (PCA), a linear feature reduction tech-
nique, on the training dataset to obtain a lower-dimensional feature set, and then built 
a classifier with this new set of features [40]. Before applying the fitted model, the test 
dataset was transformed to the same PCA feature space of the training data. We also 
constructed visualizations based on the top two principal components that explain the 
most variance in the gene expression datasets. Furthermore, we applied t-distributed 
stochastic neighbor embedding (t-SNE) and uniform manifold approximation and pro-
jection (UMAP), non-linear dimension reduction techniques, to construct complemen-
tary low-dimensional representations of the original high-dimensional datasets [41, 42].

Cross‑validation protocol

We performed nested cross-validation for hyperparameter tuning using a grid search 
with k-fold cross-validation [43]. To prevent information leakage from the testing set 
into the training set, we applied dimension reduction techniques after cross-validation 
on the training sets of each fold rather than before which could have led to overly opti-
mistic performance metrics [13]. The grid search optimization algorithm uses multiple 
trial-and-error processes of the hyperparameters settings, exploring the following possi-
ble configurations to achieve optimal performance estimates [44]. The kernel options 
include the radial basis function and linear kernels [45]. The choice of the cost param-
eter, C, ranged from {0.1, 1, 10, 100, 1000}. We utilized the StratifiedK-
Fold and GridSearchCV classes in scikit-learn to perform the inner five-fold 
cross-validation for hyperparameter optimization and the outer five-fold cross-valida-
tion for evaluation. 

Classification performance assessment strategy

To generate predictions from the classifiers, we fitted the training data to the model 
and then used the fitted model to classify samples from the testing set. For each data 
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preprocessing combination, the datasets served as the inputs for the classification algo-
rithm. This process determined the best-trained models to assess the internal evalua-
tion and external independent test sets by making predictions on the tissue of origin 
for each sample to generate a confusion matrix. The best-trained models determined on 
individual folds were saved along with the associated training data scaling factors and 
PCA feature spaces. The test sets were scaled, when appropriate, with the previously 
saved training data scaling factors and then projected onto the PCA feature space of 
training data. The best-trained models were then applied on the transformed test set for 
classification. The predicted and ground truth memberships were used to derive the fol-
lowing classwise performance metrics for each disease class from the confusion matrix: 
positive predictive value, negative predictive value, accuracy, prevalence, sensitivity, 
specificity, false positive rate, false negative rate, area under the receiver operating char-
acteristic (AUROC), and F1-score. The classwise performance metrics were aggregated 
to determine the micro-average of the AUROC and weighted F1-score, both range from 
0 (worst) to 1 (best) and assess the multiclass classification model’s overall performance 
[46]. The Shapley Additive Explanations (SHAP) values were also calculated to find the 
most important PCA features across all classes along with their top contributing genes 
[47]. A glossary of the formulas and descriptions for the classification performance met-
rics are provided (See Additional file 1).

Comparison of the classifier performance results with an alternative model 

from the literature

To validate the results generated by our model, we used an alternative model called 
TULIP also trained on TCGA data to make predictions on the same independent test 
datasets [48]. Of the four possible convolutional neural network models created for 
TULIP, we used the one with all genes and 32 primary tumor types. Each of the unscaled 
data preprocessing combinations, previously generated for GTEx and ICGC/GEO, were 
separately used as an input for TULIP to generate predictions to compare to the ground 
truth to determine the associated weighted F1-score. We note that only unscaled ver-
sions of the data preprocessing combinations were used to make predictions on one 
TULIP model since scaling factors and cross-validation folds for the training set were 
not publicly available for the TULIP model.

Statistics and data visualizations

Statistical analyses were performed in R using the Student’s t-test (unpaired, one-tailed) 
for comparison of two groups. Each group consisted of five models evaluated from the 
outer folds of cross-validation. To test for significant increases in the overall performance 
of our machine learning classifier loaded with various datasets, the weighted F1-score 
based on the original datasets was compared to the 15 other modified datasets used as 
the input for classification. A p value of less than 0.05 was considered statistically sig-
nificant for the Student’s t-test. As a prerequisite, the Shapiro–Wilk test was performed 
(p value > 0.05 in all cases) for normality of the weighted F1-scores for the original data-
set and modified datasets [49]. As another precondition, the Levene’s test was assessed 
(p value > 0.05 in all cases) for homogeneity of variances of the weighted F1-scores for 
the original and modified datasets [50]. To create plots, we used the matplotlib and 
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scikit-plot packages in Python [51, 52] as well as the ggplot2 and ggpattern 
packages in R [53, 54].

Results
We quantified the effects of post-sequencing computational procedures for several com-
binations of normalization, batch effect adjustment, and data scaling on the RNA-Seq 
datasets that were used in the machine learning model building and classification pro-
cess. Here, we present the findings from our analyses. Foremost, we present the best-
performing combinations of data preprocessing steps, the preferred batch correction 
algorithm, and independent dataset used to achieve an increase in performance esti-
mates. In addition, we demonstrate with negative results that data preprocessing tasks 
should not universally be applied as overall performance can be hampered in some 
instances. Furthermore, we identify the essential type of batch effects in this study that 
must be adjusted to improve classification performance.

Limma’s batch effect correction algorithm improved overall classifier performance 

for the independent test set of GTEx

To determine the data preprocessing procedures that would improve overall classifica-
tion performance, all 16 data preprocessing combinations based on variations of nor-
malization, batch effect correction, and data scaling were used as inputs for the machine 
learning classifier to attain their associated average AUROC, weighted F1-score, and p 
value (Table 2). Data preprocessing combinations, where GTEx served as the independ-
ent test set and batch effect correction was applied, generated modified datasets. These 
datasets resulted in significant increase in overall performance as compared to the origi-
nal datasets. The most notable increase in overall performance as compared to the origi-
nal dataset (weighted F1-score = 0.71, 95% confidence interval (CI) [0.66, 0.72]) was seen 
with the modified dataset that underwent QN, batch effect correction, and data scaling 
(weighted F1-score = 0.77, p value = 0.0009, 95% CI [0.76, 0.77]) as seen in Fig. 2. A simi-
lar outcome was seen with the TULIP classification model applied on the same test set 
(See Additional file 2).

Visualizations of the data from the original and the best-performing modified datasets 
after linear projection using PCA (Figure S3), and non-linear projections using t-SNE 
and UMAP (Figures S4, S5) of the high-dimensional training and independent test data-
sets are provided.

Limma’s batch effect correction improved classwise performance of GI tissue type 

at the expense of other tissues

To understand the improvement in overall classification performance from original data-
sets as compared to the best-performing modified datasets that underwent QN, batch 
effect correction, and data scaling, we looked at the classwise performance of each tissue 
in both scenarios (Tables 3, 4). Noticeably, GI tissue type showed an enhanced F1-score 
in the latter datasets (F1-score = 0.59, 95% CI [0.57, 0.59]) in contrast to the former data-
sets (F1-score = 0.04, 95% CI [0.02, 0.04]). To a lesser extent for BRCA, there was a slight 
increase in F1-score seen with the latter datasets (F1-score = 0.97, 95% CI [0.95, 0.98]) 
over the former datasets (F1-score = 0.86, 95% CI [0.81, 0.90]). On the other hand, we 
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observed decreases in the classwise performance metrics for HNSC (F1-score = 0.33, 
95% CI [0.28, 0.48]) and PAAD (F1-score = 0.78, 95% CI [0.48, 0.89]) when using the 
original datasets, as compared to the overall best-performing modified datasets for 
HNSC (F1-score = 0.15, 95% CI [0.13, 0.19]) and PAAD (F1-score = 0.01, 95% CI [0.01, 
0.01]). Further insight between the predictive models built with either the original or 
the best-performing modified datasets are provided by the confusion matrices, AUROC 
plots, and SHAP global feature importance (Figure S6, S7, S8, Table S2).

Limma’s batch effect correction algorithm is detrimental to the overall classifier 

performance for the independent test set of ICGC/GEO

To evaluate whether Limma’s batch effect correction algorithm was effective across 
all datasets, we included another independent test set for comprehensive analysis. 

Table 2 Overall performance metrics of SVM classifier using data preprocessing combinations 
evaluated against GTEx test set related to Fig. 2

Values indicate the median of each metric with five models evaluated from the outer folds of cross‑validation; Inside the 
parentheses denotes the 95% confidence interval. Statistical significance was determined with the Student’s t‑test. *p < 0.05; 
**p < 0.01; ***p < 0.001

Index Normalization Batch effect 
correction

Scaling Micro‑average of 
AUROC

Weighted 
F1‑score

p Value

1 Unnormalized No batch correc-
tion

Unscaled 0.94 (0.93–0.95) 0.71 (0.66–0.72) Baseline

2 Quantile normali-
zation

No batch correc-
tion

Unscaled 0.93 (0.92–0.94) 0.71 (0.68–0.73) 0.2963

3 Quantile normali-
zation with target

No batch correc-
tion

Unscaled 0.93 (0.92–0.94) 0.70 (0.68–0.72) 0.3133

4 Feature specific 
quantile normali-
zation

No batch correc-
tion

Unscaled 0.92 (0.91–0.93) 0.66 (0.63–0.67) 0.9636

5 Unnormalized Batch correction Unscaled 0.98 (0.96–0.98) 0.76 (0.74–0.77) 0.0049**

6 Quantile normali-
zation

Batch correction Unscaled 0.97 (0.96–0.97) 0.75 (0.73–0.76) 0.0089**

7 Quantile normali-
zation with target

Batch correction Unscaled 0.97 (0.96–0.97) 0.75 (0.74–0.75) 0.0073**

8 Feature specific 
quantile normali-
zation

Batch correction Unscaled 0.96 (0.94–0.97) 0.73 (0.72–0.73) 0.0339*

9 Unnormalized No batch correc-
tion

Scaled 0.92 (0.90–0.93) 0.70 (0.67–0.70) 0.6009

10 Quantile normali-
zation

No batch correc-
tion

Scaled 0.90 (0.89–0.91) 0.68 (0.67–0.69) 0.7241

11 Quantile normali-
zation with target

No batch correc-
tion

Scaled 0.89 (0.87–0.90) 0.68 (0.67–0.69) 0.7298

12 Feature specific 
quantile normali-
zation

No batch correc-
tion

Scaled 0.91 (0.89–0.91) 0.69 (0.64–0.71) 0.3715

13 Unnormalized Batch correction Scaled 0.97 (0.96–0.98) 0.76 (0.75–0.77) 0.0026**

14 Quantile normali-
zation

Batch correction Scaled 0.96 (0.96–0.97) 0.77 (0.76–0.77) 0.0009***

15 Quantile normali-
zation with target

Batch correction Scaled 0.96 (0.96–0.97) 0.76 (0.75–0.77) 0.0016**

16 Feature specific 
quantile normali-
zation

Batch correction Scaled 0.96 (0.95–0.97) 0.73 (0.72–0.74) 0.0305*
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Data preprocessing combinations based on the ICGC/GEO dataset with Limma’s 
batch effect correction applied showed reduced weighted F1-scores, as compared to 
when the original datasets were loaded (Fig. 3, Table 5). A similar outcome was seen 
with the TULIP classification model applied on the same test set (See Additional 
file 3).

In attempts to gain positive changes in weighted F1-scores with the ICGC/GEO 
dataset, as previously shown with GTEx, we explored two alternative data preproc-
essing methods. First, we hypothesized that matching the tissue types between the 
two studies may improve the overall batch correction process. We tried preprocess-
ing and training the machine learning model with a filtered TCGA dataset of only 
the six tissue types (GI, KIRC, LIHC, LUAD, PAAD, and PRAD) that were found in 
the ICGC/GEO dataset rather than the 14 tissues (See Additional file  4). Second, 
we wondered whether performing batch correction with GTEx and then applying 
this model to ICGC/GEO could improve the results, so we experimented with using 
the GTEx dataset in the batch correction step rather than ICGC/GEO dataset, while 
still using the latter as the independent test dataset (See Additional file 5). In both 
scenarios attempted, the results were similar in that no data preprocessing combina-
tions led to an increased weighted F1-score as compared to the baseline dataset.

Fig. 2 Improvement of classifier performance after Limma’s batch effect correction against the GTEx test 
set. Weighted F1-scores as determined by SVM classifier loaded with the original dataset (left-most bar) 
versus the modified datasets after combinations of normalization (Unnormalized, QN [Quantile Normalization], 
QN-Target [Quantile Normalization with Target], FSQN [Feature-Specific Quantile Normalization]), batch effect 
correction (No batch correction, Batch correction) and data scaling (Unscaled, Scaled). The training and 
independent test datasets were TCGA and GTEx, respectively. The batch effect correction algorithm used 
was Limma, and all three types of batch effect (Protocol batch effect, Disease batch effect, and Consortium 
batch effect) were adjusted. Bars indicate the median values of each group that consisted of five models 
evaluated from the outer folds of cross-validation. Error bars represent the 95% confidence interval. Statistical 
significance was determined with the Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001
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Protocol and consortium batch correction had a larger impact compared to disease state 

batch correction.

To determine the minimum set of batch effect types that needed adjustment for 
improved overall performance in the current study, we examined each permutation of 
batch types to be corrected for. The batch effect correction algorithm used was Limma 
and the parameters of Unnormalized and Scaled were fixed. Batch effect corrections 
specifically for protocol and consortium batch types were essential to provide a signifi-
cant improvement in weighted F1-scores. In this context, adjusting for the disease batch 
effect was not required, but did yield further improvement in the weighted F1-score 
(Figure S9). Classwise performance metrics for the adjustments of the batch types in the 
combinations that led to enhanced overall classifier predictive power are provided for 
protocol and consortium batch effects (See Additional file 6) and for protocol, disease, 
and consortium batch effects (See Additional file 7).

Limma batch correction results in better prediction compared to ComBat

To find a batch correction algorithm that enhanced classifier performance, a few pop-
ular alternatives from the literature were compared. With Limma, all data preprocess-
ing combinations that included batch effect correction showed an increase in weighted 

Table 3 Classwise performance metrics of SVM classifier using original datasets evaluated against 
GTEx test set

n = number of test samples; Values indicate the median of each metric with five models evaluated from the outer folds of 
cross‑validation; Inside the parentheses denotes the 95% confidence interval

Type n Sensitivity Specificity PPV NPV Accuracy AUROC F1‑score

BLCA 11 1.00 
(1.00–1.00)

0.84 
(0.83–0.85)

0.02 
(0.02–0.02)

1.00 
(1.00–1.00)

0.84 
(0.83–0.85)

1.00 
(1.00–1.00)

0.04 
(0.04–0.04)

BRCA 304 0.79 
(0.72–0.85)

1.00 
(0.99–1.00)

0.94 
(0.91–0.95)

0.98 
(0.97–0.99)

0.98 
(0.97–0.98)

1.00 
(0.99–1.00)

0.86 
(0.81–0.90)

CESC 6 0.50 
(0.26–0.74)

0.99 
(0.97–1.00)

0.06 
(0.03–0.14)

1.00 
(1.00–1.00)

0.99 
(0.97–1.00)

0.98 
(0.94–1.00)

0.09 
(0.06–0.20)

COAD 281 0.63 
(0.62–0.65)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.97 
(0.97–0.97)

0.97 
(0.97–0.97)

0.95 
(0.93–0.95)

0.78 
(0.76–0.79)

GI 706 0.01 
(0.00–0.02)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.79 
(0.79–0.79)

0.79 
(0.79–0.79)

0.94 
(0.92–0.97)

0.04 
(0.02–0.04)

HNSC 101 0.77 
(0.72–0.84)

0.90 
(0.89–0.95)

0.21 
(0.17–0.35)

0.99 
(0.99–0.99)

0.90 
(0.89–0.95)

0.94 
(0.92–0.97)

0.33 
(0.28–0.48)

KIRC 48 1.00 
(0.98–1.00)

1.00 
(1.00–1.00)

0.96 
(0.94–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.98 
(0.97–0.99)

LIHC 187 1.00 
(1.00–1.00)

1.00 
(0.96–1.00)

1.00 
(0.69–1.00)

1.00 
(1.00–1.00)

1.00 
(0.97–1.00)

1.00 
(1.00–1.00)

1.00 
(0.80–1.00)

LUAD 470 0.94 
(0.88–0.98)

1.00 
(1.00–1.00)

0.98 
(0.97–0.99)

0.99 
(0.98–1.00)

0.99 
(0.98–1.00)

1.00 
(1.00–1.00)

0.96 
(0.93–0.98)

PAAD 263 1.00 
(0.51–1.00)

0.95 
(0.94–0.98)

0.64 
(0.61–0.70)

1.00 
(0.96–1.00)

0.95 
(0.94–0.97)

1.00 
(0.94–1.00)

0.78 
(0.48–0.89)

PCPG 204 0.99 
(0.98–0.99)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–1.00)

PRAD 158 0.88 
(0.87–0.90)

1.00 
(1.00–1.00)

1.00 
(0.95–1.00)

0.99 
(0.99–1.00)

0.99 
(0.99–0.99)

0.99 
(0.99–0.99)

0.93 
(0.92–0.94)

THCA 486 0.99 
(0.99–0.99)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–1.00)

UCEC 115 0.77 
(0.52–0.95)

1.00 
(1.00–1.00)

0.98 
(0.95–1.00)

0.99 
(0.98–1.00)

0.99 
(0.98–1.00)

1.00 
(1.00–1.00)

0.84 
(0.65–0.98)
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F1-scores regardless of normalization or data scaling procedures (Fig.  2). The default 
ComBat method led to an increase in weighted F1-scores whenever batch effect cor-
rection was applied in cases of Unnormalized and FSQN (Figure S10). With reference-
batch ComBat, we also see these increases in weighted F1-scores, except where the data 
preprocessing combination was Unscaled and Unnormalized (Figure S11). Although all 
three resulted in improved performance, Limma’s batch effect correction algorithm led 
to better overall classification performance than either the default usage of ComBat or 
reference-batch ComBat.

Discussion
The current comparison study demonstrates that the application of data preprocessing 
operations has varied effects on classifier performance for the molecular classification of 
tissue types with RNA-Seq data. Whether the effect is beneficial or adverse depends on 
the specific datasets used. In our study design where TCGA samples served as the train-
ing set, we explored various data preprocessing procedures, including—normalization, 
batch effect correction, and data scaling. The constructed classification models were 
then compared based on their overall performance on independent samples generated 
from separate consortia, GTEx and ICGC/GEO (Fig. 1).

Table 4 Classwise performance metrics of SVM classifier using best-performing modified datasets 
evaluated against GTEx test set

n = number of test samples; Values indicate the median of each metric with five models evaluated from the outer folds of 
cross‑validation; Inside the parentheses denotes the 95% confidence interval

Type n Sensitivity Specificity PPV NPV Accuracy AUROC F1‑score

BLCA 11 1.00 
(1.00–1.00)

0.99 
(0.98–0.99)

0.22 
(0.17–0.23)

1.00 
(1.00–1.00)

0.99 
(0.98–0.99)

1.00 
(1.00–1.00)

0.35 
(0.30–0.38)

BRCA 304 0.97 
(0.96–0.98)

1.00 
(0.99–1.00)

0.96 
(0.93–0.98)

1.00 
(1.00–1.00)

0.99 
(0.99–1.00)

1.00 
(1.00–1.00)

0.97 
(0.95–0.98)

CESC 6 0.33 
(0.02–0.52)

0.99 
(0.98–1.00)

0.02 
(0.00–0.06)

1.00 
(1.00–1.00)

0.99 
(0.98–0.99)

0.97 
(0.96–0.99)

0.04 
(0.03–0.11)

COAD 281 0.64 
(0.63–0.65)

1.00 
(1.00–1.00)

0.99 
(0.99–0.99)

0.97 
(0.97–0.97)

0.97 
(0.97–0.97)

0.97 
(0.97–0.98)

0.78 
(0.77–0.79)

GI 706 0.71 
(0.69–0.72)

0.81 
(0.81–0.82)

0.50 
(0.49–0.51)

0.91 
(0.91–0.92)

0.79 
(0.78–0.79)

0.77 
(0.76–0.80)

0.59 
(0.57–0.59)

HNSC 101 0.23 
(0.20–0.26)

0.95 
(0.95–0.96)

0.11 
(0.10–0.15)

0.98 
(0.97–0.98)

0.93 
(0.92–0.93)

0.91 
(0.91–0.93)

0.15 
(0.13–0.19)

KIRC 48 0.98 
(0.98–0.98)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–0.99)

LIHC 187 1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

LUAD 470 0.98 
(0.98–0.99)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–0.99)

PAAD 263 0.00 
(0.00–0.01)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.92 
(0.92–0.92)

0.92 
(0.92–0.92)

0.96 
(0.92–0.98)

0.01 
(0.01–0.01)

PCPG 204 0.96 
(0.95–0.96)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.98 
(0.98–0.98)

PRAD 158 0.88 
(0.86–0.89)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–0.99)

0.99 
(0.99–0.99)

1.00 
(1.00–1.00)

0.94 
(0.92–0.94)

THCA 486 0.94 
(0.93–0.95)

1.00 
(1.00–1.00)

1.00 
(1.00–1.00)

0.99 
(0.99–0.99)

0.99 
(0.99–0.99)

1.00 
(1.00–1.00)

0.97 
(0.96–0.97)

UCEC 115 0.78 
(0.51–0.93)

1.00 
(1.00–1.00)

1.00 
(0.98–1.00)

0.99 
(0.98–1.00)

0.99 
(0.98–1.00)

1.00 
(1.00–1.00)

0.88 
(0.67–0.96)
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There have been numerous studies on tissue classification using gene expression data, 
but studies that test the class predictor across independent datasets are not as common 
[55]. Typically, the classifier is trained on a subset of samples from a study and tested 
on the remaining portion of the unseen samples from the same pool [56–58]. Having 
samples from the same project in the training and test sets can potentially lead to over-
optimistic measures of performance due to overfitting, where the model learns the noise 
of the training set, and in this case detects the same noise in the test set [59]. In studies 
where the test data are truly independent, with none of the test samples from the same 
study as the training dataset, it is generally expected to see lower classification perfor-
mance for these independent test samples as compared to when the test samples came 
from the same pool as the training samples [60, 61]. The gold standard for demonstra-
tion of the power of gene expression classification is to test against independent datasets 
to provide an unbiased learning performance estimate [62]. Therefore, our current study 
emphasized the use of a couple sources of independent samples for testing. The perfor-
mance estimated from an independent dataset informs us about the generalizability of 
our model, how useful the classifier will be on unseen test data, which is an important 
consideration for adaptation into the clinical setting [63].

Batch effect correction was a sufficient data preprocessing task to gain an improve-
ment in classification performance when TCGA and GTEx were used as the training and 
testing set, respectively (Fig. 2). In contrast, none of the data preprocessing techniques 
helped increase overall performance when ICGC/GEO served as the test set (Fig.  3), 

Fig. 3 Deterioration of classifier performance after Limma’s batch effect correction against the ICGC/GEO 
test set. Weighted F1-scores as determined by SVM classifier loaded with the original dataset (left-most bar) 
versus the modified datasets after combinations of normalization (Unnormalized, QN [Quantile Normalization], 
QN-Target [Quantile Normalization with Target], FSQN [Feature-Specific Quantile Normalization]), batch effect 
correction (No batch correction, Batch correction) and data scaling (Unscaled, Scaled). The training and 
independent test datasets were TCGA and ICGC/GEO, respectively. The batch effect correction algorithm used 
was Limma, and all three types of batch effect (Protocol batch effect, Disease batch effect, and Consortium batch 
effect) were adjusted. Bars indicate the median values of each group that consisted of five models evaluated 
from the outer folds of cross-validation. Error bars represent the 95% confidence interval
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warning other researchers to exercise caution when considering data preprocessing 
procedures as part of their classification pipeline. We note that there is a possibility of 
information leakage during batch effect adjustment of the combined datasets during 
data preprocessing (Figure S2). This can lead to over-estimated performance when the 
correction transfers information from the test data to the training process [12]. How-
ever, we also explored the reference-batch ComBat method, which keeps the training 
and test datasets separate during batch correction. The performance measures on ref-
erence-batch ComBat were slightly lower, yet there were still improvements after batch 
correction (Figure S11). So, we can say that the overestimation is minor, and that batch 
correction is still recommended when GTEx serves as the independent test set.

Among the batch effect correction methods, the basic linear estimation of batch effect 
by Limma showed better performance compared to the shrinkage estimator provided 
by ComBat [35, 64]. Although initially surprised by this result, we realized this may be 

Table 5 Overall performance metrics of classifier using data preprocessing combinations evaluated 
against ICGC/GEO test set related to Fig. 3

Values indicate the median of each metric with five models evaluated from the outer folds of cross‑validation; Inside the 
parentheses denotes the 95% confidence interval. Statistical significance was determined with the Student’s t‑test

Index Normalization Batch effect 
correction

Scaling Micro‑average of 
AUROC

Weighted 
F1‑score

p Value

1 Unnormalized No batch correc-
tion

Unscaled 0.95 (0.94–0.96) 0.80 (0.76–0.81) Baseline

2 Quantile normaliza-
tion

No batch correc-
tion

Unscaled 0.95 (0.91–0.97) 0.75 (0.61–0.81) 0.8986

3 Quantile normaliza-
tion with target

No batch correc-
tion

Unscaled 0.96 (0.92–0.97) 0.79 (0.64–0.85) 0.7418

4 Feature specific 
quantile normaliza-
tion

No batch correc-
tion

Unscaled 0.79 (0.79–0.80) 0.50 (0.47–0.51) 1

5 Unnormalized Batch correction Unscaled 0.87 (0.85–0.88) 0.57 (0.55–0.60) 1

6 Quantile normaliza-
tion

Batch correction Unscaled 0.86 (0.85–0.87) 0.56 (0.55–0.62) 1

7 Quantile normaliza-
tion with target

Batch correction Unscaled 0.87 (0.85–0.87) 0.59 (0.56–0.65) 0.9999

8 Feature specific 
quantile normaliza-
tion

Batch correction Unscaled 0.75 (0.74–0.76) 0.22 (0.20–0.25) 1

9 Unnormalized No batch correc-
tion

Scaled 0.94 (0.92–0.95) 0.65 (0.63–0.66) 0.8986

10 Quantile normaliza-
tion

No batch correc-
tion

Scaled 0.91 (0.87–0.93) 0.62 (0.60–0.64) 1

11 Quantile normaliza-
tion with target

No batch correc-
tion

Scaled 0.90 (0.86–0.93) 0.64 (0.63–0.66) 1

12 Feature specific 
quantile normaliza-
tion

No batch correc-
tion

Scaled 0.80 (0.79–0.82) 0.53 (0.51–0.55) 1

13 Unnormalized Batch correction Scaled 0.84 (0.81–0.87) 0.57 (0.50–0.60) 1

14 Quantile normaliza-
tion

Batch correction Scaled 0.86 (0.85–0.87) 0.58 (0.54–0.62) 1

15 Quantile normaliza-
tion with target

Batch correction Scaled 0.87 (0.85–0.88) 0.59 (0.54–0.63) 1

16 Feature specific 
quantile normaliza-
tion

Batch correction Scaled 0.77 (0.77–0.77) 0.34 (0.30–0.39) 1
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explained by our sample size where we have at least 100 samples per class and at least 
several hundreds of samples per batch for each batch group. With this sample size, the 
bias–variance trade-off of shrinkage provided by ComBat may be unnecessary and may 
actually hinder the estimation of batch effect.

While we achieved positive results when testing against GTEx, by contrast negative 
results were obtained when ICGC/GEO served as the independent test set (Figs. 2, 3). 
We further validated these results with an alternative model from the literature called 
TULIP, a convolution neural network-based classifier, also trained with TCGA data [48]. 
Predictions made by the TULIP model seemed to show an improvement in weighted 
F1-scores with GTEx as the test dataset (See Additional file  2) and a deterioration of 
the overall classification performance metrics when ICGC/GEO served as the inde-
pendent test set (See Additional file  3). These outcomes appear to be consistent with 
the results from our SVM-based classifier. Notably, the weighted F1-scores achieved by 
our SVM model appeared to be better than the overall performance estimates attained 
by the TULIP model. This scenario where we have elevated performance scores on one 
test dataset that is offset by lower performance metrics against another dataset is not 
uncommon in the literature. The "no free lunch theorem" implies that no method is 
expected to work well with all datasets [65].

We attempted alternate approaches to obtain a positive result with ICGC/GEO as the 
independent test set by modifying our classification pipeline, such as training the clas-
sifier with a limited set of tissues from TCGA, to match what is available in the ICGC/
GEO dataset (see Additional file  4), and also performed batch effect correction with 
information from the GTEx dataset (see Additional file 5), both to no avail. Since our 
ICGC/GEO dataset is severely imbalanced, one reason for these negative results could 
be that batch effect correction on imbalance datasets may also cause false differences 
leading to undesired consequences and misinterpretation [66]. Another reason for 
this discrepancy could be due to predictor measurement heterogeneity since the gene 
expression values are sourced from separate individual studies [67]. Previously, Ellis et al. 
[20] built a predictor for tissue types trained with the GTEx data and then tested against 
independent test sets of aggregated Sequence Read Archive studies along with a TCGA 
dataset, and similarly attained a much lower overall performance score (51.9%) for the 
aggregated dataset as compared to the performance estimate (76.8%) on the TCGA data. 
There would be more technical variation expected when there are pronounced differ-
ences in protocols and reagents used to generate the RNA-Seq datasets. Ideally, the same 
strategy should be employed during procurement of samples so that there is a homoge-
neity of predictor measurements; however, this is difficult with studies done indepen-
dently across multiple labs. Considering that classifying the tissue-of-origin is likely one 
of the easiest problems for RNA-Seq sample classifications, with signals that tend to 
be stronger as compared to other treatments or groupings, this seems to indicate that 
the possibility of aggregating disparate data from multiple sources for the purpose of 
machine learning-based predictions has a rather pessimistic prospect.

Data scaling has previously been reported to generally help learning models achieve 
better performance estimates [68]. However, this was not the case seen in our results, 
as weighted F1-scores with scaled datasets were mostly maintained or in some cases 
made worse (Figs.  2, 3). Only the data preprocessing combination with FSQN and 
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batch correction applied that used ICCG/GEO as the independent test dataset did 
data scaling show a better weighted F1-score than its unscaled counterpart. Simi-
larly, normalization did not have a noticeable effect on the constructed classifiers to 
improve performance estimates. In one data preprocessing combination, where the 
normalization type applied was FSQN and ICGC/GEO served as the independent test 
set, the weighted F1-score was markedly reduced. This is likely because the features, 
read counts for each gene, in an RNA-Seq dataset is in essence already an intrinsi-
cally scaled measurement, considering that the counts are compositional counts of a 
predefined library size. Also, all the features are quantified in the same unit (i.e., read 
counts), and although there are large magnitude differences between the genes, each 
feature measurement reflects the true expression difference rather than the difference 
in unit or possible range.

This work has several limitations to note. Foremost, we utilized imbalanced datasets 
with regards to both training and testing sets. This bias in the training dataset can 
influence the machine learning algorithm with less predictive power for the less rep-
resented classes. Some approaches to balance the datasets are random oversampling, 
which duplicates examples from the minority classes, and undersampling, where 
some samples are excluded. In addition, the ICGC/GEO independent dataset is rela-
tively small and does not contain all the tissues as the TCGA training nor GTEx test 
datasets. A dataset with more samples and representing more types of cancers could 
serve as another independent test for more robust classification results. Furthermore, 
a constraint of the proposed model is that batches are assumed to be known, ena-
bling methods to correct for batches [9, 22, 35]. There are also alternative approaches 
that aim to estimate the unknown latent variables [10, 69, 70]. A large-scale transcrip-
tomic study, such as GTEx, was able to find latent variables in the data that are cor-
related with specific environment and conditions [12]. Assuming there are a limited 
number of systematic variables that can affect the data, it will be worthwhile to get 
a better understanding of the effects of different kinds of latent variables on tran-
script quantification, so we can recommend the appropriate data preprocessing meth-
ods depending on the estimated latent variables. There has been progress made in 
machine learning to understand the problem of dataset shift and approaches to solve 
the issue. We could try applying classical methods based on covariate shift adaptation 
to this particular problem [71, 72]. If enough information is available on the latent 
variables that affect the data, then we could even attempt to generate synthetic data-
sets with the problematic latent effects and attempt to fit a model that is able to cor-
rect the synthetic effects using generative adversarial networks [73–75].

Another future direction that can be considered is to explore if changes in how the 
RNA-Seq datasets are generated will affect the downstream classification results. 
The term "data preprocessing" can refer to different aspects of a RNA-Seq analysis 
workflow. Data preprocessing can refer to either quantification, the process from raw 
sequencing reads to gene counts, or part of a classification task, which takes place 
after the counts data are generated. While the current study focuses on the latter, the 
former can also be investigated. For example, recount2 provides an alternate version 
of the publicly deposited expression data that have been summarized with a single 
quantification pipeline [16]. While the starting point for our research was the counts 
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sourced from the original consortia, other investigators can try the recount2 version 
of the counts data. They could even begin their analyses with raw reads or sequence 
alignment maps and evaluate the impact of other types of data preprocessing proce-
dures on classification performance.

Conclusion
Here, we compared 16 data preprocessing combinations based on variations of normali-
zation, batch effect correction, and data scaling in efforts to enhance a machine learn-
ing model to correctly predict cancer tissue types for more unseen samples. We utilized 
publicly available large-scale RNA-Seq datasets to construct classifiers to resolve tissue 
of origin against an independent test set. Our analyses demonstrate that the overall clas-
sification performance measured by weighted F1-score on a model trained with TCGA 
data and tested against the GTEx dataset, can be improved by applying batch effect 
correction. On the other hand, when ICGC/GEO served as the test set, the investiga-
tions showed the overall performance metrics ended up being maintained or declined. 
It seems that normalization and data scaling have limited utility in improving the per-
formance estimates, at least in the current context. There was no universal combination 
of data preprocessing techniques that improved the overall classification performance 
against all independent test datasets, highlighting the challenges of generalizing machine 
learning classifiers.
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