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Background
Chimeric antigen receptor T (CAR-T) cell therapy represents a novel approach to 
immune-targeted treatment for malignant tumors, particularly revolutionizing the man-
agement of hematological malignancies. Notably, CAR-T cell therapy has demonstrated 
unprecedented efficacy in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia 
(B-ALL), non-Hodgkin’s lymphoma (NHL), and multiple myeloma (MM) [1]. However, 
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CAR-cell therapy is associated with a potentially life-threatening complication known 
as cytokine release syndrome (CRS). CRS, characterized by systemic inflammatory 
response triggered by the hyperactivation of CAR-T cells and endogenous immune cells 
(e.g., macrophages and dendritic cells), represents the most prevalent adverse event. 
Therefore, accurate prediction of the onset of severe CRS in CAR-T cell therapy holds 
paramount importance.

Deep learning is currently a highly popular technique with extensive applications and 
significant value in the biomedical industry. Its remarkable success in computer vision, 
speech recognition, and natural language processing (NLP) has led to its widespread 
adoption in DTI and other predictive tasks [2]. Use deep learning to interpret informa-
tion about proteome sequences [3], and use deep learning models to predict antigenic 
peptides [4]. However, there is a lack of deep learning applications specifically focused 
on cytokine storm prediction. Given the inherent ability of deep learning models to 
learn automatically, certain methods such as transfer learning have been employed for 
DTI analysis. Transfer learning is a technique that leverages pre-trained models on 
one dataset to make predictions on different but related datasets, thereby enabling the 
development of more generalized models [5]. Consequently, this approach has gar-
nered significant attention in the field of bioinformatics, encompassing research focused 
on unraveling biological system degradation [6]. Single-cell RNA sequencing [7], drug 
sensitivity prediction [8], and patient response estimation [9] are key applications in 
drug discovery. Transfer learning is predominantly employed in three domains, namely 
molecular characteristics and activity prediction (including DTI), molecular generation, 
and structure-based virtual screening [10]. Transfer learning serves as a fundamental 
approach to address the inherent challenge of limited training data in machine learning 
development [10]. For instance, in molecular generation models, it is common practice 
to pre-train models on extensive datasets such as Chemical European Molecular Biol-
ogy (ChEMBL) [11], followed by fine-tuning the model using smaller target datasets to 
generate specific functional molecules. Subsequently, the knowledge gained from the 
initial model is leveraged [12]. The obtained parameters serve as initializations for the 
second model, and transfer learning can address the issue of data loss by fine-tuning a 
pre-trained model trained on extensive datasets [12].

The Transformer model, a widely used architecture developed by Vaswani [13], is 
solely based on the attention mechanism, eliminating the need for loops and convolu-
tions. Schwaller and Lee’s team successfully applied the Molecular Transformer model 
to accurately predict chemical reactions while considering uncertainty calibration [14]. 
In the realm of pharmaceutical chemistry, Lee employed the Transformer model to inte-
grate reaction prediction and inverse synthesis, aiming for a comprehensive approach 
[15]. To enhance analysis accuracy, prediction precision, and establish a more gener-
alized model, this study introduces transfer learning into the Transformer framework 
[16–19]. Specifically, we construct a model named PrCRS based on the Squeezeformer 
architecture [20].

In this study, we propose PrCRS, a novel multi-label prediction model for identifying 
severe CRS based on Transformer and multi-head self-attention mechanism. Firstly, we 
pre-trained the COVID-19 dataset to equip the model with knowledge of relevant fea-
tures through sufficient training. Furthermore, the acquired knowledge was effectively 
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applied to a smaller dataset pertaining to our CAR-T therapy, resulting in improved 
accuracy of output predictions following training on limited data. To compare the per-
formance with non-migration learning, we utilized the prediction results without migra-
tion as reference data.

Methods and data
Dataset

The migration data was derived from a cohort of 1801 patients. Suspected COVID-
19 inpatients were identified using PCR, routine laboratory measurements, and ELLA 
cytokines, while concurrently documenting the severity of their condition at that par-
ticular time. The patients were identified by querying the individuals in the electronic 
database of the Department of Pathology who conducted both SARS-CoV-2 PCR-based 
detection and ELLA cytokine grouping. The cytokine data were obtained from the elec-
tronic database of the pathology department, while the clinical and demographic data 
were supplemented with information from the Mount Sinai data warehouse [21].

The training and testing data were obtained from a cohort of 202 patients diagnosed 
with B-ALL, comprising 62 pediatric individuals aged between 0 and 25 years, as well 
as 140 adult subjects aged between 25 and 75  years, who received treatment at the 
Affiliated Hospital of Suzhou Medical University in China. The comprehensive dataset 
encompassed various parameters including blood routine indices, biochemical markers, 
coagulation factors, and cytokine levels. Among the 202 patients diagnosed with B-ALL, 
a total of 154 patients (76.2%) experienced cytokine release syndrome (CRS), with the 
majority presenting with mild to moderate CRS (grade 1–2; 109/202; 54%), while a sig-
nificant proportion developed severe CRS (grade 3–4; 45/202; 22.3%). When collating 
data, we strive to maintain data integrity and fill in missing data with the appropriate 
CRS rating. Specifically, we populate the operation using the median value of all of this 
data contained in the CRS level to which the data corresponds. For patients presenting 
with fever, the onset of cytokine release syndrome (CRS) is defined as the initial occur-
rence of a temperature ≥ 38.0  °C following CAR-T cell infusion, while CRS resolution 
is defined as the absence of fever or vasoactive drug administration for at least 24  h. 
Among these individuals, 131 experienced fever symptoms, whereas 23 patients devel-
oped CRS in the absence of fever symptoms. Detailed data can be found in Table 1.

Architectural design

Due to limited availability of patient data on CAR-T cell therapy, this study employs 
transfer learning. For pre-training, we utilized a dataset related to novel coronavirus 
(COVID-19). Post-treatment, novel coronavirus also induces CRS reaction similar to 
that observed in CAR-T cell therapy; hence, this dataset was chosen as the migra-
tion data. Following extensive training, the source model acquires knowledge of rel-
evant features from the data. The acquired knowledge is subsequently transferred to a 
smaller dataset pertaining to our CAR-T therapy through a Fine-tuning approach. Ini-
tially, the partial convolution layer and Squeezeformer of the pre-training model are 
kept frozen during training [20]. While certain layers of the model remain unchanged, 
the remaining layers and fully connected layers undergo training. The pre-training of 
the model is based on a data set that comprises 60% novel coronavirus data and 40% 
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CAR-T data. This approach effectively harnesses the powerful generalization ability of 
deep neural networks while avoiding complex model design and lengthy training. The 
framework diagram for the model is presented in Fig. 1.

Table 1 Baseline characteristics of the patients

Characteristics Children (N = 62) Adult (N = 140) Total (N = 202)

Sex

Female 22 76 98

Male 40 64 104

Multiline treatment

Median 3 3 3

Range 1–9 0–13 0–13

Number of recurrence

Median 1 0 0

Range 0–3 0–3 0–3

Transplant or not 13 30 43

Extramedullary infiltration

Yes 2 11 13

No 50 112 162

Protoplast

Median 3.25% 7.00% 5%

Range 0–86% 0–94.5% 0–94.5%

Dead or not

Yes 9 22 31

No 53 94 147

Fig. 1 A transfer learning framework is employed, where the pre-training phase utilizes a COVID-19 dataset 
to achieve optimal results and model performance, with the COVID-19 dataset contributing 60% of the 
training data. Subsequently, a CAR-T dataset (accounting for 40%) is used for fine-tuning, leveraging the 
previously trained model. During this process, certain layers such as convolutional and Squeezeformer layers 
from the pre-training model are frozen
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The robustness of the model architecture plays a crucial role in determining its 
overall performance. Among various options, convolutional neural network (CNN) 
is a popular choice for backbone model architecture. Initially, an end-to-end depth 
CNN model was explored; however, Transformer architecture has emerged as a prom-
ising alternative due to its attention mechanism that addresses long-term dependence 
between input and output while enabling parallel computing and reducing computa-
tional resource consumption. In this study, we adopt the PrCRS Transformer model as 
our basis. The proposed model, an enhanced version of Squeezeformer, incorporates 
a multi-head attention module to enable parallel computation in the encoder [13]. In 
the input layer, clinical factor data from COVID-19 and CAR-T treated patients are 
read and subsequently transformed into a fixed-size matrix through the embedding 
layer. The PrCRS layer employs a combination of U-Net and Transformer architec-
tures to capture factor characteristics, with the resulting feature matrix fed into the 
classification layer for prediction.

PrCRS incorporates the U-Net architecture, enabling temporal compression of 
frame numbers in the intermediate layer and subsequent recovery in the final layer. 
Due to its utilization of the U-Net structure, our model demonstrates enhanced effi-
ciency compared to other models with equivalent parameters. We employ a combina-
tion of Multi-head attention (MHA) + Feed forward network (FFN) + Convolutional 
module + FFN (MFCF). The architectural design of our model is illustrated in Fig. 2. 
Specifically, we propose a block structure that bears resemblance to the conventional 
Transformer [13, 22]. We further introduce a simplified block configuration where 
Multi-head attention (MHA) and convolution modules are sequentially followed by a 
feedforward module.

Fig. 2 The PrCRS framework is structured as follows: Firstly, patient clinical factors are numerically encoded 
and then transformed into a fixed-size matrix using the embedding layer. Secondly, the PrCRS layer combines 
U-Net architecture with Transformer architecture to effectively capture factor characteristics. Thirdly, the 
model employs a multi-head self-attention mechanism to prioritize important discriminant features for 
predicting severe CRS occurrence. Finally, the resulting feature matrix is fed into the classification layer to 
score different levels and obtain accurate prediction results
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U‑Net architecture

The mixed attention-convolution structure of Conformer facilitates the capture of 
both global and local interactions. However, it is important to note that this operation 
incurs quadratic FLOPs complexity in relation to the input sequence length. In order 
to mitigate this additional overhead, we propose a method for calculating attention on 
a reduced sequence length using U-Net [23]. Inspired by the successful dense predic-
tion architecture in computer vision, this study integrates the time U-Net structure. The 
compact network structure of U-Net reduces the number of network parameters and 
accelerates training speed, thereby mitigating overfitting risks and enhancing model 
generalization capabilities. Moreover, U-net introduces the Skip Connections structure, 
which establishes direct connections between the encoder and decoder feature maps in 
a non-linear manner, thereby preserving more spatial and contextual information. This 
enhancement significantly enhances segmentation accuracy and detail retention capa-
bilities, as illustrated in Fig. 2. The up-sampling module employed in this study utilizes a 
higher sampling rate for processing embedded vectors. To the best of our knowledge, the 
work most closely related to our proposed time U-Net is [24]. In that paper, the U-Net 
architecture is integrated into a complete convolutional model for down-sampling sleep 
signals.

Transformer module

The Conformer model was employed as a reference in our study [25]. The Conformer 
block encompasses a sequence of feedforward (’f ’), multi-head attention (’m’), convolu-
tion (’c’) layers, and another feedforward module (’f ’). We denote this structure as FMCF. 
Notably, the convolution kernel exhibits a substantial size, endowing it with attention-
like behavior by incorporating mixed global information. This stands in stark contrast 
to the convolution kernel commonly used in computer vision, which typically employs 
a small kernel size. Therefore, to enhance efficiency, we propose adopting the MF/CF 
structure, motivated by treating the convolution module as a local multi-head atten-
tion module. Furthermore, we opted to exclude the Macaron structure [26]. Due to its 
limited usage in the literature [13, 22, 27, 28], where multi-head attention modules and 
feedforward modules are more commonly employed. In summary, we simplified our 
architecture to resemble the standard Transformer network (Fig. 2), incorporating MHA 
and convolution modules followed by a feedforward module.

Simplified layer normalization

LayerNorm is incorporated in the Conformer model, with both post-LayerNorm 
(postLN) applied between residual blocks and pre-LayerNorm (preLN) implemented 
within the residual connection. Although it is assumed that preLN remains stable dur-
ing training and postLN contributes to improved performance [29], employing these 
two modules simultaneously results in redundant consecutive operations. In addition to 
architectural redundancy, the computational cost of LayerNorm can be significant due 
to its global reduction operation [30]. However, removing either preLN or postLN would 
result in unstable training and failed convergence. Therefore, it is crucial to incorporate 
a scaling layer when replacing the preLN component to enable network control over this 
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weight. This concept is analogous to various training stability techniques employed in 
other domains. For instance, NF-Net [31] introduced adaptive scaling before and after 
the residual block to enhance training stability without normalization. Moreover, Deep-
Net [29] recently proposed incorporating untrained rule-based scaling into the skip 
connection to stabilize preLN in Transformers. Motivated by these findings, we have 
implemented a postLN-then-scaling approach to replace the preLN in all modules, as 
illustrated in Fig. 2. Consequently, our entire model now exclusively employs postLN. By 
substituting the redundant front layer normalization with scaled back layer normaliza-
tion, we achieve zero reasoning cost and significantly reduce floating point operations 
(FLOP).

Result
Performance comparison

In order to establish an efficient model for predicting the cytokine release syndrome 
(CRS) of CAR-T therapy, we conducted a comparative analysis of various classical meth-
ods including CNN, Transformer, Squeezeformer, and our novel PrCRS model. In order 
to mitigate the impact of overfitting and enhance the model’s generalization capability, 
we employed a fivefold cross-validation approach for optimal model selection. The clas-
sification performance of these models on the training set is presented in Table 2. Pre-
cision and recall, being crucial metrics in label classification evaluation, are employed 
to select a more optimal model. Our PrCRS model demonstrates superior performance 
compared to other models. Furthermore, deep learning-based models (Transformer and 
Squeezeformer) generally outperform classical models (CNN). Compared to models 
based on CNN, Transformer, and Squeezeformer, our PrCRS model achieves a mini-
mum of 3% higher f1 score on the test set. Leveraging U-net and Transformer modules, 
our model optimizes the extracted feature matrix. Consequently, we employ the PrCRS 
model for predicting CRS in CAR-T therapy.

Initially, we utilized the dataset comprising 1497 days of data from 202 patients diag-
nosed with acute B-lymphoblastic leukemia and treated with CAR-T therapy. For train-
ing, fine-tuning, and testing purposes, we considered a comprehensive set of 42 factors 
for all patients. The distribution of the dataset is allocated in a ratio of 6:2:2 for training, 
validation, and testing sets respectively. We adopted an experimental design based on 
the fivefold cross-validation method. The tags in our dataset were categorized into two 
levels: ‘severe CRS (≥ 3)’ and ‘non-severe CRS (< 3)’, thereby presenting a binary classifi-
cation problem. During the training process, the average f1 score of the CNN model was 

Table 2 Experimental findings

Comparative analysis of indices between the original and enhanced models in CAR‑T data

Model CAR‑T

Macro precision Macro recall Macro f1

CNN 0.5382 0.5884 0.5442

Transformer 0.6747 0.6806 0.6776

Squeezeformer 0.8613 0.7108 0.7640

PrCRS 0.9255 0.7482 0.8112
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observed to be 0.5177, while that of the Transformer model achieved a higher value of 
0.6703. Subsequently, we conducted experiments using the Squeezeformer model. The 
CrossEntropyLoss() function was employed as the loss function, yielding optimal results. 
The Adam optimizer is employed to compute the output and update the parameters 
based on the gradient. Its average f1 score amounts to 0.7508. In view of the relatively 
large number of models, only the hyperparameter adjustment of our PrCRS model is 
described in detail here. The steps of the hyperparameter tuning method are as follows: 
First, with other hyperparameters fixed, only one hyperparameter is optimized in a spe-
cific interval, and the value of the hyperparameter with the best model effect is selected 
after the training is completed. Then, the selected value is taken as a fixed value, and the 
other hyperparameters are further optimized by the same method until the last hyperpa-
rameter is completely adjusted.

In our model, we initially utilized a COVID-19 dataset consisting of 1801 patients as 
the primary dataset, while the second dataset involved CAR-T therapy for patient treat-
ment. The size of the first dataset exceeded that of the second one. We employed Cros-
sEntropyLoss() as our loss function and Adam() as an optimizer. We adopted a method 
of individually adjusting one parameter while keeping the others fixed. We conducted 
experiments by testing multiple values within a specific range for each parameter and 
evaluated their impact on the model’s performance. The value corresponding to the best 
model performance was selected as the optimal setting for that particular hyperparame-
ter. This process was repeated for other hyperparameters as well. When training the tar-
get model, we utilized 150 epochs and set the batch size to 12. The learning rate is set to 
0.001, and the final model achieves its peak performance at the 12th epoch. For fine-tun-
ing, specific layers of both the pre-training model’s convolution layer and Squeezeformer 
model were frozen. The final softmax layer was employed for classifying results as either 
“0” or “1”. Subsequently, the dataset underwent classification testing. The primary advan-
tage of the PrCRS model lies in its ability to facilitate highly effective migration learning 
through the reuse of feature graph signatures acquired from the training model.

We conducted separate analyses for AUROC and AUPRC in each case, and the 
corresponding results are presented in Fig.  3. The AUROC and AUPRC outcomes 
are depicted as A and B in Fig. 3, respectively. It is evident that PrCRS exhibits com-
parable AUROC performance to squeezeformer, while surpassing Transformer and 

Fig. 3 Experimental AUROC and AUPRC curves. AUROC curve representing the experiment. AUPRC curve 
representing the experiment
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the conventional CNN model by over 40%. Furthermore, our model achieves the 
highest value in terms of AUPRC.

We separately show the effect of clinical factors on the model after removing a 
large item. The experiment effectively reveals the extent to which each detection 
item affects the model. The effect of the model is shown in Table 3.

The AUROC curve is depicted, along with the p-value obtained through a t-test 
for each term within it. We analyzed the AUROC in each case and show the cor-
responding results in Fig.  4. Figure  4 shows the results of AUROC and P values. 
Clearly, while there are differences between the items, they are not sufficiently dif-
ferent to produce competitive P-values. Although the difference is not significant 
from the P-value, there is still a significant difference from the F1 value. After the 
removal of cytokines, the F1 value was the lowest, indicating that cytokines played 
the most significant role in predicting the occurrence of severe CRS. Similarly, the 
effect was small when coagulation indexes and related factors were excluded. This is 
consistent with the actual results observed by doctors.

Table 3 Experimental findings

The effect of each major clinical factor on the model effect was removed separately

Model CAR‑T

Macro precision Macro recall Macro f1

Del cytokines 0.6118 0.8877 0.6628

Del biochemical 0.6364 0.9727 0.7003

Del blood routine 0.9933 0.6667 0.7466

Del clotting and the rest 0.7949 0.7466 0.7685

Fig. 4 Experimental AUROC curves. The AUROC curve is depicted, along with the p-value obtained through a 
t-test for each term within it
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Experimental validation
We retrained the model using data from the remaining 193 patients, and selected 9 indi-
viduals from the CAR-T dataset for individual verification. Daily images were drawn for 
analysis, as shown in Fig.  4. Our model assesses the severity of CRS in patients on a 
daily basis to validate its effectiveness. As the predictive power of the model diminishes 
with an increase in the number of days in advance, the results obtained for that specific 
day are considered optimal and most comparable. The actual prediction model forecasts 
patient conditions one, two, and three days ahead.

Out of the 9 patients, 5 exhibited severe cytokine release syndrome (CRS) with a grade 
equal to or higher than 3, while the remaining 4 did not experience such severity. In our 
CAR-T dataset, we define positive labels as cases with severe CRS (grade ≥ 3), negative 
labels as those without severe CRS (grade 0–2), and visually represent actual severe CRS 
using thick black vertical lines. According to the findings, it is evident that despite some 
individuals not exhibiting severe CRS, the model predicts a relatively high probability 
of occurrence, which aligns with real-world scenarios. This consistency arises from the 
fact that if a patient is falsely diagnosed with severe CRS when they do not actually have 
it, treatment response can be effectively controlled. However, in the event of its actual 
occurrence being falsely judged as not happening, there may be a potential threat to the 
patient’s life. Therefore, to a certain extent, false positives are permissible and considered 
normal. Based on our model’s outcomes, it has demonstrated excellent performance and 
can effectively assess severe CRS in patients.

Since the prediction probability of the model is influenced by its parameters, the out-
put probability varies accordingly. Therefore, it does not accurately represent the actual 
probability of CRS but serves as a mere reference. To align with the actual clinical sce-
nario and facilitate accurate medical decision-making, we employ a strategy to trans-
form the model’s prediction outcomes into probabilities representing the likelihood of 
patients developing severe CRS. In the first step, after training and testing, we use our 
own data to tune the parameters of the model and select the best model. Next, the test 
set is predicted using the best model, and the probability of severe CRS occurrence for 
each sample corresponds one-to-one to the original CRS grade label. When done, they 
are arranged in descending order of probability, and the CRS rank label order is adjusted 
accordingly. The sorted probability and CRS label sequence are then used as a baseline.

When the model is used to predict new cases and data, its prediction probability of 
the new data is matched to the saved baseline, and the position within the baseline that 
is closest to that probability is found. As shown in Fig. 5, for a new patient, the model 
predicted a probability of 0.881 for severe CRS. In the previously saved baseline data, 
position No. 60 corresponds to a probability of 0.898, position No. 61 corresponds to a 
probability of 0.883, position No. 62 corresponds to a probability of 0.819. Therefore, the 
position closest to the target probability of 0.881 is the probability value corresponding 
to the position No. 61 in the benchmark data. After the corresponding location is found, 
approximately 10 sample ranges are selected from the vicinity (above and below) of the 
location. If the corresponding position is in the front and there is not enough data in the 
front (less than 10), then select all the available data in the front and select 5–10 as the 
data range in the back. The number of CRS ≥ 3 in the selected sample is added and then 
divided by the selected sample range to obtain a representation of the actual probability.
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Within the baseline range we recorded, the severity of CRS occurrence in each sample 
was recorded according to actual patients, and the ranking was arranged according to 
the best prediction probability during model training. In order to improve fault toler-
ance, the ratio of the number of CRS ≥ 3 in the selection range to the selection range 
was calculated. In our data, the number of CRS ≥ 3 was small, so we chose 10 as a suit-
able range value. At the same time, because the number of patients with severe CRS is 
relatively small compared with those without severe CRS, the number of samples cor-
responding to each 0.1 probability range is not large when the probability is above 0.8 
within the baseline range. Therefore, when the probability exceeds 0.8, it is appropriate 
to choose 10 as the upper and lower interval value range. For our data, when the proba-
bility range is 0.3–0.8, the number of samples within each 0.1 probability range shows an 
increasing trend, so 15 can be selected as the value range of the upper and lower ranges. 
When the probability is lower than 0.3, the number of samples in each 0.1 probability 
range is the largest, so we choose 20 as the value range of the upper and lower intervals.

It is necessary to comprehensively consider the number of samples and the predic-
tion probability distribution of the model to determine how many ranges to select as an 
interval. From a theoretical point of view, the greater the number of selected ranges, the 

Fig. 5 Diagram of the transformation between the predicted probability of the model and the actual 
probability. The figure uses 25 examples as illustrative examples, while there are others that follow but are not 
shown here for the sake of simplification
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stronger the actual probability tolerance, and the obtained probability estimate is closer 
to the actual probability of patients with severe CRS. Therefore, we believe that the prob-
ability representation obtained by this treatment is an approximate estimate of the actual 
probability of severe CRS occurrence.

The actual probability is depicted by a blue line in the diagram, denoted as "Probability 
2", while the initial model-generated probability is represented by a red line, labeled as 
"Probability 1", as illustrated in Fig. 6. The actual probability deviates slightly from the 
model’s predicted probability, exhibiting a reduced frequency at both extremes. This pat-
tern aligns more closely with the actual patient scenario and enhances diagnostic accu-
racy for medical practitioners.

As a result of our research, we realized that using data from one hospital and a rela-
tively small number of patients in China could introduce bias and limit the applicability 
of the findings to the wider population. However, in order to ensure the universality and 
real-world applicability of the evaluation model, we conducted a second additional vali-
dation, selecting 5 patients from the Third Xiangya Hospital of Central South Univer-
sity as samples. According to the verification results (see Fig. 7), it can be seen that the 
model has good generalization ability.

PrCRS reveals the influence of different clinical factors on human body

Subsequently, we conducted an analysis on the predictive model utilizing the complete 
patient dataset of 202 cases to forecast patient progression by one, two, and three days in 
advance. To evaluate the efficacy of each method at different time intervals, experimental 

Fig. 6 Verification chart of patients: a total of 9 patients were verified, with 5 experiencing severe CRS and 
4 not. Two types of probabilities are utilized to represent the model’s prediction status, and the probability 
indicated by the blue curve labeled as ‘Probability 2’ aligns more closely with actual patient outcomes
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validations were performed. The ROC curves depicting prediction results for each 
model at various time points and corresponding line charts illustrating changes are pre-
sented in Fig. 8. The specificity and sensibility of the prediction results decrease with an 
increase in the number of days in advance for all models, while maintaining overall con-
vergence. Notably, among all factor models considered, they exhibit the highest levels 
of sensitivity and specificity. Although the lead time is decreasing, overall, the previous 
models still exhibit sensitivity and specificity rates above 50% and 90%, respectively, on 
the third day; above 80% and 95% if predicted one day in advance; and above 65% and 
90% if predicted two days in advance. The overall predictive effect holds significant guid-
ance for medical practitioners. Furthermore, we present the prediction outcomes in the 
form of probability to assess the likelihood of severe CRS, enabling doctors to visually 
perceive patients’ risk more intuitively.

The model achieved the highest sensitivity and specificity one day in advance. In the 
prediction hierarchy, cytokines exhibited a prominent role followed by biochemical 
items and blood routine analysis. This observation underscores the pivotal involvement 
of cytokines in the pathogenesis of severe CRS among patients, thereby establishing their 
hierarchical significance. A series of subsequent reactions and activated pathways also 
played a pivotal role. Previous studies have indicated that IL-6, released by macrophages 
and monocytes, appears to be the primary driving factor behind CRS [32]. Higher lev-
els of cytokines can be observed in severe CRS [33]. The release of IL-1 from activated 
macrophages and monocytes stimulates the release of IL-6 and induces nitric oxide 
synthase, thereby contributing to vascular damage [34]. Additionally, elevated serum 
levels of IL-2, TNF-ι, IFN-, IL-8, IL-10, MCP-1 and MIP-1 released by CAR-T cells acti-
vate T cells and further exacerbate inflammation [35]. The release of pro-inflammatory 
mediators, such as nitric oxide (NO), interleukin-1β (IL-1β), interleukin-2 (IL-2), inter-
leukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) during chronic inflammation 
often triggers a diverse array of molecular signaling cascades, including NF-KB, MAPK, 
and JAK/STAT. These cascades subsequently initiate an amplification loop for cytokine 

Fig. 7 Patient validation map: 5 patients from other hospitals were used for further validation. 2 patients 
developed severe CRS and 3 patients did not develop severe CRS
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production. Among them, NF-KB serves as a central regulator in multiple signaling 
pathways, orchestrating the activation of diverse genes and their corresponding prod-
ucts [36]. Moreover, it further amplifies the inflammatory response [37]. These observa-
tions collectively indicate that cytokines alone possess remarkable predictive accuracy 
for severe CRS occurrence, thereby establishing a solid scientific foundation.

Among the individual predictions, the second one involves utilizing biochemical 
markers such as C-reactive protein and ferritin, which exhibit a strong correlation with 
severe CRS prediction. These factors have significantly contributed to achieving high 
sensitivity and specificity in this context. The levels of CRP, serum ferritin, and D-dimer 
have been demonstrated to be associated with severe CRS [38]. However, this correla-
tion exhibits a weaker magnitude compared to cytokines, and the subsequent cascade 
reaction is not as robust as that induced by cytokines.

The last prediction utilizes blood routine analysis, revealing that various factors in the 
blood composition, such as the count and percentage of different blood cells, exhibit 
limited predictive capability for severe CRS occurrence. Consequently, there exists a 
weak correlation resulting in low sensitivity and specificity of the prediction outcomes. 
Therefore, we recommend prioritizing combinations ranked at the forefront for fore-
casting purposes.

Fig. 8 The predictive performance of the six models for patients at one, two, and three days in advance is 
illustrated using ROC curves and line charts
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Prediction of webpage content description

We have developed predictive models for blood routine, biochemical parameters, 
cytokines, and all clinical factors of patients to forecast severe CRS (probability ≥ 3) one 
day in advance, two days in advance, and three days in advance respectively. Addition-
ally, we have designed a bilingual website for physicians to access these predictions at 
http:// predi ction. unicar- thera py. com/ index- en. html. We present six models, wherein 
a minimum of five data inputs per page is required for accurate predictions. Follow-
ing completion of the input process, users can select either tomorrow, the day after 
tomorrow, or the day thereafter to generate predictions. The predicted web interface is 
illustrated in Fig. 9. According to the model test results, we recommend selecting com-
binations for prediction in a descending order of significance. The suggested sequence of 

Fig. 9 This webpage provides predictive analytics encompassing all essential clinical factors for patient 
treatment, categorized into six models, enabling doctors to assess the likelihood of patient progression 
within 1, 2, and 3 days

http://prediction.unicar-therapy.com/index-en.html
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selection is as follows: 1234 (all variables), 123 (excluding cytokines), 4 (only cytokines), 
23 (biochemical blood routine), 3 (only biochemical items), and 2 (only blood routine). 
Only one combination can be selected as input for forecasting. Among these combina-
tions, the model takes a one-dimensional input vector  (X1,  X2, …, Xn), which represents 
the daily recorded clinical data of patients. The total number of factors identified was 
42, including 9 factors related to coagulation and tumor load: D-dimer, procalcitonin, 
B-type natriuretic peptide, α-hydroxybutyrate dehydrogenase, prealbumin, primitive 
cells (tumor load), plasma prothrombin time, activated partial prothrombin time, and 
fibrinogen. The blood routine analysis includes 10 factors: red blood cell count, hemo-
globin level, white blood cell count, neutrophil percentage and count, lymphocyte 
count, platelet count, monocyte percentage and count. The panel of biochemical fac-
tors in 3 includes sodium, potassium, chlorine, calcium, uric acid, glucose, triglyceride, 
γ-glutamyl transpeptidase, albumin, alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creati-
nine, C-reactive protein (CRP) and ferritin.

Discussion
The advent of CAR-T cell immunotherapy has revolutionized biomedical research, yet 
the emergence of cytokine release syndrome (CRS) during treatment poses a significant 
threat to patient safety. Currently, there is an absence of deep learning-based prediction 
models for accurately forecasting the timing and probability of CRS prevention. The lim-
ited number of patients undergoing CAR-T therapy poses a significant bottleneck, while 
the deep learning model necessitates a larger dataset. Currently, a decision tree model 
based on machine learning is employed for predicting the occurrence of severe CRS. 
The drawback of this approach lies in its limited flexibility compared to deep learning, 
resulting in suboptimal prediction accuracy when utilizing branches of the model tree. 
To address this limitation, we have developed PrCRS, a deep learning model, aiming to 
bridge this gap. Furthermore, we employ transfer learning techniques to compensate for 
the scarcity of data. The transferred data originates from COVID-19 patient records, 
enabling automated prediction of the likelihood of severe CRS occurrence in patients 
at least one day in advance. This facilitates timely assessment by medical professionals 
upon inputting new patient data.

In the learning phase, we employ a combination of U-Net and Transformer archi-
tectures, along with employing transfer learning techniques. Based on the evaluation 
results, our model demonstrates superior efficiency compared to the state-of-the-art 
models with equivalent parameter quantities. The learning ability of our model is robust, 
and the incorporation of a multi-attention module endows it with parallel computing 
capabilities. This significantly reduces computational overhead and enhances its profi-
ciency in predicting severe CRS occurrences. Based on this foundation, we construct 
six distinct forecasting models incorporating various factors and provide ranking rec-
ommendations based on the sensitivity and specificity indicators obtained from the test 
dataset. We developed a web-based platform and implemented a model output strategy 
that transforms the predicted occurrence of severe CRS into probability values, facilitat-
ing timely patient assessment by healthcare professionals up to three days in advance.
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The PrCRS model has been trained and tested using our proprietary datasets. 
Although the evaluation results demonstrate its excellent performance, there are still 
instances where patients with severe CRS exhibit relatively low probabilities, while 
certain non-severe CRS cases show high probabilities. Moreover, we conducted inde-
pendent verification on 9 patients and further validated the model’s performance on 
this dataset by retraining it with a cohort of 193 patients. These limitations can be 
addressed in future research through the utilization of advanced network models, 
additional data validation techniques, and an expanded training dataset.

We have recently released an open-source PrCRS platform, encompassing both 
Chinese and English versions, along with the corresponding open-source code avail-
able on GitHub (https:// github. com/ wzy38 828201/ PrCRS). The repository com-
prises comprehensive source code, as well as detailed instructions and scripts for the 
examples presented in this article. The repository also includes the network training 
module, enabling further model refinement to enhance the performance of untested 
applications. Additionally, comprehensive training and test datasets are provided. 
Our CRS analysis platform serves as a pivotal tool for deep learning models in CAR-T 
research. The platform is capable of generating probability estimates even in the 
absence of complete data. We have developed six models, enabling the input of vari-
ous types of measurement data related to cytokines, biochemical markers, and blood 
routine for accurate assessments. The platform can be extended to a range of severe 
CRS judgment scenarios without requiring parameter adjustment, thereby highlight-
ing the platform’s potential in standardizing the determination of severe CRS and 
enhancing reproducibility. PrCRS enables comprehensive and convenient analysis of 
severe CRS, facilitating faster and more accurate patient assessment, thus contribut-
ing to medical system research.

Conclusion
The PrCRS system enables comprehensive and convenient analysis of severe CRS, 
facilitating faster and more accurate patient assessment. It has been utilized in med-
ical research to enhance the efficiency of healthcare systems. Moreover, the model 
serves as a valuable source of inspiration for developing a neural network-based CRS 
prediction model in CAR-T therapy. Additionally, the concept of transfer learning 
can be seamlessly applied to other methodologies, thereby offering a comprehen-
sive approach for optimizing Transformer-type prediction methods based on deep 
learning.
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