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Abstract

Background: The identification of drug side effects plays a critical role in drug repo-
sitioning and drug screening. While clinical experiments yield accurate and reliable
information about drug-related side effects, they are costly and time-consuming. Com-
putational models have emerged as a promising alternative to predict the frequency
of drug-side effects. However, earlier research has primarily centered on extracting

and utilizing representations of drugs, like molecular structure or interaction graphs,
often neglecting the inherent biomedical semantics of drugs and side effects.

Results: To address the previously mentioned issue, we introduce a hybrid multi-
modal fusion framework (HMMF) for predicting drug side effect frequencies. Consid-
ering the wealth of biological and chemical semantic information related to drugs

and side effects, incorporating multi-modal information offers additional, complemen-
tary semantics. HMMF utilizes various encoders to understand molecular structures,
biomedical textual representations, and attribute similarities of both drugs and side
effects. It then models drug-side effect interactions using both coarse and fine-grained
fusion strategies, effectively integrating these multi-modal features.

Conclusions: HMMF exhibits the ability to successfully detect previously unrecog-
nized potential side effects, demonstrating superior performance over existing state-
of-the-art methods across various evaluation metrics, including root mean squared
error and area under receiver operating characteristic curve, and shows remarkable
performance in cold-start scenarios.

Keywords: Drug repositioning, Drug-side effect frequency, Multi-modal fusion
framework, Molecular structures, Biomedical semantics

Introduction

Adverse drug reactions are a leading cause of drug trial failures during drug develop-
ment and can have serious consequences on patient health. Severe ADRs (Adverse
Drug Reaction) can lead to hospitalizations, long-term medical complications, and
even fatalities [1]. Numerous drug side effects are challenging to detect during early
development, and some may remain undiscovered for many years even after the drugs
have been introduced to the market. Regulators mandate extensive experimentation
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to assess the safety and effectiveness of drugs before granting approval. Thus, early
detection of potential side effects in the drug development cycle is important [2, 3].
However, traditional methods of detecting drug side effects, including clinical tri-
als, double-blind studies, and wet laboratory experiments, are always expensive and
time-consuming. In contrast, computational methods [4] provide a quicker and more
cost-effective means of uncovering potential side effects [5]. These computational
approaches serve two main objectives: predicting side effects for drugs already on the
market and identifying potential side effects of new drugs.

In recent years, significant advancements in computational methods have provided
researchers with a deeper understanding of the mechanisms behind drug side-effect
interactions. This newfound knowledge holds the promise of guiding the develop-
ment of safer and more effective drugs. Researchers have introduced various compu-
tational methods for predicting drug-related side effects [6—9], which can be roughly
categorized into two groups: machine learning based and graph representation learn-
ing based methods.

Traditional machine learning methods utilize features derived from chemical struc-
tures of drugs and biomedical information, employing various classification models
for prediction [8, 10]. Additionally, matrix factorization and recommendation algo-
rithms have been extensively used to predict drug-related side effects [11]. Zhang
et al. [12] incorporated biomedical information into the matrix factorization frame-
work by applying graph regularization based on drug combination features. Galeano
et al. [13] were pioneers in introducing the task of predicting the frequency of drug-
related side effects. They proposed a method using non-negative matrix decompo-
sition inspired by recommendation systems, enabling interpretable predictions of
potential frequencies. However, their method heavily relies on established frequency
relationships and cannot make predictions for a novel drug without any known
adverse effects.

In recent years, deep learning models have shown a promising prospect in extracting
more complex features of drugs and side effects [14, 15], resulting in improved predic-
tion accuracy compared to traditional machine learning techniques. Dey et al. [16] used
a chemical fingerprint algorithm to transform each drug into a 2D or 3D graphical struc-
ture, which was compressed into a condensed feature vector through convolution. They
employed a fully connected neural network to predict associations between drugs and
specific side effects based on the final fingerprint representation for each drug.

In addition to drug features, interactions involving drugs, side effects, and diseases are
also crucial. Hu et al. [17] introduced a method for predicting drug-related side effects
using a heterogeneous network that integrates various interaction data.They represented
the correlations between drugs and side effects as a network graph, synthesizing each
node’s representation from its adjacent nodes. Xuan et al. [18] developed heterogeneous
graphs based on drug-disease associations and medicinal chemical substructures, unify-
ing specific and common topologies and pairwise attributes of drugs and side effects.
However, simplifying identification of drug side effects as a binary prediction task over-
simplifies their complexity. Prioritizing side effects with higher frequencies in predic-
tions can streamline drug development in clinical practice. Therefore, there is growing
interest in predicting the frequency of drug side effects through regression.
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Xu et al. [19] proposed a graph-based attention network approach to learn repre-
sentations of drugs and side effects based on drug molecular structures and side effect
semantics, aiming to predict the frequency of side effects for new drugs with limited
available information. On this basis, Wang et al. [20] introduced attribute information,
such as drug-gene ontology associations and drug structure associations, and proposed
a method for regularizing the frequency of side effects in the neighborhood. Zhao et al.
[21] used a graph attention network to integrate three different types of features to
extract different view representation vectors: similarity information, known frequency
distribution, and word embeddings. These vectors were combined to form a unified pre-
diction vector. To incorporate more information about drugs and side effects, Zhao et al.
[22] employed various heterogeneous and homogeneous similarity matrices of drugs
and side effects, learning representations through a convolutional neural network chan-
nel and two multi-layer perceptron channels.

Zhao et al. [23] provided a detailed summary of recent advances in drug-drug pre-
diction models based on machine learning and deep learning methods, and delved
into three score function-based drug-drug prediction models. Meanwhile, Chen et al.
[24] comprehensively reviewed drug-target prediction methods based on network and
machine learning techniques. Pang et al. [25] and Chen et al. [26] integrated multimodal
information to learn deep drug representations. Inspired by these studies, we realize that
rich contextual information is embedded in drugs and their associated side effects. Sur-
prisingly, prior studies have not explored the incorporation of textual data, such as drug
and side effect descriptions, as new modalities in this context. Especially concerning side
effects, the majority of existing studies do not utilize the inherent semantics of the side
effects; rather, they simply consider them as category labels for modeling. Furthermore,
existing research primarily revolves around binary classification tasks to determine
whether drugs are related or not, or regression models to calculate relevant scores, with
little exploration of the complementarity between these two tasks.

To address these limitations, we introduce the Hybrid Multi-Modal Fusion (HMMF)
framework for predicting drug side effect frequencies. The HMMF model facilitates
concurrent multi-modal learning and modeling of the molecular structures, biomedical
semantics, attribute similarity features of drugs and side effects. First, we simultaneously
conduct context-based representation learning for both drug and side effect description
texts. We employ a graph attention network for structural representation learning of
drug molecules. Additionally, we investigate similarity learning for drug and side effect
attributes. Finally, we utilize a hybrid fusion strategy to merge the five representations
derived from these three modalities. Our model benefits from the mutual enhancement
between multi-modal and hybrid-fusion strategy. We compared our model with sev-
eral baseline methods on publicly available datasets and found that our model achieved
state-of-the-art experimental results on both tasks. We also conducted ablation experi-
ments to demonstrate the effectiveness of each component of the model.

Method

Preliminary

To establish the groundwork for outlining the steps of our method, we first give a clear
problem definition and introduce essential notations crucial for predicting the frequency
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of drug-side effect pairs. Consider a dataset DS, consisting of triplets (d, s, y), where
each triplet denotes a drug, its associated side effect, and the frequency of occurrence,
ie, DS = (d,s,y)i. D =di,da,...,d, represents the set of drugs, and S = s1,82,...,5m
is the set of side effects. To predict the frequency of drug-related side effects, a regres-
sion model is employed to approximate the actual frequency closely. If drug d; and side
effect s; in matrix A € R"*" exhibit correlation, the resulting y-value is assigned one
of five scores, ranging from 1 to 5. These scores are categorized as veryrare (frequency
= 1), rare (frequency = 2), infrequent (frequency = 3), frequent (frequency = 4), and
veryfrequent (frequency = 5). In cases where d; and s; are unrelated, A(i,j) = 0.

Next, we will provide a detailed description of our approach to predict the frequency
of drug side effects. As shown in Fig. 1, our method comprises four components: Bio-
medical Semantic Representation Learning, Molecular Structure Representation Learn-
ing, and Attribute Similarity Learning, and Multi-modal Fusion Strategy.

Biomedical semantic representation learning

We collect biomedical text information for drugs and side effects from Wikipedia and
PubChem, as shown in Fig. 2. To prevent potential data leakage, all descriptions involv-
ing interactions between drugs and side effects were excluded from the collected bio-
medical texts. For example, sentences like “Etoposide often causes nauea, vomiting, and
loss of appointment” were not included in the biomedical text data.

Let p% = {wfi,wgi,wgi, iy represent the biomedical text information of drug
di, k% = {wi’ , ng, wg, ..., Wy} represent the biomedical text information of side effect
sj. We employ a multi-modal pre-training language model, KV-PLM [27], to learn the
contextual representation of biomedical text information for drugs and side effects. We
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Drug Molecular Structure Drug Description side effects
SN
) . Pruritus
HQ f\/\)LO Latanoprost is a prostaglandin "
Latanoprost O\/\/\Q analogue used to manage gla- .D.ermatltls
C26H4005 \ . Vision blurred
HO én ucoma effectively. Hvoeraemia
Hyperaemia
OH
o oY Dizziness
Cilazapril o N@«J Cilazapril is an ACE inhibitor for / Hypotension
C22H31N305 & hypertension and heart failure. Fatigue
Headache

Hyperaemia is an excess of blood flow to a body part or organ,
causing

Headache is a or neck region,
often caused by tension, migraine, or other factors.

Fig. 2 Examples describe the drugs latanoprost and cilazapril, and the side effects of hyperaemia and
headache collected from different data sets (such as Wikipedia and Punched)

selected KV-PLM because it concurrently learns molecular structures and biomedical
texts during pre-training, facilitating the integration of multiple information sources
and enhancing the extraction of more comprehensive features for drugs and side effects.
Subsequently, we extract the embedding of the entire sentence, denoted as Oy, to repre-
sent the semantic information of drugs and side effects. The biomedical semantic repre-
sentation of drug d; and side effect s; can be obtained as follows:

¢ = KV=PLM(p),t7 = KV-PLM(K"), t4,¢9 € RN/ (1)
where N is The number of drugs or side effects, fis the output dimension of KV-PLM.

Molecular structure representation learning
Previous studies [28] have highlighted the effectiveness of the graph attention network
(GAT) in extracting representation for drug molecular structures. GAT employs an
attention mechanism to more accurately evaluate the contributions of neighboring nodes
to the target node, enabling a more comprehensive consideration of the global infor-
mation within the molecular graph. Building upon this prior work, for drug d;, we use
the RDKit tool to convert the SMILES (Simplifed Molecular Input Line Entry System)
sequence into an undirected molecule graph G; = (V,E). Here, V ={C,H, O, ..., Sr}
represents the atomic types, and E represents the set of chemical bonds between the
atoms. Each atom in the compound for drug d; possesses an attribute vector X; € R”*1,
initialized based on the attribute values corresponding to each dimension. Subsequently,
we build the molecular topology graph G; = (A;, X;), where A; € R"*” represents the
adjacency matrix of G;, and X; € R”*™ is the matrix containing atomic features. In this
context, n denotes the number of atoms in drug d;, while m is the dimension of the fea-
ture vector for each atom.

The similarity between the target atom node p and its neighbor atom node g (g € N))
can be calculated as follows:
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eyg = H(WX,; WX,),q € N, (2)

where W represents a learnable parameter matrix, while H € R*# denotes the dimen-
sions of the hidden layers in GAT. X, is the one-hot vector of the atomic node. N,
stands for the set of neighboring nodes of node p, and ; represents the concatenation
operation.

Next, we utilize the softmax function to normalize all neighboring nodes of atom node
p, which can be expressed as follows:

exp (LeakyReLU (epq) )

Upg =Softmax(€epq) =
pa =50 (epa) 2 keN;, €XP (LeakyReLU (e )) ®)
Vo =ln=ta0 | D efPWX, (4)

qeNy

where || = 1,...,[ denotes the output of multiple attention heads, and (/) signifies the
total number of attention heads that we have defined. ||, ;is the concatenation of the
outputs from different heads. Lastly, the drug molecular structure representation v% of
drug d; is obtained by applying max pooling to the embedding of each atom.

Attribute similarity learning

In addition to extracting embeddings from the rich structural and bio-semantic infor-
mation of drugs and side effects, we can also learn existing attribute similarity informa-
tion to capture the profound relationship between drugs and side effects.

Drug similarity
We collect drug-related data from two primary sources: the STITCH database, which
provides drug chemistry structures, and the Comparative Toxicogenomics Database
(CTD), which details drug-disease associations.

The STITCH database is a comprehensive resource for exploring drug-chemical inter-
actions, providing detailed information on the chemical structures of various drugs. It

primarily constructs an association matrix, Sqrug-chem € RNV drugxNarg

that captures
similarity scores among drug compounds. This matrix, with dimensions, provides valu-
able insights into the chemical resemblances among different drugs within our dataset.
Conversely, the CTD database serves as a vital repository of associations between drugs
and diseases. The CTD database collects extensive data, capturing 330,397 associations
across 750 drugs and 6,808 diseases from benchmark datasets. These associations are
meticulously represented in a drug-disease association matrix, denoted as S'qrug-diseases
where each entry s(i, j) signifies the relationship between drug i and disease j, with s(i, ;)
serving as a binary indicator (0 or 1) of association presence. Subsequently, we calculate
the Jaccard similarity between the rows and columns of §'4rug-diseases facilitating the con-
struction of a similarity matrix denoted as Sqrug_disease € RNarug *Nerug,

After obtaining the two attribute similarity matrices for drugs, to derive the repre-

sentation of a drug, we can concatenate the i-th row of Sqrug-chem and Sgrug-disease 8



Liu et al. BMC Bioinformatics (2024) 25:196 Page 7 of 18

the initial feature representation for drug d;. Subsequently, we project the representa-
tion into the same space as that of side effects, the drug similarity representation of d;

is denoted as 0% € R1*dim,

odi =0 (W (S drug-chem [i,:]: S drug-disease [, ]) + b) (5)

where [i, : ] represents the i-th row of the matrix, and ; denotes concatenation operation.

Side effect similarity

To measure the similarity of hyponymy among side effects, we retrieve the relevant
data from the ADReCS database to initialize our side effects [29]. This database is
organized with a four-level tree structure, where each ADR item is given a unique ID.
For example, in the ADReCS dataset, polycythemia is identified with the unique ID
14.12.01.002. We have constructed a directed acyclic graph (DAG), with nodes repre-
senting side effects and links denoting relationships [30]. In this graph, the only type
of relationship is defined as ‘is-a, connecting child nodes to parent nodes. We define
the contribution of a side effect s in DAG4 to the semantics of side effect A as the D
value associated with side effect s concerning side effect A.

D _ 1 ifs=A
als) = max {,u * Dy (s’) | s’ € children(s) ifs # A} (6)

where p represents a fixed weight for the semantic contribution value. We have set i to
0.5 based on the practical experience outlined in the previous work. Consequently, we
can compute the total semantic value of side effect A using the following formula:

DV(A)= Y Da()

teAnc(A)

(7)

where Anc(A) refers to a set of nodes comprising all ancestor nodes of side-effect A,
including A itself. Typically, the closer an ancestor node is to A, the greater its contribu-
tion will have on A, and vice versa.

Then, for a pair of side effect s; and s;, the similarity of hyponymy among them can
be defined as follows:

erAnc(si)ﬂAnc(si) (Dsi *) + DS/ (x))

(8)
DV (s;) + DV (s;)

sim(si,sj) =

Finally, we construct the hyponymy similarity matrix of side effects, denoted as
Sside»hypo c R Nside effect X Nside effect,

Using a pre-trained word2vec model based on Wikipedia, embeddings are gener-
ated for each side effect term in the benchmark dataset, constructing a side effect
feature matrix S gde.word € RNVsideeect Xt where f is the output dimensionality of the
word2vec model. Subsequently, by computing the cosine similarity between side
effects, these representations are utilized to build a matrix of word similarities for
side effects, represented as Sgiqeword € R Vside effect X Nside effect,
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To make full use of the known drug-side effect association information, we
transpose the drug-side effect association matrix and, based on the transposed
matrix, calculate cosine similarity to construct a similarity matrix for side effects
Sside-drug € R Nside effect X Nside effect,

We extract the j-row in the similarity matrices Sgide-hypos Sside-word and Sside-drug- We
assign different weights to these rows for constructing the initial feature representa-
tion of the side effect s;. The specific weight formula is as follows:

gside-hypo. — softmax(tanh (W - (usidehypo) T b)) 9)

where osidetyro js the weight of wsidetyro, W and b are learnable parameters. Similarly, we
can obtain aside-word and rside-drug, Finally, the representation of side effect similarity repre-
sentation is:

031‘ — side-hypo . yyside-hypo + oside-word | yyside-word + oside-drug . yyside-drug (10)

Multi-modal fusion strategy
Before integrating different modal representations, we begin by projecting the repre-
sentations derived from the biomedical semantic modality and the molecular struc-
ture modality into a unified space that aligns with the attribute similarity modality.
For drug d;, we the biomedical semantic representation t%, molecular structure rep-
resentation v% and attribute similarity representation 0%, For side effect sj, we have
the biomedical semantic representation t¥ and the attribute similarity representation
o%. This unified space is of dimension dim.

To facilitate information interaction across different modalities, we design two
fusion mechanisms.

Fusion Strategy 1 (coarse-grained fusion): Given each representation of drug
tdi, vii, od"}

a% e | , we first perform element-wise product operation with each side

effect representation b¥ € {t%, 0%}

ciﬁ’sj =0 ((Z (ad" @bsf))W) (11)

where cfi’sj represents the learned coarse-grained fusion representation of each drug-
side effect pair.

Fusion Strategy 2 (fine-grained fusion): Given each representation of drug
a% e {t%, v¥, 0%}, we perform the outer product operation with each side effect rep-
resentation b¥ € {t%,0%}:

7 = (NN (a% xb¥) )W) (12)

where CNN (Convolutional Neural Network) is an encoder commonly used in image
representation learning to extract fine-grained features. We utilize it in our approach to
learn fine-grained fusion representation of each drug-side effect pair.
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Loss function

Up to this point, we have acquired both the coarse-grained and fine-grained fusion rep-
resentations of the drug-side effect pair, denoted as c‘lﬁ'sj and cgi'sj . We concatenate these
two representations and input them into a two-layer fully connected neural network to
generate the predicted frequency score and association score for drug side effects in this
model.

di’sf. di,sl'

FS%" = MLP (cl L) ) (13)
where FS% is the frequency score of drug d; and side effect s,
d, S: . . di,S]' di’si
A8 = Sigmoid (MLP (cl ;€ )) (14)

where AS%* is the association score between drug d; and side effect 8.

Our proposed method, illustrated in Fig. 1, yields two scores: the probability of asso-
ciation between drug-side effect pairs and the frequency score when making predictions
for positive samples. The objective function of HMMEF is as follows:

Ly = Z (Asdf’sf‘ - /?)2, Ly = Xn: (FS"”"SI’ - &)2 (15)

i=1 i=

L=L1 x L7+ yR(O) (16)

where k € (0,1) represents the ground-truth association score of the drug side effect
pair, and ¥ € {1,2,3,4,5} represents the ground-truth frequency score. R(®) corre-
sponds to the L2 regularization term, which is the sum of the squared weight values,
where ® encompasses all trainable model parameters. Additionally, £1 and £2 are loss
functions designed to minimize the association and frequency errors between drugs and
side effects.

Results

In this section, we explore the feasibility and effectiveness of the proposed model in pre-
dicting the frequency of drug side effects through experiments. Specifically, we address
the following research questions: RQ1. Is the proposed multimodal fusion model both
feasible and effective? RQ2. If so, which modules contribute more significantly to its
enhancement? RQ3. How does the model perform when encountering data on new

drugs?

Dataset

The frequency information of drug side effects in the benchmark dataset is obtained
from the SIDER database and collected by Galeano [13]. The dataset contains 37,071
known frequency pairs of drug side effects, covering 750 drugs and 994 side effects.
There are five frequency scores for drug side effects, including very rare (frequency =
1), rare (frequency = 2), uncommon (frequency = 3), frequent (frequency = 4), and very
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frequent (frequency = 5). We have observed that the majority of known frequency pairs
of drug side effects are either uncommon or frequent, making the dataset significantly
imbalanced.

Additionally, in our proposed model, we introduce association and similarity matrices
for various drug and side effect attributes. The drug-disease association data is obtained
from the Comparative Toxicology Genome Database (CTD), while the similarity score
between drugs d; and drug d; is sourced from the STITCH database. For each drug or
side effect, we gather their SMILES sequences and biomedical text information from
Pubchem and WIKI. To obtain side effect information, we utilize the Adverse Drug
Reaction Classification System (ADReCS).

Baselines

In the comparison experiment, we used the following models as baselines for predict-
ing drug-side effect frequencies. We evaluated the performance of all baseline methods
using the same dataset and employed the parameter settings as specified in their respec-

tive work.

+ Galeano’s model[13] introduced a recommendation system-based approach for pre-
dicting the frequencies of drug side effects using matrix decomposition methods.
Nevertheless, this method has limitations when it comes to forecasting the frequen-
cies of associated side effects for novel or unidentified drugs.

+ MGPred[21] extracted initial features of drugs and side effects from various hetero-
geneous datasets. It predicted the frequency of drug side effects by integrating repre-
sentations from multiple perspectives using an attention network.

« DSGAT[19] employed a graph attention network to acquire embeddings for drug
molecular graphs and side effect graphs. These two embeddings were mapped into a
shared vector space, and matrix decomposition was utilized for decoding. It is worth
mentioning that this approach primarily focuses on extracting features from drug
molecular structures, which might result in the oversight of other essential features.

+ SDPred[22] integrated data from diverse sources concerning drugs and side effects
to learn embeddings of drug-side effect pairs through multiple channels. The pre-
dicted outcomes are generated by inputting these embeddings into a multilayer per-
ceptron.

+ NRFSE [20] uses class-weighted non-negative matrix factorization to decompose
the drug-side effect frequency matrix, employing Gaussian likelihood for modeling
unknown drug-side effect pairs. Additionally, it integrates a multiview neighborhood
regularization strategy, merging three drug attributes and two side effect attributes to
ensure similarity in latent features among the most similar drugs and side effects.

Experimental setup

In this study, we evaluate the effectiveness of our proposed model and baseline methods
using a nested 5-fold cross-validation approach on a standardized benchmark dataset. Posi-
tive samples consist of the frequencies of all known drug side effects, with an equal number
of unrelated drug side effects randomly selected as negative samples. The combined pool of
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positive and negative instances is subsequently randomly partitioned into five distinct sub-
sets. During each iteration of the outer validation loop, one subset is designated as the test
set, while the remaining four subsets collectively constitute the training set. Within each
outer fold, an inner loop employs a five-fold cross-validation procedure to fine-tune model
hyperparameters and evaluate performance. Performance metrics reported reflect the aver-
age outcomes derived from the nested 5-fold cross-validation procedure.

During the training of our proposed model on an NVIDIA A100 with 80 GB VRAM,
we conduct hyperparameter optimization via inner cross-validation. The model’s train-
ing epochs are capped at 400. Preliminary experiments are conducted on combinations of
learning rate, batch size, and embedding dimensions to observe performance trends. Based
on these preliminary results, we select values that demonstrate stability and potential under
5-fold cross-validation: an initial learning rate of 5e-4 with a learning rate decay strategy
reducing the rate by 80% after 250 epochs, a batch size of 128, and an embedding dimen-
sion of 128. Subsequently, through grid search during inner cross-validation, dropout rates
within the range [0.4, 0.5, 0.6] and y values within [le-3, le-4, 1le-5] are explored to deter-
mine the optimal hyperparameter combinations for each fold. We specify weight decay
as le-3. Finally, for the multi-layer convolutional neural network, filter sizes of 2x2 with a
stride of 2 are utilized.

Evaluation metrics

To comprehensively evaluate the performance of various methods, we consider multiple
evaluation metrics. Specifically, we use AUPR (Area Under the Precision-Recall curve)
and AUROC to evaluate the drug-side effect association performance. We employ RMSE
and MAE (Mean Absolute Error) to evaluate drug-side effect frequency prediction perfor-
mance, where smaller errors indicate better model performance, indicating that the model’s
predictions are close to the actual values.

AUROC: The AUROC curve is a widely used method for evaluating the performance of
binary classification models. It plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) at various decision thresholds, demonstrating how well the model distinguishes
between positive and negative samples. A larger area under the curve (AUC) is desirable as
it indicates predictions with higher accuracy.

AUPR: The AUPR stands for the area under the Precision-Recall curve, where the x-axis
represents the recall rate, and the y-axis represents accuracy. In real-world data, the distri-
bution of positive and negative samples is often highly imbalanced, making AUPR a more
suitable evaluation metric for evaluating model performance.

MAE and RMSE: To evaluate the performance of drug-side effect frequency predic-
tion in the regression-based task, we employ evaluation metrics such as root mean square
error (RMSE) and mean absolute error (MAE). These statistical measures quantify the
error between the actual and predicted values of the samples and are frequently utilized in
regression tasks.
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Effects Based on High-Scoring Predictions

Accuracy

TPR

Galeano's DSGAT NRFSE MGPred SDPred HMMF

Table 1 The experimental results of all baseline methods and our HMMF model on the benchmark
dataset are presented

Model AUROC AUPR RMSE MAE

Galeano’s method 0.9182 09178 1.2980 0.9530
DSGAT 0.9256 0.1893 1.0599 0.7642
MGPred 0.9268 09175 0.6635 0.5058
SDPred 0.9382 0.9352 0.6089 04375
NRFSE 0.9289 0.1948 0.9882 0.7342
HMMF 0.9428 0.9398 0.5810 04216

Higher values indicate better results for AUROC and AUPR, while for RMSE and MAE, lower values are preferred

where 7 represents the total number of drug-side effect pairs with frequency scores, y;
represents the predicted frequency score, and z; denotes the ground-truth frequency

score.

Experimental results

In Table 1, we compare the experimental results of all baseline methods and our pro-
posed HMMF model. Based on the table, we observe that the HMMF model outper-
forms all the baseline methods across various performance metrics. We can draw the
following conclusions from the results in Table 1 and Fig. 3a: (i) For the AUROC and
AUPR metrics, the HMMF model shows a relatively small but excellent performance
improvement. Compared to the best-performing baseline method, SDPred, the HMMF
model demonstrates an improvement of approximately 0.5% in both metrics. This signi-
fies that the HMMF model achieves higher accuracy and superior classification perfor-
mance. While our improvements may not be as substantial when compared to SDPred,
it is worth noting that SDPred already makes use of a substantial amount of similarity
data, providing rich initial association features. (ii) For the RMSE and MAE metrics, the
HMMF model’s performance is significantly better than other baseline methods. Nota-
bly, the RMSE is reduced by about 1-1.5%, and the MAE is reduced by about 1.5— 2%.
These results indicate that the HMMF model excels in predicting errors and estimating
accuracy. (iii) Compared to DSGAT, which relies solely on the molecular structures of
drugs for learning drug embeddings, our model combines various data sources, such as
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biomedical texts and multiple attribute similarities between drugs and side effects. This
results in significant improvements in both AUROC and AUPR, along with a consider-
able reduction in RMSE and MAE. These enhancements demonstrate the effectiveness
of our approach in capturing drug and side effect relationships and accurately predicting
their frequencies.

In summary, the HMMF model excels in various metrics, with a particularly notable
improvement in RMSE and MAE. These findings demonstrate that the HMMF model
provides better predictive performance than other baseline methods, especially in the
task of drug-side effect frequency prediction. To further investigate the model’s ability to
predict the frequency of side effects for individual drugs, we present distribution of the
four evaluation metrics for every in Fig. 4. The average values for AUROC and MAE for
all drugs are 0.915 and 0.369, respectively.

To assess the significant advantage of our model over the current state-of-the-art
(SOTA) model SDPred, we conducted a two-sided Wilcoxon rank-sum test on all drugs
in the benchmark dataset. The results were indeed impressive. Our model achieved sig-
nificantly lower p-values of 3.547 x 10~% based on AUROC and 2.694 x 10~ based on
MAE compared to SDPred, indicating that our model outperforms SDPred with statisti-
cal significance. Demonstrating marked improvements in both prediction accuracy and
performance, these p-values are well below the conventional significance threshold of
0.05, providing strong statistical evidence of our model’s superiority over SDPred.

Ablation study

Next, we verify the impact of different model modules by removing them from the
full model. “only structural formula” indicates that model learning only predicts the
frequency of side effects based on the molecular structure of drugs. “only biomedical
semantic” denotes using solely biomedical texts related to drugs and their associated
side effects as input, excluding additional attributes. “ w/o molecular structure seman-
tic” indicates the model’s performance without considering molecular structure. “ w/o
drug similarity” and “ w/o side effect similarity” represent the exclusion of attribute
similarity for drugs and side effects, respectively. “ w/o fine-grained fusion” and “ w/o

1.5+ . 1.0 E =
1.2+
» 997 "
g g 1
] s
>
0.6 >
0.5+
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0.0 S— —_

T T
RMSE MAE I I
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Fig. 4 Distribution of RMSE, MAE, AUROC, AUPR values for all drugs in the main experiment
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coarse-grained fusion ” denote the exclusion of different fusion strategies. Table 2 pre-
sents the RMSE and MAE results of each module ablation experiment on the bench-
mark dataset.

We can draw the following conclusions: (i) Exclusively incorporating either biomedi-
cal text or structural formula input, while excluding other modules in the model, also
yielded impressive AUC and AUPR scores. This finding validates our hypothesis regard-
ing the effectiveness of capturing the relationship between drug side effects solely from
biomedical text input. It is worth noting that structural characterization shows superior
performance in predicting the frequency of side effects compared with drugs with bio-
medical semantic. (i{) Removing information modules such as molecular structure and
attribute similarity leads to a decline in overall performance, highlighting the impor-
tance of multi-modal fusion in predicting drug side effects. (iif) Our approach is dis-
tinct in that it employs two fusion mechanisms to integrate drugs and side effects before
input, as opposed to directly connecting them to a multilayer perception. This fusion
methodology allows for a more effective capture of the intricate relationship between
these elements. In summary, the experimental results demonstrate that each module in
our proposed model complements the others, ultimately improving the prediction per-
formance of drug side effect frequency.

Cold start analysis

The preliminary assessment of new drugs for predicting adverse effects is a critical con-
cern, especially in the context of clinical trials. New drugs often lack established data
on the frequency of adverse effects, making methods like Galeano’s unsuitable for the
common cold-start scenarios found in drug discovery. To evaluate the efficacy of our
approach in forecasting the incidence rates of adverse effects for new pharmaceuticals
within a cold-start setting, we employed the 10-fold cross-validation technique. This
method uses a single loop to conduct the cross-validation. During each iteration, models
are trained on a subset of the data and then tested on the remaining data.

To ensure fairness in our cold-start experiments, our competitors, MGPred, NRFSE,
and SDPred, did not use embeddings derived from drug and side effect association
matrices during each fold. Similarly, our model excluded the Sgjge_qrug module, which
also derives embeddings through association matrices. We then randomly selected 10%
of the drugs from our initial dataset of 750 for the final test phase, while the remaining

Table 2 Experimental results of our model and its degenerated models

Model AUROC AUPR RMSE MAE

only structural formula 0.8921 0.8968 0.6648 04973
only biomedical semantic 0.8869 0.8832 0.6790 0.5103
w/o molecular structure 0.9412 0.9389 0.5927 04298
w/o drug similarity 0.9283 0.9257 0.6012 0.4487
w/o side-effect similarity 09118 0.9098 0.6394 0.4896
w/o coarse-grained fusion 0.9365 0.9321 0.6074 04431
w/o fine-grained fusion 0.9379 0.9360 0.5920 0.4309

Full HMMF 0.9428 0.9398 0.5810 04216
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Table 3 Experimental results in cold start drugs

(2024) 25:196

Model Name AUROC AUPR RMSE MAE
DSGAT 0.8281 0.2915 1.4646 1.1732
MGPred 0.7768 0.2765 0.8960 0.6680
NRFSE 0.8322 0.3265 14126 1.1420
SDPred 0.8426 0.3309 0.8549 0.6243
HMMF 0.8679 0.3668 0.7896 0.5548
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Fig. 5 Analysis of variability in predicting drug side effect frequency scores: absolute error. blue represents
drugs with the highest incidences of side effects, orange denotes drugs with the lowest incidences, and
green indicates a group of drugs for treating Alzheimer’s disease and Parkinson’s disease

90% were used for training within the cross-validation. Notably, in cold-start scenarios,
the way data is partitioned significantly affects performance evaluation. Therefore, we
maintained consistent data partitioning for the 10-fold cross-validation across all mod-
els. The results, as presented in Table 3, demonstrate that our model performs excep-
tionally well in cold-start scenarios, showing a significant improvement compared to
typical conditions. This highlights our model’s robustness and its ability to generalize

effectively to unknown drugs.

Predicting high-frequency drug side effects

To further evaluate the performance of our proposed method, we conducted an addi-
tional experiment specifically focusing on the top 100 high-score predictions. The pri-
mary aim of this experiment was to assess the accuracy proportion within this dataset
and juxtapose the results with other methods. The outcomes of this experiment are
depicted in Fig. 3b. Methods such as Galeano’s method, DSGAT, and NRFSE solely pre-
dict frequency scores without directly predicting specific associations between drugs
and side effects. Consequently, we ranked the top 100 high-frequency associations based
on the frequency scores predicted by these models. We then compared these rankings
with the actual associations in the benchmark dataset to calculate the association pre-
diction accuracy of each method. Meanwhile, SDPred, MGPred, and our method identi-
fied the top 100 predicted associations based on association scores.

Case study

Figure 5 uses a violin plot to clearly show the distribution of absolute errors in predict-
ing the frequency scores of side effects for various drugs. We analyzed 30 drugs grouped
into three categories: those with the highest and lowest side effect incidences, and those
used for treating Alzheimer’s and Parkinson’s diseases. Each violin in the plot represents

Page 150f 18



Liu et al. BMC Bioinformatics (2024) 25:196 Page 16 of 18

a specific drug, illustrating the spread and concentration of the absolute errors. The
x-axis categorizes the drugs, and the y-axis measures the absolute errors in predicting
each drug’s side effect frequencies. The observed trend suggests that narrower, taller
violins correlate with more consistent predictions, whereas wider violins indicate higher
variability in accuracy.

To examine our model’s ability to predict drug side effect frequencies, we conducted
a detailed analysis of three drugs: allopurinol, donepezil, and clofarabine. In our dataset,
allopurinol has the fewest side effects, while clofarabine has the most. Additionally, we
specifically investigated the potential side effects of donepezil in the context of Alzhei-
mer’s disease. We focused on the five side effects with the highest predicted scores for
each drug, as illustrated in Fig. 6. The model proves effective in predicting side effects,
even for drugs with minimal side effects, highlighting its robustness. It’s important to
mention that in the “ground-truth” dataset, allopurinol was not associated with hepati-
tis. However, our model accurately identified this connection, corroborating the findings
of Igbal et al. [31]. It indicates our model’s ability to successfully detect previously unrec-
ognized potential side effects.

Conclusion

In this paper, we presented a hybrid multi-modal fusion framework for predicting the
frequency of drug-related side effects. We made the first attempt to model the biomedi-
cal text of drugs and side effects as new modalities and proposed two multi-modal fusion
strategies with different granularities, offering complementary benefits. Our method
outperformed existing state-of-the-art models in predicting drug side effect frequency.
Ablation experiments confirmed the effectiveness of utilizing multi-modal information,
including biomedical text, molecular structure, and attribute similarity, in predicting
drug side effects, especially in cold start scenarios. Through case studies and visual anal-
ysis, we confirmed the reliability of our hybrid multi-modal fusion framework (HMMF)
in predicting side effects of each drug and its ability to detect previously unrecognized
potential side effects.

asthenia 4.62
somnolence 4.03
-
g‘ headache 4.30
vertigo 3.84
Donepezil nausea 4.09
nausea 4.53
anaemia 4.37 —_— 3.05
body temperature increased 4.20 g 462
iesh 389 hepatitis 3.64
nausea e dermatitis 4.97
“..._vomiting 3.98 Allopurinol
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This research has broad applications in drug development, clinical decision-making,
public health regulation, and personalized medicine. It accurately predicts drug side
effects, offering valuable references to researchers for the discovery and development
of safer, more effective drugs, ultimately enhancing treatment outcomes for patients.
Simultaneously, this research provides precise medication guidance for clinicians,
reducing the incidence of adverse drug reactions and enhancing patient quality of life.
In personalized medicine, it contributes to advancing the medical field toward greater
precision and personalization, facilitating targeted treatment schemes for individual
patients.

While our proposed method has enhanced the performance in identifying the
frequency of drug-related side effects, there is still room for improvement. In the
future, we plan to explore more effective representation models to uniformly encode
the multi-modal information. It’s worth noting that this hybrid multi-modal fusion
framework has the potential for extension to other tasks, such as DDI (Drug-drug
interaction), DTI (Drug-target interaction), and DTA (Drug-target afnity), by leverag-
ing their rich biological and chemical semantic information.

Abbreviations

DDI Drug-drug interaction

DTA Drug-target afnity

AUROC  Area under receiver operating characteristic curve
AUPR Area under the precision-recall curve

RMSE Root mean squared error

GAT Graph attention network

SMILES  Simplifed molecular input line entry system

ADR Adverse drug reaction

CNN Convolutional neural network
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