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Abstract 

Background:  Molecular biology is crucial for drug discovery, protein design, 
and human health. Due to the vastness of the drug-like chemical space, depending 
on biomedical experts to manually design molecules is exceedingly expensive. Utiliz-
ing generative methods with deep learning technology offers an effective approach 
to streamline the search space for molecular design and save costs. This paper intro-
duces a novel E(3)-equivariant score-based diffusion framework for 3D molecular 
generation via SDEs, aiming to address the constraints of unified Gaussian diffusion 
methods. Within the proposed framework EMDS, the complete diffusion is decom-
posed into separate diffusion processes for distinct components of the molecular 
feature space, while the modeling processes also capture the complex dependency 
among these components. Moreover, angle and torsion angle information is integrated 
into the networks to enhance the modeling of atom coordinates and utilize spatial 
information more effectively.

Results:  Experiments on the widely utilized QM9 dataset demonstrate that our 
proposed framework significantly outperforms the state-of-the-art methods in all 
evaluation metrics for 3D molecular generation. Additionally, ablation experiments are 
conducted to highlight the contribution of key components in our framework, demon-
strating the effectiveness of the proposed framework and the performance improve-
ments of incorporating angle and torsion angle information for molecular generation. 
Finally, the comparative results of distribution show that our method is highly effective 
in generating molecules that closely resemble the actual scenario.

Conclusion:  Through the experiments and comparative results, our framework clearly 
outperforms previous 3D molecular generation methods, exhibiting significantly bet-
ter capacity for modeling chemically realistic molecules. The excellent performance 
of EMDS in 3D molecular generation brings novel and encouraging opportunities 
for tackling challenging biomedical molecule and protein scenarios.
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Introduction
Molecular science is an interdisciplinary field that encompasses chemistry, pharmacol-
ogy, materials science, and other related disciplines. Its primary objective is to develop 
novel concepts and breakthroughs that directly influence human health, energy sustain-
ability, and technological advancement. However, given the immense size of the drug-
like chemical space, relying on experts to manually design molecules that are efficient, 
unique, or possess specific characteristics might be prohibitively costly. In recent years, 
deep learning methods, including graph representation learning  [1, 2], especially deep 
generative models  [3–5], have become increasingly popular in the field of molecular 
design due to their exceptional ability to learn intricate data distributions and generate 
novel data samples. By training on a dataset that consists of well-established molecu-
lar structures, deep generative models have the ability to generate novel molecules that 
have structures similar to those in the training dataset, providing an effective method to 
streamline the search space for molecular design and reduce costs.

Most recently, diffusion models (DMs) [6, 7] have made great progress in image syn-
thesis, exceeding traditional generative models. DMs define a diffusion process that 
smoothly perturb data towards a known prior distribution, and a neural network is 
learnt to reverse this perturbation via progressive denoising. Subsequently, the denoising 
network can generate new data by iteratively removing noise from randomly initialized 
data. Many researchers have extended and applied the diffusion framework to molecular 
generation, such as molecular graphs [8, 9], molecular conformations [10–12], and 3D 
geometric molecules [13–15]. However, the existing molecular generation studies typi-
cally employ diffusion methods directly within the atomic feature space, encompassing 
diverse physical quantities such as atomic types, bond types, and spatial coordinates, 
along with multiple modes including discrete, integer, and continuous variables. Conse-
quently, the unified Gaussian diffusion model does not offer the optimal solution in this 
context. Thus, we consider sophisticated decomposition modeling for different variables 
within the molecular features.

In this paper, we propose a novel E(3)-equivariant score-based diffusion framework for 
3D molecular generation, by introducing a diffusion process for 3D geometric structure 
though stochastic differential equations (SDEs), to overcome the limitations of unified 
Gaussian diffusion methods. Specifically, the full diffusion is decomposed into separate 
diffusion processes for distinct components of the molecular feature space, i.e., atom fea-
tures, bonded adjacency matrix, and spatial coordinates, through the proposed diffusion 
framework. The proposed framework is referred to as E(3)-equivariant 3D Molecular 
Diffusion via Stochastic differential equations (EMDS), which describes the perturbation 
of atom features, adjacency, and coordinates via SDEs. During the modeling process, 
EMDS also considers the complex dependency of the components in molecular feature 
space, which is crucial for the generation of real-world molecules, improving the stabil-
ity and generation performance of the framework. In addition, we consider angle and 
torsion angle information, which is naturally translation-invariant, to enhance modeling 
of the molecular coordinate variable and to utilize the spatial information. Subsequent 
experiments have demonstrated that the incorporation of angle and torsion angle infor-
mation significantly improves all metrics of the generated molecules, especially mole-
cule stability.
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We conduct detailed evaluations of EMDS on QM9 [16], the standard molecule data-
set. Experimental results show that EMDS consistently achieves superior performance 
on all metrics, demonstrating the effectiveness and excellent performance of our model 
for unconditional 3D molecular generation. Furthermore, we conduct ablation studies 
and present distribution comparisons between molecules in the test set and molecules 
generated by EMDS to demonstrate that the proposed method is highly effective for the 
molecular generation task. We make the dataset and source code publicly available at 
https://​github.​com/​nclab​hzhang/​EMDS.

The contributions of our work can be summarized as follows: 

(1)	 We propose a novel E(3)-equivariant score-based diffusion framework EMDS for 
3D molecular generation, in which the full diffusion is decomposed into separate 
diffusion processes for distinct components of the molecular feature space, and the 
complex dependency of these components can be efficiently captured during the 
modeling process, overcoming the limitations of unified Gaussian diffusion meth-
ods.

(2)	 We incorporate the angle and torsion angle information into the diffusion frame-
work by introducing the inter-atomic cosine information into score-based net-
works, effectively modeling the coordinate variable, exploiting the spatial informa-
tion, and significantly improving the stability of the generated molecules.

(3)	 We demonstrate the excellent performance of the proposed method EMDS in com-
parison with several state-of-the-art methods for 3D molecular generation.

Related work
Deep generative models have recently demonstrated their effectiveness in modeling the 
density of real-world molecule data for both molecule design and generation  [17–20]. 
As the predominant method for molecular representation, 1D SMILES  [21] has been 
widely utilized in many studies involving sequence-based generative models  [22–24]. 
Due to great advances in graph neural networks, extensive research has been devoted 
to generating molecules in a 2D format [23, 25–27]. In addition, some research [1, 2] has 
been conducted on graph representation learning, which has demonstrated encouraging 
outcomes in fields like drug localization and drug-target interactions. While these stud-
ies have the capacity to generate valid molecules and predict drug-related interactions, 
they neglect the 3D geometric structure information of molecules, which is crucial for 
molecular design. Some recent methods attempt to generate 3D molecules directly. 
Gebauer et al. [28, 29] and Luo & Ji [30] generate molecules by sampling atoms from an 
order-dependent autoregressive distribution, step by step. Satorras et  al.  [31] propose 
equivariant normalizing flows to jointly generate molecule features and positions in 3D.

Most recently, DMs  [6, 7, 32] have gained great interest as powerful generative 
models for molecular discovery applications  [8, 9, 12]. Furthermore, some research 
has explored the incorporation of equivariant graph methods into 3D geometric 
structure generative diffusion models [13, 14, 33]. Some researchers have also begun 
to explore the use of diffusion methods for tasks such as target generation, condi-
tional generation [34, 35], and linker design [36], among others. While these methods 

https://github.com/nclabhzhang/EMDS
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achieve promising results for molecular generation, the multi-modal nature of the 
variables in the atomic feature space makes the unified Gaussian diffusion framework 
suboptimal. In our proposed framework, full diffusion is decomposed into diffusion 
processes of respective components of the molecular feature space to overcome the 
limitations of unified Gaussian diffusion methods. In addition, in contrast to other 
diffusion methods, angle and torsion angle information can be captured and learned 
in our proposed method, improving modeling of molecular coordinates and utilizing 
spatial information.

Preliminaries
Diffusion models

Diffusion models  [6, 37] are latent variable models that learn distributions by mod-
eling the reverse of a diffusion process, known as the denoising process. In order to 
construct diffusion models, it is necessary to first define a forward diffusion process. 
Given a data point x, the forward diffusion process that perturbs data with a sequence 
of noise zt for t = 0, 1, 2, ...T  until the marginal distribution matches a known prior 
distribution, which can be defined by the multivariate normal distribution:

where αt ∈ R
+ denotes the degree of signal retention and σt ∈ R

+ denotes the degree of 
noise addition. Both αt and σt are time-dependent differentiable functions. In general, αt 
is modelled by a function that smoothly transitions from α0 ≈ 0 towards αT ≈ 1 . A spe-
cial case of noising process is the variance preserving process, for which αt = 1− σ 2

t  . 
By implementing this method, αt and σt guarantee that the prior distribution q(zt) 
adheres to a normal distribution while maintaining a strictly decreasing signal-to-noise 
ratio of αt =

√

1− σ 2
t  . This diffusion process is Markovian, and the entire noising pro-

cess can be written as:

In contrast to other generative models, the generation process of diffusion models is 
defined by learning a parameterized reverse denoising process. The denoising neural 
network φ learns to predict the clean data x in the target data distribution from zt . In 
fact, the variable x is unknown during the generative process, with its approximation 
replaced by the neural network x̂ = φ(zt , t) . Then the generative transition distribution 
can be expressed using the approximation x̂:

where t = T , ..., 1 , and the initial distribution p(zT ) is defined as N (0, I).
As a latent variable model, in diffusion, the forward process q(z0:T |x) can be consid-

ered a fixed posterior, to which the reverse process p(x|z0:T ) is trained to maximize 
the variational lower bound of the likelihood of x:

(1)q(zt |x) = N (zt |αtxt , σ
2
t I)

(2)q(z0, z1, ..., zT |x) = q(z0|x)

T
∏

t=1

q(zt |zt−1)

(3)p(zt−1|zt) = N (zt−1;µt(x̂, zt), ρ
2
t I))
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where L0 = logp(x|z0) denotes a reconstruction term that matches the likeli-
hood of the data given z0 , Lbase = −KL(q(zT |x) � p(zT )) matches the distance 
between a standard normal distribution and the final latent variable q(zT |x) , and 
Lt = −KL(q(zt−1|x, zt) � p(zt−1|zt)) , t = 1, ...,T  , denotes denoising matching term.

Score‑based method

However, each KL divergence term Lt in Eq. 4 is difficult to minimize and directly opti-
mizing this objective will suffer from training instability [38]. Specifically, if the reparam-
eterization method and Tweedie’s formula are utilizd, i.e., z = αtx + σtε with ε ∈ N (0, I) 
and E[µt |zt ] = zt + ρ2

t ▽zt logp(zt) for a Gaussian variable zt ∈ N (zt;µt , ρ
2
t ) , then x̂ can 

be expressed as follows:

Subsequently, the corresponding optimization becomes as follows:

Here, φ(zt , t) is a neural network that learns to predict the score function ▽zt logp(zt) , 
which is the gradient of zt in data space, for any arbitrary noise time step t, and θ rep-
resents the parameters of the neural network φ(zt , t) . In practice, Lbase is close to zero 
when the noising schedule is defined in such a way that αT ≈ 0 . Furthermore, if α0 ≈ 1 
and x is discrete, then the reconstruction term L0 is close to zero as well. At this point, 
we observe an explicit connection between the diffusion model and the score-based gen-
erative model.

In the following discussion, we will explain how the score-based diffusion model can 
be extended to encompass an infinite number of time steps. From the perspective of the 
Markovian Hierarchical Variational Autoencoder (HVAE)  [39, 40], this extension can 
be interpreted as expanding the number of levels to infinity T. A stochastic process can 
describe how data perturbs in continuous time across an infinite number of noise scales, 
which can be expressed by a SDE. Sampling is accomplished by inverting the SDE, which 
requires estimating a scoring function for each continuous-valued noise level  [7]. Dif-
ferent parameterizations of the SDE describe various perturbation scenarios over time, 
enabling flexible modeling of the noise process [32].

Equivariance

Generating 3D molecules presents a significant challenge as the likelihood function of 
molecular geometry should remain invariant to rotations, translations, and permuta-
tions. In order to address this issue, it is necessary to clarify the concepts of invariance 
and equivariance. A function f is considered equivariant with respect to the action of a 
group G if, for all g ∈ G , it satisfies the equation Tg ◦ f (x) = f ◦ Sg (x)) , where Sg and Tg 

(4)logp(x) ≥ L0 + Lbase +

T
∑

t=1

Lt

(5)x̂ =
1

αt
zt −

σt

αt
▽zt logp(zt)

(6)argmin
θ

Lt = argmin
θ

1

2ρ2
t

1− α2
t

αt

[

∥

∥φ(zt , t)− ▽zt logp(zt)
∥

∥

2

2

]
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denote transformations for the group element g . Following previous work[13], we con-
sider the Euclidean group E(3) , comprising translations, rotations, and reflections, for 
which Sg and Tg can be represented by a translation t and an orthogonal matrix R for the 
rotated or reflected coordinates.

In molecules, the features h = (h1, ..., hN ) ∈ R
N×nf  are invariant to group transfor-

mations, and the coordinates x = (x1, ..., xN ) ∈ R
N×3 will be affected by rotations, 

reflections, and translations as Rx + t = (Rx1 + t, ..., RxN + t),1 where R denotes an 
orthogonal matrix. It is proved that an invariant prior distribution p(ZT ) and an equiv-
ariant neural network to parameterize the transition kernels p(zt−1|zt) in the diffusion 
model ensure the marginal distribution p(x) is invariant, which is desired for 3D molecu-
lar generation [12, 41]. In other words, this requires our learned likelihood to be invari-
ant to roto-translations.

Methodology
In this section, we introduce our novel continuous-time E(3)-equivariant score-based 
diffusion framework for 3D molecular generation through SDEs. An overview of our 
framework is given in Fig. 1.

Representation of 3D molecules

A molecule is a collection of atoms connected by chemical bonds, categorized based on 
the characteristics of the bonds. And the configuration of a molecule can be visualized 
and depicted in both 2D and 3D formats. The 2D representations focus on depicting the 
connections between atoms, while the 3D representations showcase the spatial arrange-
ment of these atoms. For a complete description of a molecule M with N atoms, in this 
paper, we represent it as a tuple M = (X ,P,A) , where X ∈ R

N×k denotes the atom type 

Fig. 1  Overview of the proposed framework E(3)-equivariant 3D Molecular Diffusion via SDEs. The model 
would train 3D molecules, which include atom features, bond types, and spatial coordinates, with a stochastic 
time step. For the reverse process, the final molecules are generated by denoising the initial state MT  from 
standard normal noise N (0, I) gradually with the reverse SDE. Symmetrically, the diffusion process is achieved 
by adding the noise with the forward SDE until the molecule is degenerated into standard Gaussian noise 
when the time step is large enough

1  We follow the convention to use Rx to denote applying group actions R on x , which formally is calculated as xRT .
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matrix, N is the number of atoms, and k is the feature dimension; P ∈ R
N×3 represents 

the 3D geometric structure, and each row indicates the coordinates of the atom in the 
Euclidean space; and A ∈ R

N×N denotes the weighted adjacency matrix of the 2D graph 
representation for chemical bonds. For simplicity, this paper assumes that molecules are 
fully connected and treats no-bonds as a special edge type. In order to consider the sym-
metry of the molecule, symmetric edge representations are adopted, i.e., A = AT .

3D geometric structure diffusion process

The objective of 3D molecular generation is to synthesize all components, including 
atoms, bonds, and spatial coordinates, while closely following the distribution of the 
observed set of molecules. Directly representing the distribution of a three-dimen-
sional molecule is intricate. Simultaneously, employing diffusion methods directly in 
the atomic feature space is suboptimal, as previously mentioned. Therefore, we con-
sider sophisticated decomposition modeling for different variables within the molecu-
lar features and introduce a framework for generating 3D geometric structure based on 
continuous-time fractions, thereby addressing the problems. Specifically, we propose a 
novel method of 3D geometric structure diffusion via SDEs, enabling the transformation 
of molecules into normal noise and vice versa. The method models the decomposition of 
various variables within molecular features and also captures the complex interdepend-
ency among them, which is crucial for the generation of real-world molecules. We first 
explain the proposed 3D geometric structure diffusion process.

To model the interdependency among X , P , and A , the proposed forward diffusion 
process of geometric structure should be capable of transforming atom-type features, 
adjacency matrices, and spatial coordinates into a simple noise distribution. Formally, the 
diffusion process is represented as the trajectory of random variables Mt = (X t ,Pt ,At) , 
indexed by a time variable t ∈ [0,T ] , where M0 denotes 3D molecules from the data dis-
tribution pdata . Then, the forward diffusion process of 3D geometric structure is mod-
eled by the following ItOo  SDE:

where ft(·) : M → M denotes the linear drift coefficient, gt(·) : M → M×M denotes 
the diffusion coefficient, and w is the standard Wiener process. Note that, in this paper, 
function F  subscripted with t denotes functions dependent on time: Ft(·) = F(·, t) . In 
an intuitive sense, by adding infinitesimal noise dw at each infinitesimal time step dt , the 
forward diffusion process achieves a smooth transformation of data distribution, i.e., X0 , 
P0 , and A0 . For the choice of the coefficients ft and gt , it is necessary to make the diffu-
sion sample Mt approximately follow a known prior distribution at the final time hori-
zon T, which has a form that can be manipulated to generate samples efficiently, such 
as the standard normal distribution. For ease of subsequent formulation, gt(Mt) will be 
denoted as the scalar function gt.

Generative denoising process

The denoising process takes the noisy geometric structure as input and aims to pre-
dict the corresponding clean structure data. To generate molecules that follow the data 

(7)dMt = ft(Mt)dt + gt(Mt)dw, t ∈ [0,T ]



Page 8 of 19Zhang et al. BMC Bioinformatics          (2024) 25:203 

distribution, we will reverse the forward diffusion process described in Eq. 7 over time, 
using the samples from the prior distribution as our initial starting points. It should be 
noted that the diffusion process in reverse time is also a diffusion process, as the follow-
ing reverse-time SDE describes:

where ft and gt are diffusion coefficients, logpt(Mt) denotes the marginal distribution of 
data at time t, dt̃ denotes an infinitesimal negative time step, and w̃ denotes a reverse-
time standard Wiener process.

Directly solving the high-dimensional score term ▽Mt logpt(Mt) is computationally 
prohibitive due to the variable Mt = (X t ,Pt ,At) ∈ R

N×K × R
N×3 × R

N×N . Therefore, 
we propose a reverse-time diffusion approach equivalent to Eq.  8 to circumvent the 
expensive high-dimensional calculations, which is represented by the following SDEs:

where f1,t , f2,t , and f3,t denote linear drift coefficients in a reverse-time diffusion pro-
cess that satisfies ft(X ,P,A) = (f1,t(X), f2,t(P), f3,t(A)) , g1,t , g2,t , and g3,t denote scalar 
diffusion coefficients, and w̃X , w̃P , and w̃A are independent reverse-time standard Wie-
ner processes. The inverse-time diffusion process for each component ( X,P and A ) is 
described separately by the corresponding SDE in Eq.  9, providing a new perspective 
that characterizes the diffusion of 3D geometric structure as the diffusion of each com-
ponent over time.

In the SDEs written in Eq. 9, the complete diffusion is decomposed into separate dif-
fusion processes for each component of the molecular feature space to model variables 
with different characteristics, respectively. Additionally, another property of EMDS is 
that the diffusion processes are interdependent and related to the gradient of the loga-
rithmic marginal distribution ▽Mt logpt(Mt) , which consists of ▽X t logpt(X t ,Pt ,At) , 
▽Pt logpt(X t ,Pt ,At) , and ▽At logpt(X t ,Pt ,At) , also known as the partial score func-
tions [7, 8]. By utilizing partial scores to model the dependency among the components 
over time, the proposed method can represent the diffusion process of an entire 3D 
molecule.

If the partial scores for all times t in Eq. 9 are available, the SDEs in reverse-time can 
serve as a generative model for 3D geometric structure. We use the trained score-based 
networks sθ ,t , sϕ,t , and sψ ,t to approximate the inverse-time SDEs as follows:

where sθ ,t , sϕ,t , and sψ ,t are time-dependent score-based networks used to estimate par-
tial score functions, which satisfy sθ ,t(Mt) ≈ ▽X t logpt(Mt) , sϕ,t(Mt) ≈ ▽Pt logpt(Mt) , 
and sψ ,t(Mt) ≈ ▽At logpt(Mt).

(8)dMt = [ft(Mt)− g2t ▽Mt logpt(Mt)]dt̃ + gtdw̃

(9)

dX t = [f1,t(X t)− g21,t▽X t logpt(X t ,Pt ,At)]dt̃ + g1,tdw̃X

dPt = [f2,t(Pt)− g22,t▽Pt logpt(X t ,Pt ,At)]dt̃ + g2,tdw̃P

dAt = [f3,t(At)− g23,t▽At logpt(X t ,Pt ,At)]dt̃ + g3,tdw̃A

(10)

dX t = [f1,t(X t)− g21,t sθ ,t(X t ,Pt ,At)]dt̃ + g1,tdw̃X

dPt = [f2,t(Pt)− g22,t sϕ,t(X t ,Pt ,At)]dt̃ + g2,tdw̃P

dAt = [f3,t(At)− g23,t sψ ,t(X t ,Pt ,At)]dt̃ + g3,tdw̃A
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After constructing the reverse-time SDE, we can use numerical methods to simulate it 
to generate samples. Numerical solvers provide approximate trajectories from SDEs. Vari-
ous numerical methods are available for solving SDEs, including Euler-Maruyama and sto-
chastic Runge–Kutta [42], and all are suitable for generating samples for the reverse-time 
SDEs. Predictor-Corrector (PC) sampler [7] is adopted to solve the reverse-time SDEs in 
this paper due to its simplicity and effectiveness. The sampler is able to use a score-based 
MCMC method like Langevin MCMC [43] to sample from pt and correct the solution pro-
vided by the numerical SDE solver. To make our mainline description both complete and 
concise, we only briefly describe the application of the PC sampler here, as it is not one 
of our main innovations. Additional details of the PC sampler algorithm for SDEs can be 
found in [7].

Optimization objective

The estimation of partial score functions can be achieved through the training of time-
dependent score-based networks. The networks need then be trained to minimize the dis-
tance to the corresponding ground-truth partial scores. For the minimization of Euclidean 
distance, we generalize the partial score estimation for a given graph dataset [8] to the 3D 
geometric structure, and the new objectives can be written as follows:

where EM0 is taken over the sample M0 ∼ pdata , EMt |M0 is taken over the sample 
Mt ∼ p0t(Mt |M0) , p0t(Mt |M0) represents the transition distribution from p0 to pt , 
γ1(t) , γ2(t) , and γ3(t) denote the loss weighted functions, and t is uniformly sampled 
from range [0, T].

However, the optimization objective described in Eq.  11 cannot be directly applied in 
the training process since we usually do not have access to the ground-truth partial scores 
in practice. The current method [8] demonstrates that it is possible to replace the partial 
scores through denoising score matching [7], and then the new equivalent objective can be 
written as follows:

Due to the fact that the drift coefficient ft(·) in Eq. 7 is linear, the transition distribution 
p0t(Mt |M0) can be separated as p0t(Mt |M0) = p0t(X t |X0)p0t(Pt |P0)p0t(At |A0) . Thus, 
according to the separated transition distribution, the new training objectives can be 
expressed as follows:

(11)

min
θ

Et

{

γ1(t)EM0EMt |M0

∥

∥sθ ,t(Mt)− ▽X t logpt(Mt)
∥

∥

2

2

}

min
φ

Et

{

γ2(t)EM0EMt |M0

∥

∥sφ,t(Mt)− ▽Pt logpt(Mt)
∥

∥

2

2

}

min
ψ

Et

{

γ3(t)EM0EMt |M0

∥

∥sψ ,t(Mt)− ▽At logpt(Mt)
∥

∥

2

2

}

(12)

min
θ

Et

{

γ1(t)EM0EMt |M0

∥

∥sθ ,t(Mt)− ▽X t logpt(Mt |M0)
∥

∥

2

2

}

min
φ

Et

{

γ2(t)EM0EMt |M0

∥

∥sφ,t(Mt)− ▽Pt logpt(Mt |M0)
∥

∥

2

2

}

min
ψ

Et

{

γ3(t)EM0EMt |M0

∥

∥sψ ,t(Mt)− ▽At logpt(Mt |M0)
∥

∥

2

2

}
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In the new optimization objectives, the expectations EM0 and EMt |M0can be efficiently 
calculated by Monte Carlo estimation of the sample tuple (M0,Mt , t) . Given that the 
time-dependent score-based networks described in Eq. 13 can be used to estimate par-
tial scores and the PC sampler can be employed to solve reverse-time SDEs to generate 
molecules, our task now is to design networks that can efficiently learn the partial scores 
of 3D geometric structure distribution.

E(3)‑equivariant score‑based networks

It has been proved that if the prior distribution is invariant to a group and the net-
works used to parametrize transition kernels in the diffusion process are equivari-
ant, then the marginal distribution is invariant [12, 13], which is desirable for our 3D 
molecular generative model. Therefore, we propose a new E(3)-equivariant frame-
work for time-dependent score-based networks, capturing the interdependency 
among X t , Pt , and At over time, based on E(n)-equivariant graph neural networks 
(EGNNs). Furthermore, in order to better model the coordinate variables as well as 
exploit the spatial information, we incorporate the information of bond angles and 

(13)

min
θ

Et

{

γ1(t)EM0EMt |M0

∥

∥sθ ,t(Mt)− ▽X t logpt(X t |X0)
∥

∥

2

2

}

min
φ

Et

{

γ2(t)EM0EMt |M0

∥

∥sφ,t(Mt)− ▽Pt logpt(Pt |P0)
∥

∥

2

2

}

min
ψ

Et

{

γ3(t)EM0EMt |M0

∥

∥sψ ,t(Mt)− ▽At logpt(At |A0)
∥

∥

2

2

}

Fig. 2  The architecture of the score-based networks used in the proposed method. a The score-based 
network sθ ,t estimates ▽X t logpt(X t , Pt ,At) , consisting of EGNN layers and MLP layers. b The score-based 
network sφ,t estimates ▽Pt

logpt(X t , Pt ,At) , consisting of EGNN layers and MLP layers. c The score-based 
network sψ ,t estimates ▽At logpt(X t , Pt ,At) , consisting of Graph Muti-head Attention layers and MLP layers. 
The three neural networks take X t , Pt , and At as input and then estimate the corresponding partial scores, 
separately
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torsion angles into score-based networks. The proposed architecture of the score-
based networks is illustrated in Fig. 2.

First, we present the score-based network sθ ,t to estimate ▽X t logpt(X t ,Pt ,At) , and the 
dimensionality of the network output is consistent with X t . We use multiple layers of 
EGNNs to learn the partial scores from the atom representations as follows:

where H0 = [X t , t/T ] , LH denotes the number of EGNNs layers, and [·] denotes the con-
catenation operation. By concatenating the node features with t/T as input to the net-
work, we can better model the time-dependent information.

Then, the score-based network sφ,t can be presented to estimate ▽Pt logpt(X t ,Pt ,At) in 
a similar way, with the output dimensionality consistent with Pt . The neural network sφ,t 
is structured as follows:

where R0 = Pt , and LR denotes the number of EGNNs layers. The network sφ,t needs to 
be roto-translation equivariant for 3D coordinates, but there is no non-zero distribution 
that is invariant to translation as it cannot be integrated into one [31]. Thus, we use the 
distributions on linear subspaces with a constant center of gravity of zero, which have 
been demonstrated to be consistently used in diffusion [12]. The estimated partial score 
function ▽Pt logpt(X t ,Pt ,At) is derived from the output of multiple layers of EGNNs, 
in which the input coordinate Ri is removed at each layer. By subtracting the center of 
gravity to project the component downward, the output lies on a subspace with a zero 
center of gravity. Then, the score-based neural networks demonstrate both rotational 
and reflection equivariance.

Lastly, we will introduce the score-based network sψ ,t . It employs graph multi-head 
attention to capture crucial relational information between atoms and subsequently 
utilizes higher-order weighted bond-forming adjacency matrices to learn long-distance 
dependency as follows:

where H i+1 = EGNN(H i,Pt ,At) with H0 = [X t , t/T ] given, 
Ri+1 = EGNN([X t , t/T ],Ri,At)− Ri with R0 = Pt given, Ac

t denotes the c sub-higher 
order matrix of bond-forming adjacency matrix At at time t, and LA denotes the number 
of graph multi-head attention layers.

Furthermore, in order to better model the coordinate variables as well as exploit the 
spatial information, we introduce inter-atomic cosine information into the EGNN layer 
used in the score-based neural networks. In a 3D molecule with N atoms, each node 
mi is endowed with atom features xi ∈ R

k as well as coordinates pi ∈ R
3 , and the edge 

attributes aij denote the bonding relationship between node mi and mj . EGNN consists 
of L equivariant graph convolutional layers (EGCLs), and the new EGCL incorporating 
angle and torsion angle information in our settings is calculated as follows:

(14)
sθ ,t(Gt) = MLPθ (

[

H0,H1, ...,HLH

]

)

H i+1 = EGNN(H i,Pt ,At)

(15)
sφ,t(Gt) = MLPφ(

[

R0,R1, ...,RLR

]

)

Ri+1 = EGNN([X t , t/T ],Ri,At)− Ri

(16)sψ ,t(Gt) = MLPψ

([

{

GraphMH(H i,Pi,A
c
t )
}LA,K

i=0,c=1

])
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where l = 0, 1, ..., L indexes the layer, dij =
∥

∥

∥
pli − plj

∥

∥

∥

2
 is the euclidean distance between 

nodes mi and mj , A ∈ R
N×N is the weighted adjacency matrix of 2D graph representa-

tion for chemical bonds, and the learnable functions φx , φa , φanglex , and φanglep are param-
eterized by fully connected neural networks. The new EGCL will capture torsion angle 
information through the learnable functions when aggregating information from all con-
nected neighbors of node mi . Notably, since angles and torsion angles are invariant to 
translation, rotation, and inversion of molecules, this guarantees the equivariance of 
new EGNN layers as required for 3D molecular generation.

Experiments results and discussion
This section presents the experimental results of the proposed method EMDS. First, we 
introduce the benchmark dataset for unconditional 3D molecular generation. Then, we 
describe the evaluation metrics used in the experiments and analyses. Finally, we com-
pare the performance of our framework with several competitive baseline methods, con-
duct ablation experiments to highlight the contribution of the individual components in 
our framework, and present distribution comparisons to demonstrate the effectiveness 
of our proposed method.

Experimental setup

We train and evaluate our proposed method on the standard molecule dataset QM9 [16]. 
QM92 is a widely used molecule dataset that provides information about the various 
types of atoms, 3D spatial coordinates, atom connectivity (bonding information), and 
molecular properties for approximately 130,000 small organic molecules. The molecules 
in the QM9 dataset consist of up to nine heavy atoms (carbon, nitrogen, oxygen, and 
fluorine) and may have a maximum of 29 atoms, including hydrogen atoms. We use the 
train/test/validation partitions introduced in previous studies [13, 44], which consist of 

(17)

vij = φanglex (x
l
i , x

l
j , d

2
ij , cos(p

l
i ,p

l
j), aij)

xl+1
i = φx(x

l
i ,
∑

j �=i

φa(vij)vij)

pl+1
i = pli +

∑

j �=i

pli − plj

dij + 1
φanglep(x

l
i , x

l
j , d

2
ij , cos(p

l
i ,p

l
j), aij)

xl+1,pl+1 = EGCL(xl ,pl ,A)

Table 1  Statistics of the QM9 dataset

Total Mol Num Split Mol Num Avg Len/Mol Composition

139885 Train 100k 18.03 H C N O F

Valid 13K 18.03

Test 18K 18.05

2  http://dx.doi.org/10.6084/m9.figshare.978904.
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100K/13k/18K samples, respectively, for each partition. For a clearer understanding, 
Table 1 provides specific information about the dataset.

Evaluation metrics

To evaluate the quality of the generated 3D molecules, we follow [31] and [13], calculat-
ing the distance between pairs of atoms and the atom types to predict bond types (single, 
double, triple, or none). The common metrics considering hydrogen are also adopted 
in experiments, i.e., the fraction of valid molecules and the fraction of valid and unique 
molecules. Five metrics considering hydrogen are adopted in experiments:

•	 NLL denotes the negative log likelihood, logp(x,p,M) . A lower number of NLL indi-
cates better model performance.

•	 Validity indicates the percentage of the generated molecules that follow the chemical 
valency rules specified by RDkit among all generated molecules.

•	 Uniqueness indicates the percentage of valid & unique molecules among all gener-
ated molecules.

•	 Atom stability signifies the proportion of atoms that have the right valency.
•	 Molecule stability signifies the proportion of generated molecules for which all 

atoms are stable.

Performance comparison

To evaluate the effectiveness of our method, we compare the proposed model with sev-
eral competitive models and state-of-the-art models for 3D molecular generation:

•	 E-NF [31], a molecular generative model equivariant to Euclidean symmetries.
•	 G-schnet [28], a generative neural network for 3D point sets that respects the rota-

tional invariance of the targeted structures.
•	 G-spherenet [30], an autoregressive flow model for generating 3D molecular geom-

etries in which invariance and equivariance are ensured.
•	 GDM-aug  [13], a non-equivariant variation generative neural network trained on 

data augmented with random rotations.
•	 EDM [13], an E(3) equivariant diffusion model for molecular generation in 3D.
•	 Molcode  [45], a roto-translation equivariant generative framework for molecular 

graph-structure co-design.

We conduct comparative experiments using publicly available code for these baselines, 
generate 1000 samples for each model, and present the experimental results thereafter.

The comparative results of de novo molecular generation on the QM9 dataset are pre-
sented in Table 2. Some visualizations (2D and 3D) of the molecules generated by our 
proposed model are shown in Fig. 3. The proposed method is run three times, and the 
mean performance is reported.

In Table 2, we see that our proposed model EMDS outperforms other generative meth-
ods, i.e., E-NF, G-Schnet, G-Spherenet, Molcode, and EDM, as well as its non-equivar-
iant counterpart GDM-aug for all metrics. The proposed model generates the highest 
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Table 2  Performance on the QM9 dataset with explicit hydrogen atoms

Bold values indicate evaluation metrics and the best results among all the methods

Method NLL Valid (%) Valid & 
unique(%)

Atom Sta (%) Mol Sta (%)

E-NF −59.7 40.2 39.4 85.0 4.9

G-Schnet N.A 85.5 80.3 95.7 68.1

G-Spherenet N.A 88.1 82.8 67.2 13.4

GDM-aug −92.5 90.4 89.5 97.6 71.6

EDM −110.7 91.9 90.7 98.7 82.0

Molcode N.A 94.1 91.1 98.6 83.6

EMDS(w/o eq) −97.4 87.3 83.5 97.3 72.0

EMDS(w/o cos) −127.7 93.5 90.3 98.4 82.3

EMDS(w fsn) −130.8 93.9 91.2 98.5 83.3

EMDS −137.1 95.8 93.6 99.2 89.2

Fig. 3  Visualization of molecules generated by the proposed method. The 2D molecular graphs are shown 
below their corresponding 3D geometries
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percentage of valid and valid & unique molecules compared with all other methods, out-
performing previous results in such measures by at least 1.7% and 2.5%, respectively. The 
proposed model is able to generate a very high rate of atom stability and molecule stabil-
ity, outperforming other results in such measures by at least 0.5% and 5.6%, respectively. 
In particular, it also advances the other results in terms of negative log-likelihood (NLL) 
by at least 23%, which suggests that even under a similar diffusion modeling framework, 
the generative distribution learned by the proposed method may contain much sharper 
peaks. Moreover, the excellent NLL results of EMDS also demonstrate its better effec-
tiveness in decomposing the complete diffusion process into diffusion processes of indi-
vidual components of the molecular feature space compared with uniform Gaussian 
diffusion methods. The comparative results demonstrate the effectiveness and excellent 
prospects of the proposed method for 3D molecular generation.

Ablation experiments

To further analyze the impact of certain key model components within the proposed 
method, we also include three variants of the proposed method for ablation studies. 
The three variants include the proposed method that uses a non-equivariant graph net-
work  [46] (i.e., EMDS w/o eq), the proposed method without the inter-atomic cosine 
information of angles and torsion angles applied to networks (i.e., EMDS w/o cos), and 
the proposed method using a single network instead of obtaining the partial score func-
tions of X t and Pt separately, which uses fewer score-based networks (i.e., EMDS w fsn). 
The results of the ablation studies are presented in Table 2.

When using a single network to obtain the partial score functions of X t and Pt , the 
effectiveness of the variant with fewer score-based networks in generating molecules 
is significantly lower. In particular, EMDS outperforms the variant by 5.9% in terms of 
molecule stability. The results suggest that the complex dependencies among the com-
ponents of the molecular feature space significantly affect the stability of the generated 
molecules. The proposed model structure builds three score-based networks for each 
component to be modeled, effectively capturing and learning the complex dependencies 
and greatly facilitating molecular generation.

Compared with the variant using the non-equivariant network, the performance 
improvement of our method is significant in all metrics, proving the effectiveness of 
our proposed equivariant geometric structure diffusion framework. And compared the 
variant w/o cos, the proposed method performs much better in all metrics, especially 
molecular stability with a significant improvement of 6.9%. We speculate that the reason 
for the performance gain is that the inter-atomic cosine information contains informa-
tion of angles and torsion angles, which implicitly determines the spatial coordinates of 
the molecules, and our proposed method can effectively capture and learn the informa-
tion to contribute to a clear improvement.

Distribution comparisons

We further test the performance of our model in generating 3D geometric molecules 
by comparing the distributions of common bond lengths, bond angles, and potential 
energy in the test set and the generated samples (Figs. 4, 5, and 6). In Fig. 4, differences 
in distance distribution between various types of bond lengths are evident, which are 
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Fig. 4  Distribution comparison of bond lengths between molecules in the test set and molecules generated 
by the proposed method

Fig. 5  Distribution comparison of bond angles between molecules in the test set and molecules generated 
by the proposed method
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effectively captured in our model. The performance difference mainly emanates from 
certain distributions with higher peaks where bond lengths are more stable in a smaller 
value range. As seen in Fig. 5, our model excellently represents the distributions of bond 
angles, including those with multiple peaks. And in Fig. 6, it can be observed that the 
potential energy distribution of the generated molecules is in good agreement with that 
of the QM9 dataset, demonstrating the molecules generated by the proposed method 
have good geometrical structural properties. These results show that our method can 
efficiently generate molecules that are close to the real situation and has excellent capac-
ity for modeling chemically realistic molecules.

Conclusion
In this paper, we propose EMDS, a novel E(3)-equivariant score-based diffusion frame-
work for 3D molecular generation. Our approach implements a diffusion process via 
SDEs to incorporate 3D geometric structure, in which the full diffusion is decomposed 
into diffusion processes of respective components of the molecular feature space, thus 
overcoming the limitations of the traditional Gaussian diffusion methods. Furthermore, 
we also consider the angle and torsion angle information, which is naturally translation-
invariant, for improved modeling of molecular coordinates as well as exploiting the 
spatial information. Experiments and comparative results have demonstrated that our 
framework clearly outperforms previous 3D molecular generation methods and has sig-
nificantly better capacity for modeling chemically realistic molecules.

Beyond the work presented here, the scenarios closer to real biomedicine (e.g., pocket-
conditioned generation, RNA structure matching, and targeted molecule generation) are 
clearly of future research interest in molecule design. We plan to explore the prospect 
of expanding EMDS to the various 3D geometry generation applications in challenging 
biomedical scenarios.

Fig. 6  Distribution comparison of potential energy between molecules in the test set and molecules 
generated by the proposed method
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