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Abstract 

Background:  Automated hypothesis generation (HG) focuses on uncovering hidden 
connections within the extensive information that is publicly available. This domain 
has become increasingly popular, thanks to modern machine learning algorithms. 
However, the automated evaluation of HG systems is still an open problem, especially 
on a larger scale.

Results:  This paper presents a novel benchmarking framework Dyport for evaluating 
biomedical hypothesis generation systems. Utilizing curated datasets, our approach 
tests these systems under realistic conditions, enhancing the relevance of our evalu-
ations. We integrate knowledge from the curated databases into a dynamic graph, 
accompanied by a method to quantify discovery importance. This not only assesses 
hypotheses accuracy but also their potential impact in biomedical research which 
significantly extends traditional link prediction benchmarks. Applicability of our 
benchmarking process is demonstrated on several link prediction systems applied 
on biomedical semantic knowledge graphs. Being flexible, our benchmarking system 
is designed for broad application in hypothesis generation quality verification, aiming 
to expand the scope of scientific discovery within the biomedical research community.

Conclusions:  Dyport is an open-source benchmarking framework designed for bio-
medical hypothesis generation systems evaluation, which takes into account knowl-
edge dynamics, semantics and impact. All code and datasets are available at: https://​
github.​com/​IlyaT​yagin/​Dyport.

Keywords:  Hypothesis Generation, Literature-based Discovery, Link Prediction, 
Benchmarking, Natural Language Processing

Introduction
Automated hypothesis generation (HG, also known as Literature Based Discovery, 
LBD) has gone a long way since its establishment in 1986, when Swanson intro-
duced the concept of “Undiscovered Public Knowledge” [1]. It pertains to the idea 
that within the public domain, there is a significant abundance of information, allow-
ing for the uncovering of implicit connections among various pieces of information. 
There are many systems developed throughout the years, which incorporate different 
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reasoning methods: from concept co-occurrence in scientific literature [2, 3] to the 
advanced deep learning-based algorithms and generative models (such as BioGPT [4] 
and CBAG [5]). Examples include but are not limited to probabilistic topic modeling 
over relevant papers [6], semantic inference [7], association rule discovery [8], latent 
semantic indexing [9], semantic knowledge network completion [10] or human-aware 
artificial intelligence [11] to mention just a few. The common thread running through 
these lines of research is that they are all meant to fill in the gaps between pieces of 
existing knowledge.

The evaluation of HG is still one of the major problems of these systems, especially 
when it comes to fully automated large-scale general purpose systems (such as IBM 
Watson Drug Discovery [12], AGATHA [10] or BioGPT [4]). For these, a massive assess-
ment (that is normal in the machine learning and general AI domains) performed manu-
ally by the domain experts is usually not feasible and other methods are required.

One traditional evaluation approach is to make a system “rediscover” some of the 
landmark findings, similar to what was done in numerous works replicating well-known 
connections, such as: Fish Oil ↔ Raynaud’s Syndrome [13], Migraine ↔ Magnesium [13] 
or Alzheimer ↔ Estrogen [14]. This technique is frequently used even in a majority of the 
recently published papers, despite of its obvious drawbacks, such as very limited number 
of validation samples and their general obsolesce (some of these connections are over 30 
years old). Furthermore, in some of these works, the training set is not carefully chosen 
to include only the information published prior the discovery of interest which turns the 
HG goal into the information retrieval task.

Another commonly used technique is based on the time-slicing [10, 15], when a sys-
tem is trained on a subset of data prior to a specified cut-off date and then evaluated on 
the data from the future. This method addresses the weaknesses of previous approach 
and can be automated, but it does not immediately answer the question of how signifi-
cant or impactful the connections are. The lack of this information may lead to deceiv-
ing results: many connections, even recently published, are trivial (especially if they are 
found by the text mining methods) and do not advance the scientific field in a meaning-
ful way.

A related area that faces similar evaluation challenges is Information Extraction (IE), a 
field crucial to enabling effective HG by identifying and categorizing relevant informa-
tion in publicly available data sources. Within the realm of biomedical and life sciences 
IE, there are more targeted, small-scale evaluation protocols such as the BioCreative 
competitions [16], where the domain experts provide curated training and test datasets, 
which allows participants to refine and assess their systems within a controlled environ-
ment. While such targeted evaluations as conducted in BioCreative are both crucial and 
insightful, they inherently lack the scope and scale needed for the evaluation of expan-
sive HG systems.

The aforementioned issues emphasize the critical need for research into effective, scal-
able evaluation methods in automated hypothesis generation. Our primary interest is 
in establishing an effective and sustainable benchmark for large-scale, general-purpose 
automated hypothesis generation systems within the biomedical domain. We seek to 
identify substantial, non-trivial insights, prioritizing them over mere data volume and 
ensuring scalability with respect to ever-expanding biocurated knowledge databases. We 
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emphasize the significance of implementing sustainable evaluation strategies, relying 
on constantly updated datasets reflecting the latest research. Lastly, our efforts are tar-
geted towards distinguishing between hypotheses with significant impact and those with 
lesser relevance, thus moving beyond trivial generation of hypotheses to ensuring their 
meaningful contribution to scientific discovery.

Our contribution

•	 We propose a high quality benchmark dataset Dyport for hypothesis prediction sys-
tems evaluation. It incorporates information extracted from a number of biocurated 
databases. We normalize all concepts to the unified format for seamless integration 
and each connection is supplied with rich metadata, including timestamp informa-
tion to enable time-slicing.

•	 We introduce an evaluation method for the impact of connections in time-slicing 
paradigm. It will allow to benchmark HG systems more thoroughly and extensively 
by assigning an importance weight to every connection over the time. This weight 
represents the overall impact a connection makes on future discoveries.

•	 We demonstrate the computational results of several prediction algorithms using the 
proposed benchmark and discuss their performance and quality.

We propose to use our benchmark to evaluate the quality of HG systems. The bench-
mark is designed to be updated on a yearly basis. Its structure facilitates relatively effort-
less expansion and reconfiguration by users and developers.

Background and related work
Unfortunately, the evaluation in the hypothesis generation field is often coupled with the 
systems to evaluate and currently not universally standardized. If one would like to com-
pare the performance of two or more systems, they need to understand their training 
protocol to instantiate models from scratch and then test them on the same data they 
used in their experiment.

This problem is well known and there are attempts to provide a universal way to evalu-
ate such systems. For example, OpenBioLink [17] is designed as a software package for 
evaluation of link prediction models. It supports time-slicing and contains millions of 
edges with different quality settings. The authors describe it as “highly challenging” data-
set that does not include “trivially predictable” connections, but they do not provide a 
quantification of difficulty nor range the edges accordingly.

Another attempt to set up a large-scale validation of HG systems was performed in our 
earlier work [18]. The proposed methodology is based on the semantic triples extracted 
from SemMedDB [19] database and setting up a cut date for training and testing. Triples 
are converted to pairs by removing the “verb” part from each (subject-verb-object) triple. 
For the test data, a list of “highly cited” pairs is identified, which is based on the citation 
counts from SemMedDB, MEDLINE and Semantic Scholar. Only connections occur-
ring in papers published after the cut date and cited over 100 times are considered. It is 
worth mentioning that this approach is prone to noise (due to SemMedDB text mining 
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methods) and also skewed towards the discoveries published closer to the cut-date, since 
the citations accumulate over time.

One more aspect of the proposed approach relates to the quantification and detec-
tion of scientific novelty. Research efforts range from protein design domain studies [20] 
to analyzing scientific publications through their titles [21] or using manual curation 
in combination with machine learning [22]. However, none of these techniques were 
integrated into a general purpose biomedical evaluation framework, where the novelty 
would be taken into account.

Currently, Knowledge Graph Embeddings (KGE) are becoming increasingly popular 
and the hypothesis generation problem can be formulated in terms of  link prediction 
in knowledge graphs. Knowledge Graphs often evaluate the likelihood of a particular 
connection with the scoring function of choice. For example, TransE [23] evaluates each 
sample with the following equation:

where h is the embedding vector of a head entity, r is the embedding vector of relation, t 
is the embedding vector of a tail entity and || · || denotes the L1 or L2 norm.

These days KGE-based models are of interest to the broad scientific community, 
including researchers in the drug discovery field. Recently they carefully investigated the 
factors affecting the performance of KGE models [24] and reviewed biomedical data-
bases related to drug discovery [25]. These publications, however, do not focus on any 
temporal information nor attempt to describe the extracted concept associations quanti-
tatively. We also aim to fill in this currently existing gap in our current work.

Methods
Glossary

•	 ci—concept in some arbitrary vocabulary;
•	 m(·)—function that maps a concept ci to the subset of corresponding UMLS CUI. 

The result is denoted by mi = m(ci) . The mi is not necessarily a singleton. We will 
somewhat abuse the notation by denoting mi a single or any of the UMLS terms 
obtained by mapping ci to UMLS.

•	 m(·, ·)—function that maps pairs of ci and cj into the corresponding set of all possible 
UMLS pairs mi and mj . Recall that the mapping of ci to UMLS may not be unique. In 
this case |m(ci, cj)| = |m(ci)| · |m(cj)|.

•	 (mi,mj) —a pair of UMLS CUIs, which is extracted as a co-occurrence from MED-
LINE records. It also represents an edge in network G and is cross-referenced with 
biocurated databases;

•	 D—set of pairs (mi,mj) extracted from biocurated databases;
•	 P—set of pairs (mi,mj) extracted from MEDLINE abstracts;
•	 E—set of cross-referenced pairs (mi,mj) , such that E = D ∩ P;
•	 G—dynamic network, containing temporal snapshots Gt , where t—timestamp (year);
•	 Ĝt—snapshot of network G for a timestamp t only containing nodes from Gt−1.

s(h, r, t) = �h + r − t�,
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The main unit of analysis in HG is a connection between two biomedical concepts, 
which we also refer to as “pair”, “pairwise interaction” or “edge” (in network science con-
text when we will be discussing semantic networks). These connections can be obtained 
from two main sources: biomedical databases and scientific texts. Extracting pairs from 
biomedical databases is done with respect to the nature and content of the database: 
some of them already contain pairwise interactions, whereas others focus on more 
complex structures such as pathways which may contain multiple pairwise interactions 
or motifs (e.g., KEGG [26]). Extracting pairs from textual data is done via information 
retrieval methods, such as relation extraction or co-occurrence mining. In this work, we 
use the abstract-based co-occurrence approach, which is explained later in the paper.

Method in summary

The HG benchmarking pipeline is presented in Fig. 1. The end goal of the pipeline is to 
provide a way to evaluate any end-to-end hypothesis generation system trained to pre-
dict potential pairwise associations between biomedical instances or concepts.

We start with collecting pairwise entity associations from a list of biocurated data-
bases, which we then normalize and represent as pairs of UMLS [27] terms (mi,mj) . 
The set of these associations is then cross-referenced with scientific abstracts extracted 
from MEDLINE database, such that for each pair (mi,mj) we keep all PubMed identi-
fiers (PMID) that correspond to the paper abstracts in which mi and mj co-occured. As 
a result, there is a list of tuples (step 1, Fig. 1) (mi,mj , PMID, t) , where t is a timestamp 
for a given PMID extracted from its metadata. We then split this list into a sequence {Et} 
according to the timestamp t. In this work t is taken with a yearly resolution.

Each individual Et can be treated as an edgelist, which yields an edge-induced network 
Gt constructed from edges (mi,mj) ∈ Et . It gives us a sequence of networks G = {Gt} 
(step 2, Fig. 1), which is then used to compute the importance of individual associations 
in Et with different methods.

The main goal of importance is to describe each edge from Et using additional infor-
mation. The majority of it comes from the future network snapshot Gt+1 , which allows 
us to track the impact that a particular edge had on the network in the future. The pre-
dictive impact is calculated with an attribution technique called Integrated Gradients 
(IG) (step 3, Fig.  1). Structural impact is calculated with graph-based measures (such 
as centrality) (step 4, Fig. 1) and citation impact is calculated with respect to how fre-
quently edges are referenced in the literature after their initial discovery (step 5, Fig. 1).

All the obtained scores are then merged together to obtain a ranking It(e) (step 6, 
Fig. 1), where e ∈ Et for all edges from a snapshot Gt . Finally, this ranking is used to per-
form stratified evaluation of how well hypothesis generation systems perform in discov-
ering connections with different importance values (step 7, Fig. 1).

Databases processing and normalization

We begin by gathering the links and relationships from publicly available databases, 
curated by domain experts. We ensure that all pairwise concept associations we utilize 
are from curated sources. For databases like STRING, which compile associations from 
various channels with differing levels of confidence, we exclusively select associations 
derived from  curated sources.
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Fig. 1  Summary of the HG benchmarking approach. We start with collecting data from Curated DBs and 
Medline, then process it: records from Curated DBs go through parsing, cleaning and ID mapping, MEDLINE 
records are fed into SemRep system, which performs NER and concept normalization. After that we obtain a 
list of UMLS CUI associations with attached PMIDs and timestamps (TS). This data is then used to construct 
a dynamic network G, which is used to calculate the importance measure I for edges in the network. At the 
end, edges e ∈ G with their corresponding importance scores It(e) are added to the benchmark dataset
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Ensuring correct correspondence of the same concepts from diverse databases is 
highly crucial. Therefore, we also conduct mapping of all concepts to UMLS CUI 
(Concept Unique Identifier). Concepts, which identifiers cannot be mapped to UMLS 
CUI, are dropped. In our process, we sometimes encounter situations where a con-
cept ci , may have multiple mappings to UMLS CUIs, i.e., |mi| = k > 1 for mi = m(ci) . 
To capture these diverse mappings, we use the Cartesian product rule. In this 
approach, we take the mapping sets for both concepts ci and cj , denoted as m(ci) and 
m(cj) , and generate a new set of pairs encapsulating all possible combinations of these 
mappings. Essentially, for each original pair (ci, cj) , we produce a set of pairs m(ci, cj) 
such that the cardinality of this new set equals the product of the cardinalities of the 
individual mappings. Let us say that ci has k different UMLS mappings and cj has s, 
then |m(c1, c2)| = |m(c1)| · |m(c2)| = k · s.

In other words, we ensure that every possible mapping of the original pair is 
accounted for, enabling our system to consider all potential pairwise interactions 
across all UMLS mappings. To this end, we have collected all pairs of UMLS CUI that 
are present in different datasets, forming a set D.

Processing MEDLINE records

To match pairwise interactions extracted from biocurated databases to literature, we 
use records from MEDLINE database with their PubMed identifiers. These records, 
primarily composed of the titles and abstracts of scientific papers, are each assigned 
a unique PubMed reference number (PMID). They are also supplemented with rich 
metadata, which includes information about authors, full-text links (when applica-
ble), and date of publication timestamps indicating when the record became publicly 
available. We process records with an NLM-developed natural language processing 
tool SemRep [28] to perform named entity recognition, concept mapping and nor-
malization. To this end, we obtain a list of UMLS CUI for each MEDLINE record.

Connecting database records with literature

The next step is to form connections between biocurated records and their corre-
sponding mentions in the literature. With UMLS CUIs identified in the previous step, 
we track the instances where these CUIs are mentioned together within the same sci-
entific abstract. Our method considers the simultaneous appearance of a pair of con-
cepts, denoted as mi and mj , within a single abstract to represent a co-occurrence. 
This co-occurrence may indicate a potential relationship between the two concepts 
within the context of the abstract. All the co-occurring pairs (mi,mj) , extracted from 
MEDLINE abstracts, form the set P.

No specific “significance” score is assigned to these co-occurrences at this point 
beyond their presence in the same abstract. Subsequently, these pairs are cross-ref-
erenced with pairs in biocurated databases. More specifically, for each co-occurrence 
(mi,mj) ∈ P we check its presence in set D. Pairs not present in both sets D and P are 
discarded. This forms the set E:
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This step validates each co-occurring pair, effectively reducing noise and confirming that 
each pair holds biological significance. Conversely, E can be described as a set of bio-
logically relevant associations, with each element enriched by contextual information 
extracted from scientific literature. The procedure is described in [29] as distant super-
vised annotation.

Constructing time‑sliced graphs

After we find the set of co-occurrences in abstracts extracted from MEDLINE and 
cross-referenced with pairs in biocurated databases (set E), we split it based on the 
timestamps extracted from the abstracts metadata. The timestamps t are assigned to 
each PMID and are used to determine when they became publicly available. We use 
these timestamps to track how often was a pair of UMLS CUIs (mi,mj) appearing in 
the biomedical literature over time. As a result, we have a list of biologically relevant 
cross-referenced UMLS CUI co-occurrences, each connected to all PMIDs containing 
them.

This list is then split into edge lists Et , such that each edge list contains pairs (mi,mj) 
added in or before year t. These edge lists are then transformed to dynamic network G 
with T snapshots:

where Nt and Et represent the set of unique UMLS CUIs (nodes) and their cross-refer-
enced abstract co-occurrences (edges), respectively, and t is the annual timestamp (time 
resolution can be changed as needed), such that Gt is constructed from all MEDLINE 
records published before t (e.g., t = 2011 ). All networks Gt are simple and undirected.

For each timestamp t, Gt represents a cumulative network, including all the informa-
tion from Gt−1 and new information added in year t.

Tracking the edge importance of time‑sliced graphs

We enrich the proposed benchmarking strategy with the information about associations 
importance at each time step t. In the context of scientific discovery, the importance may 
be considered from several different perspectives, e.g., as an the influence of an individ-
ual finding on future discoveries. In this section we take three different perspectives into 
account and then combine them together to obtain a final importance score, which we 
later use to evaluate different hypothesis generation systems with respect to their ability 
to predict the important associations.

Integrated gradients pipeline

In this step we obtain the information about how edges from graph Gt influence the 
appearance of new edges in Gt+1 . For that we train a machine learning model, which 

(1)
E = D ∩ P.

G = {Gt = (Nt ,Et)}
T
t=1,
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is able to perform link predictions and then we use an attribution method called Inte-
grated Gradients (IG).

In general, IG is used to understand input features importance with respect to the 
output a given predictor model produces. In case of link prediction problem, a model 
outputs likelihood of two nodes mi and mj being connected for a given network Gt . The 
input features for a link prediction model will include the adjacency matrix of Gt , At , 
and the predictions themselves can be drawn from a list of edges appearing in the next 
timestamp t + 1 . If IG is applied to this particular problem, it will provide attribution 
values for each element of At , which can be reformulated as the importance of edges 
existing at the timestamp t with respect to their contribution to predicting the edges 
added at the next timestamp t + 1 . This could be interpreted as the influence of current 
dynamic network structural elements on the information that will be added in future.

Link prediction problem In our setting, the link prediction problem is formulated as 
following:

We note that predictions of edges Êt+1 are performed only for nodes Nt from the graph 
Gt at year t.

Adding Node and Edge Features: To enrich the dynamic network G with non-redun-
dant information extracted from text, we add node features and edge weights. Node fea-
tures are required for Graph Neural Network-based predictor training, which we use in 
the proposed pipeline.

Node features: Node features are added to each Gt by applying word2vec algorithm 
[30] to the corresponding snapshot of MEDLINE dataset obtained for a timestamp t. 
In order to perform cleaning and normalization, we replace all tokens in the input texts 
by their corresponding UMLS CUIs obtained at the NER stage. It significantly reduces 
the vocabulary size, automatically removing stop-words and enabling vocabulary-guided 
phrase mining [31]. It is important to note that each node m has a different vector repre-
sentation for each time stamp t, which we can refer to as n2v(m, t).

Edge features (weights): For simplicity, edge weights are constructed by counting the 
number of MEDLINE records mentioning a pair of concepts e ∈ Et . In other words, for 
each pair e = (mi,mj) we assign a weight representing the total number of mentions for 
a pair e in year t.

GNN training

We use a graph neural network-based encoder-decoder architecture. Its encoder con-
sists of two graph convolutional layers [32] and produces an embedding for each graph 
node. Decoder takes the obtained node embeddings and outputs the sum of element-
wise multiplication of encoded node representations as a characteristic of each pair of 
nodes.

given: Gt = (Nt ,Et)

predict: (mi,mj) ∀mi,mj ∈ Ĝt+1(Nt , Êt+1).
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Attribution

To obtain a connection between newly introduced edges Êt+1 and existing edges Et , 
we use an attribution method Integrated Gradients (IG) [33]. It is based on two key 
assumptions:

•	 Sensitivity: any change in input that affects the output gets a non-zero attribution;
•	 Implementation Invariance: attribution is consistent with the model’s output, regard-

less of the model’s architecture.

The IG can be applied to a wide variety of ML models as it calculates the attribution 
scores with respect to input features and not the model weights/activations, which is 
important, because we focus on relationships between the data points and not the model 
internal structure.

The integrated gradient (IG) score along ith dimension for an input x and baseline x′ is 
defined as:

where ∂F(x)
∂xi

 is the gradient of F(x) along ith dimension. In our case, input x is the adja-
cency matrix of Gt filled with 1s as default values (we provide all edges Et ∈ Gt ) and 
baseline x′ is the matrix of zeroes. As a result, we obtain an adjacency matrix A(Gt) filled 
with attribution values for each edge Et.

Graph‑based measures

Betweenness Centrality In order to estimate the structural importance of selected edges, 
we calculate their betweenness centrality [34]. This importance measure shows the 
amount of information passing through the edges, therefore indicating their influence 
over the information flow in the network. It is defined as

where σst—the number of shortest paths between nodes s and t; σst(e)—the number of 
shortest paths between nodes s and t passing through edge e.

To calculate the betweenness centrality with respect to the future connections, we 
restrict the set of vertices V to only those, that are involved in future connections we 
would like to use for explanation.

Eigenvector Centrality Another graph-based structural importance metric we use is 
the eigenvector centrality. The intuition behind it is that a node of the network is consid-
ered important if it is close to other important nodes. It can be found as a solution of the 
eigenvalue problem equation:

(2)IGi(x)::=(xi − x′i)
1

α=0

∂F(x′ + α(x − x′))

∂xi
dα,

(3)CB(e) =
∑

s �=t∈V

σst(e)

σst
,

(4)Ax = �x,
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where A is the network weighted adjacency matrix. Finding the eigenvector correspond-
ing to the largest eigenvalue gives us a list of centrality values CE(v) for each vertex v ∈ V .

However, we are interested in edge-based metric, which we obtain by taking an abso-
lute difference between the adjacent vertex centralities:

where e = (u, v) . The last step is to connect this importance measure to time snap-
shot, which we do by taking a time-base difference between edge-based eigenvector 
centralities

This metric gives us the eigenvector centrality change with respect to future state of the 
dynamic graph ( t + 1).

Second Order Jaccard Similarity One more indicator of how important a particular 
newly discovered network connection is related to its adjacent nodes neighborhood sim-
ilarity. The intuition is that more similar their neighborhood is, more trivial the connec-
tion is, therefore, it is less important.

We consider a second-order Jaccard similarity index for a given pair of nodes mi and mj:

Second-order neighborhood of a node u is defined by:

where w iterates over all neighbors of u and N(w) returns the neighbors of w.
The second order gives a much better “resolution” or granularity for different connections 

compared to first-order neighborhood. We also note that it is calculated for a graph Gt−1 
for all edges Êt (before these edges were discovered).

Literature‑based measures

Cumulative citation counts Another measure of a connection importance is related to bib-
liometrics. At each moment in time for each targeted edge we can obtain a list of papers 
mentioning this edge.

We also have access to a directed citation network, where nodes represent documents 
and edges represent citations: edges connect one paper to all the papers that it cites. There-
fore, the number of citations of a specific paper would equal to in-degree of a correspond-
ing node in a citation network.

To connect paper citations to concepts connections, we compute the sum of citation 
counts of all papers mentioning a specific connection. Usually, the citation counts follow 
heavy-tailed distributions (e.g., power law) and counting them at the logarithmic scale is 
a better practice. However, in our case the citation counts are taken “as-is” to emphasize 
the difference between the number of citations and the number of mentions. This measure 

(5)CE(e) = |CE(u)− CE(v)|,

(6)CE�t (e) = CEt+1(e)− CEt (e),

(7)J2(mi,mj) =
|N2(mi) ∩ N2(mj)|

|N2(mi) ∪ N2(mj)|

(8)N2(u) =
⋃

w∈N (u)

N (w),



Page 12 of 28Tyagin and Safro ﻿BMC Bioinformatics          (2024) 25:213 

shows the overall citation-based impact of a specific edge over time. The citation informa-
tion comes from the citation graph, which is consistent with the proposed dynamic net-
work in terms of time slicing methodology.

Combined importance measure for ranking connections

To connect all the components of the importance measure I for edge e, we use the mean 
percentile rank (PCTRank) of each individual component:

where Ci is the importance component (one of the described earlier, C—set of all impor-
tance components). The importance measure is calculated for each individual edge in 
graph for each moment in time t with respect to its future (or previous) state t + 1 (or 
t − 1 ). Using the mean percentile rank guarantees that the component will stay within 
a unit interval. The measure I is used to implement an importance-based stratification 
strategy for benchmarking, as it is discussed in Results section.

Results
In this section we describe the experimental setup and propose a methodology based 
on different stratification methods. This methodology is unique for the proposed bench-
mark, because each record is supplied with additional information giving a user more 
flexible evaluation protocol.

Data collection and processing

Dynamic graph construction

The numbers of concepts and their associations successfully mapped to UMLS CUI 
(mi,mj) from each dataset are summarized in Table 1. The number of associations with 
respect to time is shown in Fig. 2. It can be seen that the number of concept associations 
steadily and consistently grows for every subsequent year.

(9)It(e) =
1

|C|

∑
Ci∈C

PCTRank(Cit (e)),

Table 1  Experimental databases included in the dataset

Reported numbers are for cross-referenced pairs of UMLS CUI concepts (edges) and the corresponding nodes from the 
network G

Pairs Concepts Concept types
Database

KEGG 730,214 22,306 Genes, Diseases, Chemicals

CTD 459,229 37,065 Genes, Diseases, Chemicals

DisGenNET 274,320 18,923 Genes, Diseases

DrugCentral 230,805 19,066 Genes, Diseases, Chemicals

RxNav 175,186 2804 Chemicals

STRING 63,904 9118 Proteins

Mentha 43,673 10,096 Proteins

GWAS 30,350 8905 Genes, Diseases
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Data collection and aggregation is performed in the following pipeline: 

1.	 All databases are downloaded in their corresponding formats such as comma-sepa-
rated or Excel spreadsheets, SQL databases or Docker images.

2.	 All pairwise interactions in each database are identified.
3.	 From all these interactions we create a set of unique concepts, which we then map to 

UMLS CUIs. Concepts that do not have UMLS representations are dropped.
4.	 All original pairwise interactions are mapped with respect to the UMLS codes, as 

discussed in Databases Processing and Normalization section.
5.	 A set of all pairwise interactions is created by merging the mapped interactions from 

all databases.
6.	 This set is then used to find pairwise occurrences in MEDLINE.

Pairwise occurrences found in step 6 are used to construct the main dynamic network 
G. As it was mentioned earlier, G is undirected and non-attributed (we do not provide 
types of edges as they are much harder to collect reliably on large scale), which allows us 
to cover a broader range of pairwise interactions and LBD systems to test. Other pair-
wise interactions, which are successfully mapped to UMLS CUI, but are not found in the 
literature, can still be used. They do not have easily identifiable connections to scientific 
literature and do not contain temporal information, which make them a more difficult 
target to predict (will be discussed later).

Compound importance calculation

Once the dynamic graph G is constructed, we calculate the importance measure. For 
that we need to decide on three different timestamps: 

1.	 Training timestamp: when the predictor models of interest are trained;
2.	 Testing timestamp: what moment in time to use to accumulate recently (with respect 

to step 1) discovered concept associations for models testing;
3.	 Importance timestamp: what moment in time to use to calculate the importance 

measure for concept associations from step 2.

Fig. 2  Number of edges in the network G over time. The numbers are reported in millions. Each edge 
represents a pair of cross-referenced UMLS CUI concepts (mi ,mj)
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To demonstrate our benchmark, we experiment with different predictive models. In our 
experimental setup, all models are trained on the data published prior to 2016, tested on 
associations discovered in 2016 and the importance measure I is calculated based on the 
most recent fully available timestamp (2022, at the time of writing) with respect to the 
PubMed annual baseline release. We note that, depending on the evaluation goals, other 
temporal splits can be used as well. For example, one can decide to evaluate the pre-
dictive performance of selected models on more recently discovered connections. For 
that, they may use the following temporal split: training timestamp—2020, testing times-
tamp—2021, importance timestamp—2022.

The importance measure I has multiple components, which are described in Meth-
ods section. To investigate their relationships and how they are connected to each other, 
we plot a Spearman correlation matrix showed in Table 2. Spearman correlation is used 
because only component’s rank matters in the proposed measure as all components are 
initially scaled differently.

Evaluation protocol

In our experiments, we demonstrate a scenario for benchmarking hypothesis genera-
tion systems. All of the systems are treated as predictors capable of ranking true positive 
samples (which come from the dynamic network G) higher than the synthetically gener-
ated negatives. The hypothesis generation problem is formulated as binary classification 
with significant class imbalance.

Evaluation metric

The evaluation metric of choice for our benchmarking is Receiver Operating Character-
istic (ROC) curve and its associated Area Under the Curve (AUC), which is calulated as:

where 1 is the indicator function that equals 1 if the score of a negative example t0 is less 
than the score of a positive example t1 ; D0 , D1 are the sets of negative and positive exam-
ples, respectively. The ROC AUC score quantifies the model’s ability to rank a random 
positive higher than a random negative.

We note than the scores do not have to be within a specific range, the only require-
ment is that they can be compared with each other. In fact, using this metric allows us 

(10)AUC(f ) =
1

|D0| · |D1|

∑

t0∈D0

∑

t1∈D1

1[f (t0) < f (t1)]

Table 2  Correlation between components of the proposed importance measure

Used abbreviations: IG—Integrated Gradients; EC—Eigenvector Centrality; BC—Betweenness Centrality; JC2—2nd order 
Jaccard Coefficient (negative); Ment.—Number of mentions; Cit.—Number of citations

IG EC BC JC2 Ment. Cit.

IG 1.000 0.162 0.045 0.102 0.022 0.154

EC 0.162 1.000 0.032 −0.028 0.091 0.119

BC 0.045 0.032 1.000 −0.010 −0.001 0.014

JC2 0.102 −0.028 −0.010 1.000 −0.050 0.018

Ment. 0.022 0.091 −0.001 −0.050 1.000 0.476

Cit. 0.154 0.119 0.014 0.018 0.476 1.000
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to compare purely classification-based models (such as Node2Vec logistic regression 
pipeline) and ranking models (like TransE or DistMult), even though the scores of these 
models may have arbitrary values.

Negative sampling

Our original evaluation protocol can be found in [10], which is called subdomain recom-
mendation. It is inspired by how  biomedical experts perform large-scale experiments 
to identify the biological instances of interest from a  large pool of candidates [35]. To 
summarize:

•	 We collect all positive samples after a pre-defined cut date. The data before this cut 
date is used for prediction system training.

•	 For each positive sample (subject-object pair) we generate N negative pairs, such that 
the subject is the same and the object in every newly generated pair has the same 
UMLS semantic type as the object in positive pair;

•	 We evaluate a selected performance measure (ROC AUC) with respect to pairs 
of semantic types (for example, gene-gene or drug-disease) to better understand 
domain specific differences.

For this experiment we set N = 10 as a trade-off between the evaluation quality and 
runtime. It can be set higher if more thorough evaluation is needed.

Baseline models description

To demonstrate how the proposed benchmark can be used to evaluate and compare dif-
ferent hypothesis generation system, we use a set of existing models. To make the com-
parison more fair, all of them are trained on the same snapshots of MEDLINE dataset.

AGATHA

The AGATHA is a general purpose HG system [10, 36] incorporates a multi-step pipe-
line, which processes the entire MEDLINE database of scientific abstracts, constructs 
a semantic graph from it and trains a predictor model based on transformer encoder 
architecture. Besides the algorithmic pipeline, the key difference between AGATHA and 
other link prediction systems is that AGATHA is an end-to-end hypothesis generation 
framework, where the link prediction is only one of its components.

Node2Vec

Node2Vec-based predictor is trained as suggested in the original publication [37]. We 
use a network purely constructed with text-mining-based methods.

Knowledge graph embeddings‑based models

Knowledge Graph Embeddings (KGE) models are becoming increasingly popular these 
days, therefore we include them into our comparison. We use Ampligraph [38] library to 
train and query a list of KGE models: TransE, HolE, ComplEx and DistMult.
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Evaluation with different stratification

The proposed benchmarking pipeline enables us to perform different kinds of systems 
evaluation and comparison with flexibility usually unavailable to other methods. Incor-
porating both temporal and importance information is helpful to identify trends in mod-
els behavior and extend the variety of criteria for domain experts when they decide on a 
best model suitable for their needs.

Below we present three distinct stratification methods and show how predictor mod-
els perform under different evaluation protocols. Even though we use the same perfor-
mance metric (ROC AUC) across the board, the results differ substantially, suggesting 
that evaluation strategy plays a significant role in the experimental design.

Semantic stratification

Semantic stratification strategy is the natural way to benchmark hypothesis genera-
tion systems, when the goal is to evaluate performance in specific semantic categories. 
It is especially relevant to the subdomain recommendation problem, which defines our 
negative sampling procedure. For that we take the testing set of subject-object pairs 
and group them according to their semantic types and evaluate each group separately 
(Table 3). 

Importance‑based stratification

The next strategy is based on the proposed importance measure I. This measure ranks 
all the positive subject-object pairs from the test set and, therefore, can be used to split 
them into equally-sized bins, according to their importance score. In our experiment, we 
split the records into three bins, representing low, medium and high importance values. 

Table 3  ROC AUC scores for different models trained on the same MEDLINE snapshot from 2015 
and tested on semantic predicates added in the time frame between 2016 and 2022

Semantic pair AGATHA DistMult Node2Vec HolE ComplEx TransE Dataset Size

Gene or Genome ↔ Gene or Genome 0.604 0.581 0.577 0.547 0.539 0.527 606,573

Gene or Genome ↔ Organic Chemical 0.732 0.693 0.660 0.598 0.560 0.552 359,436

Amino Acid, Peptide, or Protein ↔ Gene or 
Genome

0.685 0.646 0.627 0.583 0.560 0.556 196,493

Organic Chemical ↔ Organic Chemical 0.918 0.897 0.893 0.679 0.617 0.589 196,218

Gene or Genome ↔ Pharmacologic Substance 0.701 0.672 0.643 0.583 0.550 0.539 109,604

Disease or Syndrome ↔ Organic Chemical 0.876 0.871 0.855 0.673 0.607 0.566 100,111

Amino Acid, Peptide, or Protein ↔ Organic 
Chemical

0.807 0.781 0.760 0.654 0.598 0.589 78,111

Organic Chemical ↔ Pharmacologic Sub-
stance

0.890 0.870 0.871 0.656 0.590 0.565 54,340

Disease or Syndrome ↔ Disease or Syndrome 0.833 0.826 0.822 0.636 0.574 0.555 38,467

Disease or Syndrome ↔ Gene or Genome 0.680 0.678 0.612 0.570 0.547 0.526 32,549
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Negative samples are split accordingly. Then each group is evaluated separately. The 
results of this evaluation are presented in Fig. 3.

The results indicate that the importance score I could also reflect the difficulty of mak-
ing a prediction. Specifically, pairs that receive higher importance scores tend to be more 
challenging for the systems to be identified correctly. In models that generally exhibit 
high performance (e.g., DistMult), the gap in ROC AUC scores between pairs with low 

Fig. 3  ROC AUC scores for different models trained on the same PubMed snapshot from 2015 and tested on 
semantic predicates added in 2016 binned with respect to their importance scores

Fig. 4  ROC AUC scores for different models trained on the same PubMed snapshot from 2015 and tested on 
semantic predicates added over time
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importance scores and those with high importance scores is especially pronounced. The 
best model in this list is AGATHA as it utilizes the most nuanced hypothesis representa-
tion, namely, its transformer architecture is trained to leverage not only node embed-
dings but also to account for the non-overlapping neighborhoods of concepts.

Temporal stratification

The last strategy shows how different models trained once perform over time. For that 
we fix the training timestamp on 2015 and evaluate each models on testing timestamps 
from 2016 to 2022. For clarity, we do not use importance values for this experiment and 
only focus on how the models perform over time on average. The results are shown in 
Fig. 4.

Figure 4 highlights how predictive performance gradually decays over time for every 
model in the list. This behavior can be expected: the gap between training and testing 
data increases over time, which makes it more difficult for models to perform well as 
time goes by. Therefore, it is a good idea to keep the predictor models up-to-date, which 
we additionally discuss in the next section.

Discussion
We divide the discussion into separate parts: topics related to evaluation challenges and 
topics related to different predictor model features. We also describe the challenges and 
scope for the future work at the end of the section.

Evaluation‑based topics

Data collection and processing challenges

The main challenge of this work comes from the diverse nature of biomedical data. This 
data may be described in many different ways and natural language may not be the most 
commonly used. Our results indicate that a very significant part of biocurated connec-
tions “flies under the radar” of text-mining systems and pipelines due to several reasons: 

1.	 Imperfections of text-mining methods;
2.	 Multiple standards to describe biomedical concepts;
3.	 The diversity of scientific language: many biomedical associations (e.g. gene-gene 

interactions may be primarily described in terms of co-expression);
4.	 Abstracts are not enough for text mining [39].

The proposed methodology for the most part takes the lowest common denominator 
approach: we discard concepts not having UMLS representations and associations not 
appearing in PubMed abstracts. However, our approach still allows us to extract a sig-
nificant number of concept associations and to use them for quantitative analysis. We 
should also admit that the aforementioned phenomenon of biomedical data discrepancy 
leads us to some interesting results, which we discuss below.
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Different nature of biomedical DBs and literature‑extracted data

The experiment clearly indicates significant differences between different kinds of asso-
ciations with respect their corresponding data sources in models performance compari-
son. For this experiment we take one of the evaluated earlier systems (AGATHA 2015) 
and run the semantically-stratified version of benchmark collected from three different 
data sources: 

1.	 Proposed benchmark dataset: concept associations extracted from biocurated data-
bases with cross-referenced literature data;

2.	 Concept associations extracted from biocurated databases, but which we could not 
cross-reference with literature data;

3.	 Dataset composed of associations extracted with a text mining framework (SemRep).

Datasets (1) and (3) were constructed from associations found in MEDLINE snapshot 
from 2020. For dataset (2) it was impossible to identify the time connections were added, 
therefore the cut date approach was not used. All three datasets were downsampled with 
respect to the proposed benchmark (1), such that the number of associations is the same 
across all of them.

The results of this experiment are shown in Table  4. It is evident that associations 
extracted from biocurated databases (1) and (2) propose a more significant challenge 
for a text-mining-based system. Cross-referencing from literature makes sure that simi-
lar associations can be at least discovered by these systems at the training time, there-
fore, the AGATHA performance on dataset (1) is higher compared to dataset (2). These 
results may indicate that biocurated associations, which cannot be cross-referenced, 
belong to a different data distribution, and, therefore, purely text mining-based systems 
fall short due to the limitations of the underlying information extraction algorithms. 

Table 4  AGATHA-2015 model performance (ROC AUC) evaluated on different data sources with the 
same cut-off date (where possible)

Database records lacking literature cross-references (column 3) were randomly selected due to unavailability of temporal 
information for them

Semantic Pair Text mining Benchmark Non-
cross-ref 
DBs

Dataset size

Gene or Genome ↔ Gene or Genome 0.858 0.612 0.530 42625

Gene or Genome ↔ Organic Chemical 0.910 0.733 0.575 27060

Organic Chemical ↔ Organic Chemical 0.905 0.922 0.679 15081

Amino Acid, Peptide, or Protein ↔ Gene or Genome 0.897 0.695 0.591 14542

Gene or Genome ↔ Pharmacologic Substance 0.901 0.702 0.592 7843

Disease or Syndrome ↔ Organic Chemical 0.900 0.856 0.660 7612

Amino Acid, Peptide, or Protein ↔ Organic Chemical 0.906 0.820 0.564 6072

Organic Chemical ↔ Pharmacologic Substance 0.898 0.890 0.616 4070

Disease or Syndrome ↔ Disease or Syndrome 0.853 0.854 0.666 2893

Disease or Syndrome ↔ Gene or Genome 0.847 0.690 0.575 2442

Non-stratified ROC AUC​ 0.886 0.715 0.579 130240
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Models‑related topics

Text mining data characteristics

In order to demonstrate the differences between biologically curated and text mining-
based knowledge, we can consider their network representations.

The network-based models we show in this work are trained on text-mining-based 
networks, which are built on top of semantic predicates extracted from a NLP tool Sem-
Rep. This tool takes biomedical text as input and extracts triples (subject-verb-object) 
from the text and performs a number of additional tasks, such as:

•	 Named Entity Recognition
•	 Concept Normalization
•	 Co-reference Resolution

and some others. This tool operates on UMLS Metathesaurus, one of the largest and 
most diverse biomedical thesaurus, including many different vocabularies.

The main problem of text-mining tools like SemRep is that they tend to produce noisy 
(and often not quite meaningful from the biomedical prospective) data. As a result, the 
underlying data that is used to build and validate literature-based discovery systems may 
not represent the results that domain experts expect to see.

However, these systems are automated and, therefore, are widely used as a tool to 
extract information from literature in uninterrupted manner. Then this information 
is used for training different kinds of predictors (either rule-based, statistical or deep 
learning).

Fig. 5  Degree distributions and nodes with highest degrees for two networks: the one used for training of 
text-mining-based predictor models (red, top) and the network G from the proposed benchmark dataset 
(blue, bottom)
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To demonstrate this phenomenon, we compare two networks, where nodes are 
biomedical terms and edges are associations between them. The difference between 
them lies in their original data source, which is either: 

1.	 PubMed abstracts processed with SemRep tool;
2.	 Biocurated databases, which connections are mapped to pairs of UMLS CUI terms 

and cross-referenced with MEDLINE records.

Connections from the network (2) are used in the main proposed benchmarking 
framework (network G). The comparison is shown in Fig. 5 as a degree distribution of 
both networks. We can see that network (1) has a small number of very high-degree 
nodes. These nodes may affect negatively to the overall predictive power of any model 
using networks like (1) as a training set, because they introduce a large number of 
“shortcuts” to the network, which do not have any significant biological value. We 
also show the top most high-degree nodes for both networks. For the network (1), all 
of them appear to be very general and most of them (e.g. “Patients” or “Pharmaceuti-
cal Preparations”) can be described as noise. Network (2), in comparison, contain real 
biomedical entities, which carry domain-specific meaning.

Training data threshold influence

As the Temporal Stratification experiment in the Results section suggests, the gap 
between training and testing timestamps plays a noticeable role in models predictive 
performance.

To demonstrate this phenomena from a different perspective, we now fix the test-
ing timestamp and vary the training timestamp. We use two identical AGATHA 
instances, but trained on different MEDLINE snapshots: 2015 and 2020. The testing 
timestamp for this experiment is 2021, such that none of the models has access to the 
test data.

The results shown in Table  5 illustrate that having more recent training data does 
not significantly increase model’s predictive power for the proposed benchmark. This 

Table 5  ROC AUC comparison between two AGATHA models trained on different MEDLINE 
snapshots: 2015 and 2020. A-15(20) stands for AGATHA 2015(20)

Semantic pair A-15 A-20

Amino Acid, Peptide, or Protein ↔ Gene or Genome 0.676 0.676

Amino Acid, Peptide, or Protein ↔ Organic Chemical 0.772 0.774

Disease or Syndrome ↔ Disease or Syndrome 0.838 0.849

Disease or Syndrome ↔ Neoplastic Process 0.831 0.838

Disease or Syndrome ↔ Organic Chemical 0.872 0.884

Gene or Genome ↔ Gene or Genome 0.600 0.605

Gene or Genome ↔ Organic Chemical 0.718 0.725

Gene or Genome ↔ Pharmacologic Substance 0.691 0.692

Organic Chemical ↔ Organic Chemical 0.907 0.913

Organic Chemical ↔ Pharmacologic Substance 0.908 0.916

Non-stratified ROC AUC​ 0.691 0.695
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result may be surprising, but there is a possible explanation: a model learns the pat-
terns from the training data distribution and that data distribution stays consistent for 
both training cut dates (2015 and 2020). However, that does not mean that the data 
distribution in the benchmark behaves the same way. In fact, it changes with respect to 
both data sources: textual and DB-related.

Semantic types role in predictive performance

Another aspect affecting models predictive performance is having access to domain 
information. Since we formulate the problem as subdomain recommendation, know-
ing concept-domain relationships may be particularly valuable. We test this idea by 
injecting semantic types information into the edge type for tested earlier Knowledge 
Graph Embedding models. As opposed to classic link prediction methods (such as 
node2vec), Knowledge Graph modeling was designed around typed edges and allows 
this extension naturally.

Results in Table 6 show that semantic type information provides a very significant 
improvement for models predictive performance.

Large language models for scientific discovery

Recent advances in language model development raised a logical question about 
usefulness of these models in scientific discovery, especially in biomedical area [40]. 
Problems like drug discovery, drug repurposing, clinical trial optimization and many 
others may benefit significantly from systems trained on a large amount of scientific 
biomedical data.

Therefore, we decide to test how one of these systems would perform in our bench-
mark. We take one of the recently released generative pre-trained transformer models 
BioGPT [4] and run a set of test queries.

BioGPT model was chosen due to the following reasons:

•	 It is recently released (2022);
•	 It includes fine-tuned models, which show good performance on downstream tasks;
•	 It is open source and easily accessible.

We use a BioGPT-QA model to perform the benchmarking, because it was fine-tuned 
on PubMedQA [41] dataset and outputs the answer as yes/maybe/no, which is easy to 
parse and represent as a (binary) classifier output.

The question prompt was formulated as the following: “Is there a relationship between 
<term 1> and <term 2>?”. PubMedQA format also requires a context from a PubMed 
abstract, which does not exist in our case, because it is a discovery problem. However, 

Table 6  ROC AUC scores comparison (non-stratified) between KGE-based models with and without 
semantic types information (ST) added to the training set

ComplEx DistMult HolE TransE

No ST 0.564 0.680 0.595 0.549

ST 0.693 0.697 0.718 0.678
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we supply an abstract-like context, which is constructed by concatenating term defini-
tions extracted from UMLS Metathesaurus for both source and target terms.

A sample prompt looks like this: “Is there a relationship between F1-ATPase and 
pyridoxal phosphate? context: F1-ATPase—The catalytic sector of proton-translocating 
ATPase complexes. It contains five subunits named alpha, beta, gamma, delta and eta. 
pyridoxal phosphate—This is the active form of VITAMIN B6 serving as a coenzyme 
for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolip-
ids, aminolevulinic acid...”

When we ran the experiment, we noticed two things:

•	 BioGPT is often not confident in its responses, which means that it outputs “maybe” 
or two answers (both “yes” and “no”) for about 40% of the provided queries;

•	 The overwhelming majority of provided queries are answered positively when the 
answer is confident.

Figure 6 shows a confusion matrix for queries with confident answer. We generate the 
queries set with 1:1 positive to negative ratio. Most of the answers BioGPT-QA pro-
vides are positive, which means that the system produces too many false positives and 
is not usable in the discovery setting.

Challenges in benchmarking for hypothesis generation

Binary interactions. Not every discovery can be represented as a pair of terms, but this 
is something that most of biomedical graph-based knowledge discovery systems work 
with. It is a significant limitation of the current approach and a motif discovery is a valid 
potential direction for future work. Moreover, many databases represent their records 

Fig. 6  Confusion matrix obtained by the BioGPT-QA model. Only confident answers (Yes/No) were taken into 
account
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as binary interactions [42–46], which can be easily integrated into a link prediction 
problem.

Directionality. Currently, our choice for pairwise interactions is to omit the direc-
tionality information to allow more systems to be evaluated with our framework and 
cover more pairwise interactions. Directionality is an important component of pairwise 
interactions, especially when they have types and are formulated in a predication form 
as a triple:(subject-predicate-object). Currently, we omit the predicate part and only keep 
pairs of terms for easier generalization. In many cases, a uni-directional edge i → j does 
not imply non-existence of i ← j . Moreover, in the low-dimensional graph representa-
tion construction it is clearly preferable to use undirected edges in our context due to the 
scarcity of biomedical information. Another caveat is that the tools that detect the logical 
direction of the predicate in the texts are not perfect [47]. The information about each 
particular direction can still be recovered from the underlying cross-referencing citations.

Concept normalization. UMLS is a powerful system combining many biomedical 
vocabularies together. However, it has certain limitations, such as relatively small num-
ber of proteins and chemical compounds. We also observe that many UMLS terms are 
never covered in the scientific abstracts, even though they exist in the Metathesaurus. 
This limits the number of obtainable interactions significantly. However, UMLS covers 
many areas of biomedicine, such as genes, diseases, proteins, chemicals and many others 
and also provides rich metadata. In addition, NLM provides software for information 
extraction. There are other vocabularies, which have greater coverage in certain areas 
(e.g., UniProt ID for proteins or PubChem ID for chemicals), but their seamless integra-
tion into a heterogeneous network with literature poses additional challenges that will 
be gradually addressed in the future work.

Conclusions
We have developed and implemented a comprehensive benchmarking system Dyport 
for evaluating biomedical hypothesis generation systems. This benchmarking system is 
advancing the field by providing a structured and systematic approach to assess the effi-
cacy of various hypothesis generation methodologies.

In our pipeline we utilized several curated datasets, which provide a basis in testing 
the hypothesis generation systems under realistic conditions. The informative discov-
eries have been integrated into the dynamic graph on top of which we introduced the 
quantification of discovery importance. This approach allowed us to add a new dimen-
sion to the benchmarking process, enabling us to not only assess the accuracy of the 
hypotheses generated but also their relevance and potential impact in the field of bio-
medical research. This quantification of discovery importance is a critical step forward, 
as it aligns the benchmarking process more closely with the practical and applied goals 
of biomedical research.

We have demonstrated the use case of several graph-based link prediction systems’ 
verification and concluded that such testing is way more productive than traditional 
link prediction benchmarks. However, the utility of our benchmarking system extends 
beyond these examples. We advocate for its widespread adoption to validate the quality 
of hypothesis generation, aiming to broaden the range of scientific discoveries accessible 
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to the wider research community. Our system is designed to be inclusive, welcoming the 
addition of more diverse cases.

Future work includes integration of the benchmarking process in the hypothesis sys-
tem visualization [48], spreading to other than biomedical areas [49], integration of 
novel importance measures, and healthcare benchmarking cases.

Appendix A: Incorporated technologies
To construct the benchmark, we propose a multi-step pipeline, which requires several 
key technologies to be used. For the text mining part, we use SemRep [28] and gensim 
[50] implementation of word2vec algorithm. For further stages involving graph learning, 
we utilize Pytorch Geometric framework and Captum explainability library.

UMLS (Unified Medical Language System) [27] is one of the fundamental technologies 
provided by NLM, which consolidates and disseminates essential terminology, taxono-
mies, and coding norms, along with related materials, such as definitions and seman-
tic types. UMLS is used in the proposed work as a system of concept unique identifiers 
(CUI) bringing together terms from different vocabularies.

SemRep [47] is an NLM-developed software, performing extraction of semantic predi-
cates from biomedical texts. It also has the named entity recognition (NER) capabili-
ties (based on MetaMap [31] backend) and automatically performs entity normalization 
based on the context.

Word2Vec [30] is an approach for creating efficient word embeddings. It was proposed 
in 2013 and is proven to be an excellent technique for generating static (context-inde-
pendent) latent word representations. The implementation used in this work is based on 
gensim [50] library.

Pytorch geometric (PyG) [51] library is built on top of Pytorch framework focusing on 
graph geometric learning. It implements a variety of algorithms from published research 
papers, supports arbitrary-scaled graphs and is well integrated into Pytorch ecosystem. 
We use PyG to train a graph neural network (GNN) for link prediction problem, which 
we explain in more detail in methods section.

Captum [52] package is an extension of Pytorch enabling the explainability of many 
ML models. It contains attribution methods, such as saliency maps, integrated gradi-
ents, Shapley value sampling and others. Captum is supported by PyG library and used 
in this work to calculate attributions of the proposed GNN.

Appendix B: Incorporated data sources
We review and include a variety of biomedical databases, containing curated connec-
tions between different kinds of entities.

KEGG (Kyoto Encyclopedia of Genes and Genomes) [26] is a collection of resources 
for understanding principles of work of biological systems (such as cells, organisms or 
ecosystems) and offering a wide variety of entry points. One of the main components 
of KEGG is a set of pathway maps, representing molecular interactions as network 
diagrams.
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CTD (The Comparative Toxicogenomics Database) [42] is a publicly available database 
focused on collecting the information about environmental exposures effects on human 
health.

DisGenNET  [43] is a discovery platform covering genes and variants and their con-
nections to human diseases. It integrates data from a list of publicly available databases 
and repositories and scientific literature.

GWAS (Genome-Wide Association Studies) [53] is a catalog of human genome-wide 
association studies, developed by EMBL-EBI and NHGRI. Its aim is to identify and sys-
tematize associations of genotypes with phenotypes across human genome.

STRING [54] is a database aiming to integrate known and predicted protein associa-
tions, both physical and functional. It utilizes a network-centric approach and assigns a 
confidence score for all interactions in the network based on the evidence coming from 
different sources: text mining, computational predictions and biocurated databases.

DrugCentral [44] is an online drug information resource aggregating information 
about active ingredients, indications, pharmacologic action and other related data with 
respect to FDA, EMA and PMDA-approved drugs.

Mentha [45] is an evidence-based protein interaction browser (and corresponding 
database), which takes advantage of International Molecular Exchange (IMEx) consor-
tium. The interactions are curated by experts in compliance with IMEx policies enabling 
regular weekly updates. Compared to STRING, Mentha is focused on precision over 
comprehensiveness and excludes any computationally predicted records.

RxNav [46] is a web-service providing an integrated view on drug information. It con-
tains the information from NLM drug terminology RxNorm, drug classes RxClass and 
drug-drug interactions collected from ONCHigh and DrugBank sources.

Semantic scholar [55] is a search engine and research tool for scientific papers devel-
oped by the Allen Institute for Artificial Intelligence (AI2). It provides rich metadata 
about publications which enables us to use Semantic Scholar data for network-based 
citation analysis.
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