
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Estavoyer et al. BMC Bioinformatics          (2024) 25:270  
https://doi.org/10.1186/s12859-024-05816-4

BMC Bioinformatics

Modeling relaxation experiments 
with a mechanistic model of gene expression
Maxime Estavoyer1, Marion Dufeu2, Grégoire Ranson3,4, Sylvain Lefort5, Thibault Voeltzel5^, 
Véronique Maguer‑Satta5, Olivier Gandrillon6,7 and Thomas Lepoutre1* 

Abstract 

Background:  In the present work, we aimed at modeling a relaxation experiment 
which consists in selecting a subfraction of a cell population and observing the speed 
at which the entire initial distribution for a given marker is reconstituted.

Methods:  For this we first proposed a modification of a previously published mecha‑
nistic two-state model of gene expression to which we added a state-dependent 
proliferation term. This results in a system of two partial differential equations. 
Under the assumption of a linear dependence of the proliferation rate with respect 
to the marker level, we could derive the asymptotic profile of the solutions of this 
model.

Results:  In order to confront our model with experimental data, we generated 
a relaxation experiment of the CD34 antigen on the surface of TF1-BA cells, start‑
ing either from the highest or the lowest CD34 expression levels. We observed 
in both cases that after approximately 25 days the distribution of CD34 returns to its 
initial stationary state. Numerical simulations, based on parameter values estimated 
from the dataset, have shown that the model solutions closely align with the experi‑
mental data from the relaxation experiments.

Conclusion:  Altogether our results strongly support the notion that cells should be 
seen and modeled as probabilistic dynamical systems.

Keywords:  Relaxation experiments, Two-state model, Asymptotic profile

Background
Cells are neither machines [1] nor simple information processing devices [2, 3]. Their 
specific complexity sometimes led to the idea that they should be treated differently 
that classical physico-chemical systems [4]. Nevertheless like all living systems cells are 
rooted within a physico-chemical reality which they can not escape. We therefore argue 
that cells should be seen and modelled as probabilistic dynamical systems.

One obvious sign that cells should indeed be seen as such lie in the possibility to per-
form so-called “relaxation” experiments. This consists in selecting a subfraction of a cell 
population (potentially down to one cell) and observing the speed at which the entire 
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initial distribution for a given marker is reconstituted. Such relaxation experiments have 
already been published and analyzed on various cells and antigens.

Arguably the very first report to do so analyzed the distribution of the Sca1 antigen 
(Stem Cell Antigen 1) at the surface of EML cells, a multipotent mouse haematopoietic 
cell line. It was shown that it took more than 9 days before the three fractions (most 
Sca-1 negative, most Sca-1 positive and a central fraction) regenerated Sca-1 histograms 
similar to that of the parental (unsorted) population [5]. The authors proposed a phe-
nomenological model which point toward discrete transitions in a dynamical system 
exhibiting multistability to quantitatively predict the relaxation dynamics of the sorted 
subpopulations [5]. For this they assumed the existence of two stable states, one of low 
and one of high Sca1 expression. Proliferation was assumed to be equal in both states.

Other studies have adopted a somewhat different approach with the knock-in of fluo-
rescent reporter genes under the control of endogenous promoters [6, 7]. The first tar-
geted promoter was that of Nanog in murine embryonic stem cells [6], an other gene 
classically considered as a stemness marker. Similarly to [5], the authors demonstrated 
that, although being in a Nanog low of in a Nanog high state is not biologically equiva-
lent in term of fate, the transition between these two states can be adequately modelled 
using a fully probabilistic model, simulated using a Stochastic Simulation Algorithm [8].

The second targeted promoter was that of Tenascin-C in NIH 3T3 mouse fibroblasts 
[7]. In that case, the authors first proposed a phenomenological 2-states model, which 
proved to not correctly capture their data. They then turned toward a Langevin type 
stochastic differential equation to model the relaxation process. This led to an accurate 
prediction of the rates at which different phenotypes will arise from an isolated subpop-
ulation of cells [7]. In contrast with [5], the authors assumed that each state had its own 
proliferation rate.

In the present work, we aimed at using a previously published mechanistic model of 
gene expression [9] to which we will add a stemness-dependant proliferation term, to fit 
relaxation data obtained by examining CD34 expression at the surface of TF1-BA cells.

Methods
Mathematical model

Case without proliferation

Throughout this work, we will use the classical two-state model (Fig. 1; see [9] and refer-
ences therein), a refinement of the pioneer model introduced by [10].

off on x

kon

d
koff

s

Fig. 1  The 2-state model of gene expression. The gene opens with a kon rate and closes with a koff rate. 
Similarly to [11] we only consider protein (x) production (with an s rate) and degradation (with a d rate)
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This is the simplest model that accounts well for the specific nature of single-cell 
omics data (non-poisonnian [12], well fitted by Gamma distributions [13] and dis-
playing a high proportion of zero counts [14]). More refined models with any number 
of possible gene configuration have been described [15] but their mathematical com-
plexity makes them cumbersome to use for our purpose.

It is important to stress here that this is a mechanistic model, that differs from the 
phenomenological 2-states model described upper. Such models only considered a 
low and a high χ state, without describing the protein production process. Impor-
tantly here stochasticity is described at the core of the modelling and does not need 
to be introduced as a additional term in the model. We recently proposed a piece-
wise deterministic Markov process (PDMP) version of that model which rigorously 
approximates the original molecular model [9]. Furthermore, a moment-based 
method has been proposed for estimating parameter values from a given experimen-
tal distribution assumed to arise from the functioning of a 2-states model [11]. We 
recall here the mathematical description of the model through the PDMP (piecewise 
deterministic Markov process) formalism

where E(t) ∈ {0, 1} switching from 0 to 1 (resp. 1 to 0) at a rate kon (resp. koff ). In this 
process, the protein quantity χ(t) is structurally bounded by Xmax = s/d . From this pro-
cess, we can derive the Chapman Kolmogorov or master equation in the form

see [16–18] for similar derivations. master equation of the process in the absence of 
proliferation reads. We recall that the boundary conditions simply reflects the no-flux 
boundary conditions stating (s − dχ)non(t,χ) = −dχnoff(t,χ) = 0 for χ = 0, s/d. 
Moreover, because s − ds/d = −d.0,= 0 , we only specify the boundary conditions when 
they give constraints on the densities. We define Xmax = s/d as the maximum value for 
the quantity of CD34 in a cell. Scaling the space by Xmax allows us to consider the follow-
ing system

with non(t, x) being the number of cells with a promoter in the on state at time t, with a 
(scaled) CD34 level x and noff(t, x) being the number of cells with a promoter in the off 
state. The total number of cells, denoted as n(t, x), is given by non(t, x)+ noff(t, x) . This is 
the quantity we considered to be measured.

Steady state of the model.  The system is mass preserving and it converges to a 
steady state Non,off  which is characterized by

d

dt
χ = s.E(t)− dχ(t),

(1)











∂tnon(t,χ)+ ∂χ Jon(t,χ) = −koffnon + konnoff χ ∈]0, s/d[,
∂tnoff(t,χ)+ ∂χ Joff(t,χ) = +koffnon − konnoff χ ∈]0, s/d[,
Jon(t,χ) = (s − dχ)non(t,χ), Joff(t,χ) = −dχ ,
Jon(t, 0) = Joff(t, 0) = Jon(t, s/d) = Joff(t, s/d) = 0.

(2)







∂tnon + d∂x((1− x)non) = −koffnon + konnoff, x ∈]0, 1[,
∂tnoff + d∂x((−x)noff) = koffnon − konnoff, x ∈]0, 1[,
non(t, 0) = noff(t, 1) = 0.
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And the solution if nonnegative. An interesting feature of this system is the fact that 
we have an explicit solution. We recall here the computations that can be found in [16] 
because they might help for understanding the computations for the model with prolif-
eration. Indeed, summing up the equations, we get

Therefore, this quantity is constant on ]0, 1[. Using the boundary condition, we can see 
that 0 is the only admissible constant. Therefore, in this precise case, we have necessarily

Injecting in the equation we get

From this, we get

and quite remarkably, we have

If we choose C =
Ŵ((kon+koff)/d)
Ŵ(kon/d)Ŵ(koff/d)

 we normalize this to 1 and get a β law B(kon/d, koff/d) , 
so that we end up with

Case with proliferation

HSCs mostly reside in a quiescent state, although they can occasionally divide during 
homeostasis [19]. We therefore will consider CD34+ TF1-BA cells as immature slowly pro-
liferating cells and CD34− TF1-BA cells as mature highly proliferating cells. Therefore the 
proliferation rate will depend on the x variable representing the CD34 content but not on 
the on/off status.

Moreover, we consider that cells keep their on/off status during a division. This is in line 
with the demonstration of a memory of transcriptional activity in mammalian cells [20, 21].

(3)







d∂x((1− x)Non) = −koffNon + konNoff, x ∈]0, 1[,
d∂x((−x)Noff) = −koffNon − konNoff, x ∈]0, 1[,
Non(0) = Noff(1) = 0.

∂x((1− x)Non − xNoff) = 0.

(1− x)Non = xNoff.

d∂x((1− x)Non) = −koffNon + kon
(1− x)Non

x
= (1− x)Non

(

−
koff

1− x
+

kon

x

)

.

Non = C(1− x)
koff
d

−1x
kon
d , Noff = C(1− x)

koff
d x

kon
d

−1.

(4)N (x) = Non(x)+ Noff(x) = C(1− x)
koff
d

−1x
kon
d

−1.

(non(t, x), noff(t, x)) →

(

∫ 1

0
n0on(x)+ n0off(x)

)

(Non(x),Noff(x)).

(5)







∂tnon + d∂x((1− x)non) = −koffnon + konnoff + r(x)non(t, x), x ∈]0, 1[,
∂tnoff + d∂x((−x)noff) = koffnon − konnoff + r(x)noff(t, x), x ∈]0, 1[,
non(t, 0) = noff(t, 1) = 0.
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Since the system is structurally non-conservative, it makes no sense to look for steady 
state here. However, one can investigate for stable exponential profile, that is to look for 
positive solutions with shape

Such solution satisfy the system

In the sequel, we will focus on the normalized representant so that we will assume

We also introduce the adjoint eigenprofile. It can be obtained as exponentially growing 
solutions for the adjoint differential operators, this is the continuous equivalent of left 
and right eigenvector for the same eigenvalues in matrix analysis ( MU = �U , vTM = �V  
or equivalently MTV = �V ).

We emphasize in particular the following property, for any initial condition of the sys-
tem, one has

and moreover,

In the weighted norm �(fon, foff)�φ =
∫ 1
0 |fon|φon + |foff|φoff . In case φon,off is lower 

bounded, this implies classical L1 convergence. This lower bound is established below. 
For more details on this, we refer to [22] for an introduction to eigenvectors in this con-
text. In particular, thanks to our normalization, the triplet (�,N ,φ) is uniquely defined. 
Note that in the conservative case ( r = 0 ), � = 0 , N is given by the renormalized steady 
state and the adjoint eigenvector is simply the constant vector (1, 1). Note also that this 
guarantees that for any initial data, we have in case � ≥ 0 and φon,off are lower bounded 
(as it will be established below)

e�t(Non(x),Noff(x)).

(6)







�Non + d∂x((1− x)Non) = −koffNon + konNoff + r(x)Non(x), x ∈]0, 1[,
�Noff + d∂x((−x)Noff) = koffNon − konNoff + r(x)Noff(t, x), x ∈]0, 1[,
Non(0) = Noff(1) = 0, Non,off > 0.

∫ 1

0
Non(x)+ Noff(x)dx = 1.

(7)







�φon − d(1− x)∂xφon = −koffφon + koffφoff + r(x)φon, x ∈]0, 1[,
�φoff − d(−x)∂x(φoff) = −konφoff + konφon + r(x)φoff, x ∈]0, 1[,

φon,off > 0,
� 1
0 Nonφon + Noffφoffdx = 1.

∫ 1

0
non(t, x)φon(x)+ noff(t, x)φoff(x)dx = e�t

∫ 1

0
non(0, x)φon(x)+ noff(0, x)φoff(x)dx = C0e�t ,

∫ 1

0
|e−�tnon(t, .)− C0Non|φon(x)dx +

∫ 1

0
|e−�tnoff(t, .)− C0Noff|φoff(x)dx → 0.

e−�t(non(t, .), noff(t, .)) → C0(Non,Noff).
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Fig. 2  The relaxation experiment. TF1-BA cells well labelled with an anti-CD34 antibody and FACS-sorted. The 
10 percent most CD34 positive and the 10 percent most CD34 negative cells were sorted, grown in culture 
for the indicated period of time, where the distribution of cell-surface CD34 expression was assessed. KT: the 
modified Kantorovich–Rubinstein distance, defined by the Eq. (14), between the two distributions [26]
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And regarding the observations of the steady profile in Fig.  2, our normalized asymp-
totic profile should be N : x �−→ Non(x)+ Noff(x).

We assume that, for the initial dimensional system, the proliferation rate is linear, i.e. 
r : χ �−→ r̃0 + r̃1χ . Scaling again the space by Xmax , the proliferation term becomes, 
r : x → r0 + r1x with r0 = r̃0 and r1 = r̃1Xmax . We assume that the constant prolifera-
tion rate is positive, r0 > 0 . Conversely, to model the fact that CD34− cells divide more 
frequently than CD34+ cells, we assume that the linear proliferation term, r1 , is negative. 
However, to preserve the positivity of the proliferation rate, the constant r1 must satisfy 
the following condition, r1 ∈ [−r0, 0].

We show in the Results section that, under this proliferation assumption, it is theoreti-
cally possible to derive the normalized asymptotic profiles (Non,Noff).

The biological setting

Relaxation experiments

Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder arising at the hemat-
opoietic stem cell (HSC) level. It is associated with the recurrent chromosomal (Phila-
delphia) translocation t(9;22)(q34;q11) which leads to the oncogenic chimeric gene that 
fuses Bcr and Abl genes and results in the expression of a constitutively active unique 
tyrosine kinase named BCR-ABL [23].

Véronique Maguer-Satta’s group has developed the TF1-BA cell line, a unique model 
of immature human hematopoietic cells (TF1) transformed with BCR-ABL by lentiviral 
infection. This model was shown to recapitulate early alterations following the BCR-ABL 
oncogene appearance as identified using primary samples of CML patients at diagnosis 
and in chronic phase [24].

We decided to analyze the relaxation dynamics for the CD34 antigen at the surface 
of those TF1-BA cells (Fig.  2). CD34 is a transmembrane phosphoglycoprotein which 
is predominantly regarded as a marker of Haematopoietic Stem Cells (HSCs) [25]. We 
reasoned that CD34 surface expression could therefore be seen as a proxy for stemness 
of our TF1-BA cells. Interestingly, one observes a relaxation in both directions: CD34− 
cells are regenerated from CD34+ cells, as biologists would expect, but one also see that 
CD34+ cells are regenerated from CD34− cells, establishing that stemness is not a fixed 
quality but the result of an underlying dynamical system as previously shown in other 
cellular systems ( [5, 6]; see upper)

Data processing

Two types of data were collected on days 2, 5, 9, 13, 19, 23, 26 and 30: cell counts and 
fluorescence distribution. The cell counts allow us to quantify proliferation whereas the 
fluorescence measure the distribution of CD34 expression.

1
∫ 1
0 non(t, x)+ noff(t, x)dx

(non(t, .), noff(t, .))

=
1

e−�t
∫ 1
0 non(t, x)+ noff(t, x)dx

e−�t(non(t, .), noff(t, .))

→
1

C0
C0(Non,Noff) = (Non,Noff).
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Gating.
As usual for cytometric data, we initiate the analysis with a gating step. We use 

SSC-H and FSC-H data to distinguish viable and debris cells. FSC (Forward Scatter) 
data are generally assimilated to the size of the cells analyzed, and correspond to the 
light scattered along the laser path. SSC (Side Scattered) data, on the other hand, are 
usually linked to the granularity and correspond to the light scattered at a 90-degree 
angle. The “H” stands for Height and is one component of this type of data. Cell debris 
are characterized by relatively low size and high granularity relative to their size.

To select viable cells, we plot the values of SSC-H along those of FSC-H. An exam-
ple of such a graph is provided in Fig. 3 using data from day 2 of the CD34+ cell exper-
iment. Visually, viable cells can be identified as the cluster of points with high FSC-H 
and SSC-H values. Using the “FlowCal” python package [27], we draw an ellipse as a 
filter to select only these viable cells. At the bottom of Fig. 3, we represent fluores-
cence data with and without the gating phase (Ungated and Gated, respectively). Note 
that fluorescence distribution is only slightly affected by the removal of debris cells.

Shifting.
Even after gating, some cells exhibit a negative fluorescence level, which is incon-

sistent as these values are intended to represent the amount of proteins in each cell. 

Fig. 3  Example of flow cytometry gating. Top. Example of SSC-H along FSC-H plot for raw data from the 
plus subpopulation on day 2. As the data contain a high proportion of debris cells, we select only those 
viable cells lying within the black ellipse. Bottom. Fluorescence data before gating (Ungated) and after gating 
(Gated). For the figures and the ellipse, we used the python package “FlowCal” [27]



Page 9 of 21Estavoyer et al. BMC Bioinformatics          (2024) 25:270 	

To avoid this problem, we added a shifting step. This step occurs immediately after 
the gating process and consists in subtracting the minimum value of each distribution 
(for each sub-population and for each day) from all the values, bringing the minimum 
to 0. This transformation, once again, does not distort the fluorescence distribution. 
This corresponds to the interpretation of negative values as compensation of a base-
line value.

Numerical simulations

Linking data to mathematical model: The cell counts are interpreted as snapshots 
of the total population 

∫ Xmax

0 (non(t, x)+ noff(t, x))dx . The fluorescence distribution is 

considered as a sample from the distribution non(t,x)+noff(t,x)
∫ Xmax
0 (non(t,x)+noff(t,x))dx

 . As we have no 

information on the repartition on/off  for the initial data, we apply the following rule: 
for t0 , starting of our simulation (DAY 2), we choose the repartition to be the same as 
in the steady distribution N. More precisely, we fix the proportion with the equation

Numerical scheme. For the Eq. (5), we use an explicit upwind scheme. Setting 
aon : x �−→ d(1− x) and aoff : x �−→ −dx , the scheme is given by

with non/off
n
j
= non/off(j�x, n�t) , rj = r(j�x) , aon/off

n
j+1/2

= (aon/off((j + 1)�x, n�t)

+aon/off(j�x, n�t))/�x and aon/offnj−1/2
= (aon/off(j�x, n�t)+ aon/off((j − 1)�x, n�t))

/�x . In the Results section, Fig.  7 illustrates a comparison between the result of the 

numerical scheme and the theoretical asymptotic profile of Eq. (5).
Estimation of the distance to the data.
To calibrate the parameter values of our system, we use our experimental data. Ini-

tially, in order to estimate the exponential growth rate of cells, we perform a linear 
regression analysis on the temporal evolution data of the cell count. To determine the 
values of other system parameters, we seek values that make our numerical results 
as close as possible to the experimental data. To characterize this notion of close-
ness between our numerical results and the data, we introduce the Kantorovich–
Rubinstein distance. Given two probability distribution p1, p2 on R+ , we define their 
cumulative distribution function Pi(x) = Pr(X < x, under distribution pi) =

∫ x
0 pi(dx). 

Using these functions we can define the Kantorovich Rubinstein (also known as Was-
serstein) distance by

(8)
non/off(t0, x) =

Non/off(x)

Non(x)+ Noff(x)
︸ ︷︷ ︸

parameter dependent

(non(t0, x)+ noff(t0, x)
︸ ︷︷ ︸

data

.

(9)







non
n+1
j −non

n
j

�t +
aon

n
j+1/2non

n
j −aon

n
j−1/2non

n
j−1

�x = −koffnon
n
j + konnoff

n
j + rjnon

n
j ,

noff
n+1
j −noff

n
j

�t +
aoff

n
j+1/2noff

n
j+1−aoff

n
j−1/2non

n
j

�x = −konnoff
n
j + koffnon

n
j + rjnoff

n
j ,

(10)distKT(p1, p2) =

∫ ∞

0

|P1(x)− P2(x)|dx.
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In our specific case, we want to compare at each step the (normalized) distribution 
generated by the model at time ti (hereby denoted as model(ti, dx) with cumulative dis-
tribution M(ti, .) ) and the corresponding distribution of the data at time ti denoted as 
data(ti, dx)with cumulative distribution D(ti, .) . We would therefore compute

Note that in our case the integral is in fact taken on the finite interval [0, 1] for scaled 
variables.

Considering the distribution profile of the data, we prefer to study this dis-
tance on a logarithmic scale. We therefore make the following change of variables 
y = log(xXmax + 1) , and we define the modified Kantorovich–Rubinstein distance as 
follows

with D̃ and M̃ the two cumulative distribution functions, defined below, in the new loga-
rithmic scale. Note that, following this change of variable, this “distance” can be greater 
than 1.

We are looking for a function m̃ that satisfies the following relation, for all 
b ∈ [0, log(1+ Xmax)]

In particular, the link between the corresponding densities is immediately given by

The space [0, 1] is discretized uniformly with J + 1 points, and this sequence is denoted 
(xj)j.

We also define the sequences (yj)j∈{0,1,...,J } and (ℓj)j∈{0,1,...,J−1} as follows

and

Consequently, the estimator of the cumulative distribution function M is given by

distKT (ti) = distKT(model(ti), data(ti)) =

∫ ∞

0
|M(ti, x)− D(ti, x)|dx.

(11)dist
log
KT(t) =

∫ log(Xmax+1)

0

∣

∣

∣

D̃(y, t)− M̃(y, t)
∣

∣

∣

dy,

(12)M̃(b, t) = M

(

eb − 1

Xmax
, t

)

.

(13)m̃(b, t) = m

(

eb − 1

Xmax
, t

)

eb

Xmax
.

(xj)j∈{0,1,...,J } : xj = j�x, with �x = 1/J .

(yj)j∈{0,1,...,J } : yj = log(Xmaxxj + 1) = log

(

1+
Xmaxj

J

)

,

(ℓj)j∈{0,1,...,J−1} : ℓj = yj+1 − yj .
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where we have used (13) to estimate m̃ . We need to renormalize to ensure we are com-
paring probability distributions.

The estimator of the cumulative distribution function D is

with hj(t) = #{di : log(di(t)+ 1) ∈ [yj−1, yj]} , where the operator # corresponds to the 
cardinal of a set and the data di correspond to the fluorescence data obtained after data 
processing. These data, di , are real numbers between 0 and Xmax . The term #{dk(t), ∀k} 
corresponds to the number of cells present in the data on day t after the gating operation.

Therefore, the distance between the experimental data and the mathematical model is 
as follows

To calibrate the parameters of our model, we will minimize the sum of the modified 
Kantorovich–Rubinstein distance for the different days at our disposal and for the two 
experiments. The distance associated with CD34+ data is denoted ̂dist

log,+

KT  , while that 

associated with CD34− data is denoted ̂dist
log,−

KT  . We also introduce the distance, denoted 
̂dist

log,±

KT  , corresponding to the sum of these two distances. Thereby we look for one set of 
parameters for fitting the two datasets jointly. Mathematically, the optimization problem 
is given by the following formula

The results of this optimization work are detailed in the Results section.

Results
Mathematical analysis—derivation of explicit normalized asymptotic profile (Non,Noff)

Under the assumption of a linear proliferation rate r(x) = r0 + r1x , we obtain the follow-
ing result

Theorem 1  Assume r(x) = r0 + r1x . Define the matrix M by

Denote s(M) the largest eigenvalue of M, then the left and right eigenvector

M̂(yj , t) =
1

∑

i m̃(yi, t)ℓi

∑

i<j

m̃(yi, t)ℓi =

∑

i<j m(xi, t)
(

1
Xmax

+ xi

)

ℓi

∑

i m(xi, t)
(

1
Xmax

+ xi

)

ℓi

, ∀j ∈ {0, 1, . . . , J }.

D̂(yj , t) =
1

#{dk(t), ∀k}

∑

i<j

hi, ∀j ∈ {0, 1, . . . , J },

(14)̂dist
log

KT(t; parameters) =

J−1
∑

j=0

∣

∣

∣

D̂(yj , t)− M̂(yj , t; parameters)
∣

∣

∣

ℓj .

(15)parametersopt = arg min
parameters





�

t∈Days

�dist
log,±

KT (t; parameters)



.

(

r1 − koff kon
koff − kon

)

.
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can be chosen positive. Moreover, the solution to (6) is given by

And

with C an arbitrary positive constant and η given by η = 1+ s(M)/kon.

In particular, we have

Proof
We notice that the existence and uniqueness (up to a multiplicative factor) of the triplet 
s(M),  V,  U is a straightforward consequence of the classical Perron Frobenius theorem 
which applies here because the off-diagonal entries of M are positive [28]. We introduce 
the ration η = Von

Voff
 and notice that by construction, we have

Then, consider the system satisfied by ψon,off = er1xφon,off , where φon/off  is the solution of 
(7). We get

This system can be summarized as

We recognize the matrix r0 +Mt . Therefore, we have a solution independent on x 
ψon,off = Von,off and � = r0 + s(M) and φon,off = e−

r1
d
xVon,off . Similarly, if we denote 0

This can be condensed into

V tM = s(M)V tM, MU = s(M)U ,

(16)� = r0 + s(M) = r0 +
r1 − kon − koff +

√

(r1 − kon − koff)
2 + 4konr1

2
.

(17)
�

Non(x)
Noff(x)

�

=





C(1− x)
koff
dη

−1
x

konη
d e

r1
d
x

Cη(1− x)
koff
dη x

konη
d

−1e
r1
d
x



 ,

(18)N (x) = C(1− x)
koff
dη

−1
x

konη
d

−1e
r1
d
x(η + (1− η)x),

(19)η =
Von

Voff
=

koff

s(M)− r1 + koff
=

s(M)+ kon

kon
.

{

�ψon − d(1− x)∂xψon = −koffψon + koffψoff + (r0 + r1)ψon(t, x), x ∈]0, 1[,
�ψoff − d(−x)∂x(ψoff) = −konψoff + konψon + r0ψoff(x), x ∈]0, 1[.

d

(

−(1− x)∂xψon

−(−x)∂xψoff

)

=

((

r0 + r1 − koff koff
kon r0 − kon

)

− �I2

)(

ψon

ψoff

)

.







�Pon + d∂x((1− x)Pon) = −koffPon + konPoff + (r0 + r1)Pon, x ∈]0, 1[,
�Poff + d∂x((−x)Poff) = koffPon − konPoff + r0Poff, x ∈]0, 1[,
Pon(0) = Poff(1) = 0, Pon,off > 0.
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We can now proceed as for the conservative case and notice that since 
V t(r0 − �−M) = 0 multiplying the equation by V.

After the appropriate substitution, we obtain

This leads to, for a suitable renormalization constant C > 0,

We introduce then the notation η = η(r1) =
Von
Voff

 and go back the N variables to write

In particular, we have

Going back to the definition of η we notice

	�  �

Simulation analysis

Estimation of exponential growth rate.
Using experimental data on cell numbers for different days, we estimate the exponen-

tial growth rate � . For both relaxation experiments, we perform a linear regression of 
the natural logarithm of the number of cells. In the case of CD34+ cell relaxation, the 
linear regression line is given by the slope �+ ≈ 0.418 , and for CD34− cells, the slope is 
�
− ≈ 0.422 . We estimate the parameter � by the average of these two slopes, � ≈ 0.42 . 

Figure 4 shows that the estimate of the exponential growth rate is in good agreement 
with the experimental data.

d∂x

(

(1− x)Pon
−xPoff

)

= (r0 − �+M)

(

Pon
Poff

)

.

∂x(Von(1− x)Pon(x)− xVoffPoff(x)) = 0,

Poff(x) =
Von(1− x)

xVoff
Pon.

d∂x((1− x)Pon) =

(

−koff + r0 + r1 − �

(1− x)
+

konVon

xVoff

)

(1− x)Pon

=

(

(r1 − koff − s(M))
1

(1− x)
+ (s(M)+ kon)

1

x

)

(1− x)Pon.







Pon = C(1− x)
koff+s(M)−r1

d
−1x

kon+s(M)
d ,

Poff = C Von
Voff

(1− x)
koff+s(M)−r1

d x
kon+s(M)

d
−1.

(20)







Non = C(1− x)
koff
dη

−1
x

konη
d e

r1
d
x,

Noff = Cη(1− x)
koff
dη x

konη
d

−1e
r1
d
x.

N (x) = C(1− x)
koff
dη

−1
x

konη
d

−1e
r1
d
x(η + (1− η)x).

(21)konη = kon + s(M), koff/η = koff + s(M)− r1.
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Calibration of parameters.
A study of the maximum for each day and each experiment of the “PE-Cy7-A” fluo-

rescence data reveals an Xmax close to 20,000. To reduce the numerical complexity of 
the 5-parameter optimization (r0, r1, kon, koff, d) , we will use the estimate of � to reduce 
our optimization problem to just 4 parameters. Indeed, using the theoretical relation-
ship (16) and the previous estimate of � , we can define the parameter r0 as a function of 
the other model parameters,

r0 = s(M)− �̂ = s(M)− 0.42.

Fig. 4  Estimation of the exponential growth rate � . The red squares correspond to the number of cells 
(log scale) at different times for the relaxation experiments: Top. CD34+ , Bottom. CD34− . The dotted line in 
black illustrates the optimal fit of the experimental data. The average of the slopes of the linear regressions 
minimizing the two experiments is given by the slope � ≈ 0.42

Table 1  Estimated parameter values

Parameter value Units Description Estimation method

Xmax 2× 104 proteins Maximum value for the quantity
of CD34 in a cell

Data-driven selection

r0 0.426 h
−1 Constant proliferation rate Estimating the proliferation rate

� and using the relation (16)

r1 −0.426 h
−1 Linear proliferation rate KT distance minimization (22)

kon 0.261 h
−1 Rate at which the gene/promoter

is turned “on”
KT distance minimization (22)

koff 19.178 h
−1 Rate at which the gene/promoter

is turned “off”
KT distance minimization (22)

d 0.21 h
−1 Degradation rate KT distance minimization (22)

s 4214 proteins.h
−1 Synthesis rate of proteins when

gene is on
Relation: s = dXmax
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For the estimation of the other parameters r1 , kon , koff and d, we use the modified Kan-
torovich–Rubinstein distance minimization strategy, presented in the Method section 
and given by the following formula

To determine numerically this minimum, we calculate the modified Kantorovich–
Rubinstein distance for the two relaxation experiments, for each point on a large grid 
of parameter values. We then adjust our grid to obtain the location of the minimum 
of the sum of two distances. This method gives us the following four parameter values 
r⋆1 = 0.426 , k⋆on = 0.261 , k⋆off = 19.178 and d⋆ = 0.21 . Following this optimization strat-
egy, the optimal choice for the function r is to choose r1 such that r(x) = r0 × (1− x) . 
Nevertheless, we will see in the next section that the choice of r1 is not decisive for a 
good fit between the model result and the experimental data.

Finally, using the relation, s = dXmax , we can calculate the value of the synthesis 
rate, s = 4214 . All parameter value estimates are given in Table 1.

We compared those values to the litterature. The estimated half-life of CD34 in this 
model was estimated to be equal to log(2)/0.261, that is about 4 h. This is in the low 
range of the estimated distribution for proteins half-life [29]. Regarding the Xmax esti-
mation, its value is in the range of observed value, slightly over the median that is 
1.6× 104 [29]. The estimated kon value gives an estimated frequency of 4 (1/0.261) 
bursts per hour on average, which is close from the expected range from a burst every 
30  min to up to 10  h [30]. The koff  value display the expected ratio (kon << koff an 
d1<< koff) in the case of a bursty regime [9]. Altogether all of our estimated param-
eters are thus in the expected range.

Profile likelihood.
To investigate the robustness of our parameter estimates and the significance of each 

parameter in minimizing the modified Kantorovich–Rubinstein distance, we employ an 
approach analogous to the profile likelihood concept [31, 32] in the context of our opti-
mization problem.

First, we examine the influence of the parameter d. Let d be fixed, we calculate, in 
the same way, the triplet of parameters (r1, kon, koff) that minimizes the modified Kan-
torovich–Rubinstein distance under the fixed d constraint. These optimal parameters 
are, therefore, functions dependent on d, denoted as ̂r1 , ̂kon , and ̂koff . Mathematically, 
they are defined by the following relation

Once these functions have been calculated, we can determine the modified Kan-
torovich–Rubinstein distance associated with them, denoted by Sd and defined by the 
following equality,

(22)(r⋆1, k
⋆
on, k

⋆
off, d

⋆) = arg min
r1,kon,koff,d





�

t∈Days

�dist
log,±

KT (t; r1, kon, koff, d)



.

�

�r1(d), �kon(d), �koff(d)
�

= arg min
r1,kon,koff





�

t∈Days

�dist
log,±

KT (t; r1, kon, koff, d)



.
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For the argument of the function, we choose d/d⋆ , to study the distance associated 
with the relative variation of the optimal parameter. By definition of the function Sd , 
it reaches its minimum at d = 1 , corresponding to d = d⋆ . Similarly, we can define the 
functions Skon , Skoff , and Sr1.

In Fig. 5.A, we plotted the Sd , Skon and Skoff functions. The impact of the relative varia-
tion of the two transition rates around the optimal value, on the modified Kantorovich–
Rubinstein distance is quite similar. For the degradation rate, d, we note that a fine 
estimate of this is crucial to obtain good accuracy between the data and the mathemati-
cal model.

Conversely, the parameter r1 has a minor impact on the minimum of the modified 
Kantorovich–Rubinstein distance. Specifically, when r1 deviates from its optimal value, 
new optimal parameter values emerge, resulting in distances very close to the optimal 
distance. This result is illustrated in Fig. 5.B.

Comparison between model and experimental data. In Fig.  6 we compared data 
from relaxation experiments with the results of our model for the parameter values pre-
sented in Table 1.

To initialize our model on day 2, we use the Eq. (8), it follows this following initial 
conditions

where hj corresponds to the number of cells on day 2 with fluorescence between 
Xmax × xj and Xmax × xj+1 , where (xj)j corresponds to the uniform discretization of 

(23)Sd(d/d
⋆) =

∑

t∈Days

̂dist
log,±

KT

(

t; ̂r1(d), ̂kon(d), ̂koff(d), d
)

.

(24)non/off(t0, x) =
Non/off(x)

Non(x)+ Noff(x)
×

J−1
∑

j=0

hj1x∈[xj ,xj+1](x), x ∈ [0, 1],

Fig. 5  Likelihood profiles for for kon , koff and d in A and for r1 in B. A. The blue curve represents the function 
Sd , the red curve Skoff and the green curve Skon . The function Sd is introduced into Eq. (23). B. The grey area 
corresponds to the range of parameter values for r1 such that the function r is non-positive. Compared 
with the other parameters, variation in the r1 parameter has a small impact on the minimum Kantorovich–
Rubinstein distance
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space [0,  1]. That is, the (hj)j correspond to the heights of the histogram of the data 
renormalized by the maximum Xmax.

Visually, Fig.  6.A,B reveals a high degree of proximity between the experimen-
tal data and the mathematical model. To quantify this closeness, we once again 
employ the modified Kantorovich–Rubinstein distance. In Fig.  6.C, we represent, 
by black squares, the temporal evolution of distance between the experimental data 
of the two relaxation experiments. Due to the antinomic nature of the two experi-
ments, distances are considerable in the early days of the experiment. It then gradu-
ally decreases as the two distributions converge towards the stationary distribution. 
From day 26, both profiles reached the stationary stage. At this point, in the absence 
of noise, these two distributions are expected to be similar. Therefore, the minimum 

Fig. 6  Comparison of model and data. On the left the fitting of the CD34+ relaxation experiment (in A) and 
on the right in green of the CD34− (in B) experiments. Experimental data in logarithmic scale are represented 
by plain histograms and the numerical results of model (5) are represented by the dotted curves. We initialize 
the model on day 2, using the biological data. The initial condition is given by (24). Parameter values are given 
in Table 1. KT: the modified Kantorovich–Rubinstein distance, defined by the Eq. (14). C. Time-dependent 
evolution of the Kantorovich–Rubinstein distance between model and experimental data. For different days 
of the experiment, the modified Kantorovich–Rubinstein distance between the two relaxation experiments is 
depicted using black squares. The minimum distance, reached on day 26, is illustrated by a horizontal dotted 
line. The red crosses correspond to the modified Kantorovich–Rubinstein distance between the model for 
the parameter values from Table 1, and the CD34+ cell relaxation experiment. Similarly, the green crosses 
represent the distance for the CD34− cell relaxation experiment



Page 18 of 21Estavoyer et al. BMC Bioinformatics          (2024) 25:270 

distance, dist = 0.142 (illustrated by a dotted line), attained on day 26, corresponds to 
a reference distance to determine the proximity of two distributions.

In this figure, we also illustrate the distance between the model and the two relax-
ation experiments. The CD34+ cell relaxation experiment is represented by the red 
crosses, and the CD34− cell relaxation experiment by the green crosses. To quantita-
tively assess the proximity of the model to experimental data, we employ the reference 
distance represented by the horizontal line. For the CD34− cell relaxation experiment, 
we observe that the distances are always less than the reference distance, except on 
day 13 for which the distance is slightly greater. Concerning the CD34+ cell relaxation 
experiment, this time the distances are more regularly greater than the reference dis-
tance, but are still within an acceptable order of magnitude. These results show that 
our proposed model is very close to the experimental data.

Discussion
Although we had to infer a number of model parameters which could not be deduced 
from the literature (like for example the half-life of the CD34 protein), the overall fit-
ting ability of our model proved to be quite satisfactory. Using Kantorovich distances, 
we indeed observed that the model-to-experiment distance was within the range of 
the experiment-to-experiment distance, so in the range of experimental variability.

We assumed that the proliferation rate would depend upon the level of expression 
of the very gene that is being modelled. In our case, that proved to be useful since 
we wanted to fit relaxation data obtained from CD34 expression. CD34 is a known 
marker for stemness and we hypothesized that, in line with the existing litterature 
[25], CD34+ cells would proliferate less that CD34− more mature cells. We should 
nevertheless stress that such a behaviour can be true for normal hematopoietic stem 
cells, but can be questioned regarding cancer stem cells.

The methodology presented in this paper is applicable to any cell systems for which 
one can perform simultaneously relaxation experiments and proliferation measure-
ments. Biological systems for which the half-life of the protein of interest is known 
should be preferred, since this will remove the need for estimating an important model 
parameter.

One of the difficulties we faced when comparing the model’s output with experimental 
data, lies in the need for common units By default, our model output is a value between 
0 (no CD34 expressed) and 1 (maximum level of CD34 expression). FACS data are cor-
rected fluorescent values, that can be negative in the raw acquisition dataset. We there-
fore processed the data with a gating phase, a shifting phase, and finally normalized 
them in order to obtain comparable values with the model.

It is crucial to emphasize that within a cell population displaying a stationary distribu-
tion of phenotypic states, no cell remains in a permanent state over time. Given a suf-
ficiently long time, one can assume that all cells will have visited all possible states (i.e. 
all possible values for their surface CD34 expression). In other terms, in the state ver-
sus identity long standing debate [33], we clearly side with the view that stemness is an 
emerging dynamical property



Page 19 of 21Estavoyer et al. BMC Bioinformatics          (2024) 25:270 	

Several points shall be investigated further. The first point that can be enriched is 
the form of the division rate r(x) = r0 − r1x . The linear form ensures the explicit for-
mulation of the stable distribution and facilitates the scaling by Xmax but is not neces-
sary for the existence of a profile. Moreover, we made strong assumptions here that the 
daughter cells have the same concentration of markers than the mother cell and that the 
division has no impact on the on/off  status of the cell. This later is a reasonable assump-
tion in the light of the existence of transcriptional memory [20, 21], but it might be 
gene-dependent.

One missing aspect of our model is the absence of any explicit death term. On the 
other hand, an expression independent death rate could immediately be considered by 
relaxation of the constraint of positive division rate (which would then correspond to a 
net growth rate). In terms of parameters, this would affect r0.

Another missing aspect of our model is the fact that the CD34 gene expression is mod-
elled in isolation. It is quite obvious that in cells its expression level will be constrained 
by its positioning in a complex web of genes-to-genes interactions known as a Gene 
Regulatory Network (GRN). Inference of such GRNs is a notoriously difficult task (see 
e.g. [34]), and performing relaxation experiments from such complex objects is yet to be 
done.

One of the future goal of our work would be to assess its predictive ability. A prom-
ising lead would be to go further in the analysis in order to estimate the influence of 
parameters on the relaxation time. Mathematically, this could be analysed through the 
spectral gap which is beyond the scope of this work. It would be especially interesting 
to identify the effects of various parameters on it, in particular the parameter d which 
represents the degradation rate. Note that in this case, the distribution and the value of � 
are expected to change. Interestingly, the model’s prediction in this case could be tested 
experimentally by modifying the endogenous CD34 protein stability.

Conclusion
In the present work, we proposed a revised two-state probabilistic model for gene 
expression which explicitly incorporates a proliferation term. This model was ana-
lysed and we obtained an analytical solution for our model’s steady state. The same 
model was then used for simulating the transient behavior of FACS-sorted cells lead-
ing to the progressive relaxation towards the steady state distribution. Altogether, our 
work shows that a two-state description for CD34 gene expression is well suited to 
explain the relaxation experiments. This support the notion that cells should be seen 
and modeled as probabilistic dynamical systems.

Supplementary Information

Appendix A: Supplementary Figures

See Fig. 7.
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