
SEDA 2024 update: enhancing the SEquence
DAtaset builder for seamless integration
into automated data analysis pipelines
Miguel Reboiro‑Jato1,2, Daniel Pérez‑Rodríguez3,4, Miguel José Da Silva1, David Vila‑Fernández1,
Cristina P. Vieira5,6, Jorge Vieira5,6 and Hugo López‑Fernández1,2*

Background
We developed SEDA (SEquence DAtaset builder) as a multiplatform desktop applica-
tion to deal with FASTA files, one of the most used formats to store DNA and protein
sequences [1]. The initial version of SEDA was characterized for offering an easy-to-use
graphical user interface to a collection of more than thirty operations. These include
common operations such as filtering, sorting, and editing. However, unlike other
applications for manipulating FASTA files (such as SeqKit [2], seqtk [3] or seqmagick
[4]), SEDA also provides advanced operations for performing BLAST queries, protein
domain annotation, and gene annotation. For these advanced operations, SEDA uses
external software (Splign/Compart [5], Augustus [6], CGA [7]) as well as popular web
services (NCBI BLAST [8], UniProt BLAST [9], or PfamScan [10]). While this initial

Abstract

Background: The initial version of SEDA assists life science researchers without pro‑
gramming skills with the preparation of DNA and protein sequence FASTA files for mul‑
tiple bioinformatics applications. However, the initial version of SEDA lacks a command‑
line interface for more advanced users and does not allow the creation of automated
analysis pipelines.

Results: The present paper discusses the updates of the new SEDA release, includ‑
ing the addition of a complete command‑line interface, new functionalities like gene
annotation, a framework for automated pipelines, and improved integration in Linux
environments.

Conclusion: SEDA is an open‑source Java application and can be installed using
the different distributions available (https:// www. sing‑ group. org/ seda/ downl oad.
html) as well as through a Docker image (https:// hub. docker. com/r/ pegi3s/ seda). It
is released under a GPL‑3.0 license, and its source code is publicly accessible on GitHub
(https:// github. com/ sing‑ group/ seda). The software version at the time of submission
is archived at Zenodo (version v1.6.0, http:// doi. org/ 10. 5281/ zenodo. 10201 605).

Keywords: FASTA, Reproducibility, Pipelines, Workflows, Docker

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200
https://doi.org/10.1186/s12859‑024‑05818‑2

BMC Bioinformatics

*Correspondence:
hlfernandez@uvigo.gal

1 SING Research Group,
SERGAS‑UVIGO, Galicia Sur
Health Research Institute (IIS
Galicia Sur), 36213 Vigo, Spain
2 CINBIO, Department
of Computer Science,
ESEI‑Escuela Superior de
Ingeniería Informática,
Universidade de Vigo,
32004 Ourense, Spain
3 NeuroEpigenetics Lab, Instituto
de Investigación Sanitaria
de Santiago (IDIS), Complejo
Hospitalario Universitario de
Santiago, 15706 Santiago de
Compostela, Spain
4 Translational Neuroscience
Group, Área Sanitaria de
Vigo‑Hospital Álvaro Cunqueiro,
SERGAS‑UVIGO, CIBERSAM‑ISCIII,
Galicia Sur Health Research
Institute (IIS Galicia Sur),
36213 Vigo, Spain
5 Instituto de Investigação
e Inovação em Saúde (I3S),
Universidade do Porto,
Rua Alfredo Allen, 208,
4200‑135 Porto, Portugal
6 Instituto de Biologia Molecular
e Celular (IBMC), Rua Alfredo
Allen, 208, 4200‑135 Porto,
Portugal

https://www.sing-group.org/seda/download.html
https://www.sing-group.org/seda/download.html
https://hub.docker.com/r/pegi3s/seda
https://github.com/sing-group/seda
http://doi.org/10.5281/zenodo.10201605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05818-2&domain=pdf

Page 2 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

version of SEDA eases the work of life science researchers working with DNA and/or
protein sequences—especially those who have no programming skills—, it could not be
used in the context of command-line scripts or automated analysis pipelines as it lacks a
command-line interface (CLI).

This paper focuses on detailing the enhancements made in the latest release of SEDA,
including: (i) the incorporation of a comprehensive CLI for all operations; (ii) the intro-
duction of new features, such as a new gene annotation operation for executing the
CGA (Conserved Gene Annotation) pipeline; (iii) the development of a framework for
constructing automated pipelines of SEDA commands using Compi [11]; (iv) enhanced
integration in Linux environments, with man help and new distributables for APT
(Advanced Package Tool), used in Debian-based distributions like Ubuntu or Kubuntu,
RPM (Red Hat Package Manager), used in Fedora or CentOS, among others, and Snap, a
package manager available across a range of Linux distributions.

Implementation
SEDA is implemented in Java 8 using the GC4S library for GUI development [12] and a
custom framework for CLI development.

The project has a modular architecture with plugins, featuring a central module
responsible for core SEDA functionalities, including managing sequences and files, and
additional modules offering supplementary operations. As outlined in the developer’s
section of the SEDA manual, extending SEDA is straightforward through the incorpora-
tion of new plugins, seamlessly integrating new functionalities into the main application.

Some functions within SEDA require the use of external software like BLAST, Clustal
Omega, EMBOSS, Splign/Compart, ProSplign/ProCompart or bedtools, among others.
Although SEDA distributions for Windows, Linux, and Mac OS allows users to specify
the paths for these dependencies if required, it is noteworthy that some of them, such
as Splign/Compart and ProSplign/ProCompart, are exclusive to Linux or might pose
installation challenges. To streamline SEDA usage and tackle such drawbacks, Docker
images corresponding to each dependency have been developed and SEDA can execute
third-party software through these images instead of relying on local binaries. Conse-
quently, when executing operations requiring external applications, SEDA only needs
Docker, which can be easily installed across the three primary operating systems. This
approach aligns with SEDA’s user-centric ethos, eliminating common issues faced by
users lacking advanced technical expertise, particularly the installation and configura-
tion of third-party dependencies. Nevertheless, it is important to note that these external
dependencies are only required for gene annotation pipelines, BLAST-based operations,
and Clustal Omega alignment; the majority of SEDA’s operations remain accessible
without them.

The “SEDA pipelines with Compi” framework was developed using Compi, a versatile
framework for constructing computational pipelines [11].

Results
Command line interface

Having a CLI is essential for enabling the use of SEDA in automated environments,
whether it is within scripts or as part of automated analysis workflows. The CLI was

Page 3 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

developed following standard conventions and providing rational default parameters to
reduce the complexity of the commands.

As the updated online manual shows [13], each command mimics the GUI con-
figuration as much as possible, taking into account the necessary changes. Full
information about each command and its parameters can be obtained with “ < com-
mand_name > --help” or using the man pages, as commented later. Additional file 1 pro-
vides a list of all the commands and categories and their corresponding GUI operations.
Table 1 shows the command options that are common to all commands: input, output,
processing configuration, and configuration files (see below). These options are shown in
categories in the help of each command, along with an additional section at the begin-
ning with the command specific options. This way, the GUI layout is somehow repro-
duced in the CLI, facilitating its interactive usage and adoption.

One interesting feature is the interoperability of GUI and CLI operations through
JSON configuration files. Additional file 2 provides the JSON configuration files of three
different operations. Both the GUI and the CLI allow recording the operations’ configu-
ration in these human-readable files to be reused later. This way, for instance, it is pos-
sible to configure (and run) an operation with the GUI and save its state for later use (e.g.
to reproduce a series of steps automatically using the CLI). In addition, this feature also
helps to ensure the reproducibility of the analyses and can be advantageous when creat-
ing pipelines with the procedures described below.

New functionalities

Since its initial stable release, SEDA has undergone a continuous series of updates,
encompassing bug fixes and various enhancements. Among these, a noteworthy addi-
tion is the incorporation of a new gene annotation operation designed to execute the

Table 1 SEDA options common to all commands

Type Name Description

Input ‑‑input‑directory/‑id Path to the folder containing the files to process

‑‑input‑file/‑if Path to the file to process. This parameter can be
specified multiple times

‑‑input‑list/‑il Plain‑text file with the paths of the files to process

Output ‑‑output‑directory/‑od Path to the folder to be created where result files will
be saved

‑‑output‑group‑size/‑sz Whether output files must be split into subdirectories
of a defined size. By default (0), no split subdirectories
are created. (default: 0)

‑‑output‑gzip/‑gz Whether the output files must be compressed using
gzip

Configuration ‑‑in‑disk‑processing/‑dp Whether files must be processed in hard disk. If not
specified, files are processed in RAM memory. This
option is slower but allows processing big batches of
files with thousands of sequences

Command
configuration
files

‑‑parameters‑file/‑pf < parameters‑file > File with the command configuration (created using
‑‑save‑parameters‑file/‑spf or the GUI) to load the
command options

‑‑save‑parameters‑file/‑spf File to save the command configuration options for
later reuse

Page 4 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

CGA pipeline. This addition further strengthens SEDA’s unique capability in performing
advanced operations.

CGA [7] is a Compi pipeline to efficiently perform CDS annotations by automating
the steps that researchers usually follow when performing manual annotations. Within
CGA, the following procedure is applied to nucleic input sequences in a given FASTA
file with the genome regions of interest. It starts with the “get-orf” step, which identi-
fies open reading frames (ORFs) longer than 30 bp using EMBOSS getorf program.
The obtained sequences are then translated in frame + 1 using EMBOSS transeq pro-
gram, resulting in “01_orfs.prot.fasta” and “01orfs.nuc.fasta files”. Subsequently, the
"blast" step creates a BLAST database from the identified ORFs and performs a blastp
analysis against the user-provided reference protein sequence. Significant matches
(e-value < 0.05) are retrieved and stored in the “02_*.ini” files. The “sort” step organizes
the “02_*.ini” files based on the relative genomic locations of exons, producing “03_*.ini.
sorted” files. The “join-exons” step iteratively processes the sorted files, applying consec-
utive sub-steps for merging sequences, extracting splicing sites, translating sequences,
removing stop codons, and aligning sequences with the reference protein. This cycle
continues until all exons are successfully joined, creating the main output files “04_*.
join_exons_results”. The “predict” step processes these files using EMBOSS getorf and
transeq to obtain predicted CDS and protein sequences in frame + 1, considering a min-
imum size specified by the user. Additionally, a blastp search is performed using the ref-
erence protein as the query. The result includes four output files for each input sequence:
the “05_*.join_exons_results” files containing the DNA sequences being considered
before the predict step (useful for manual sequence refinement when there are reasons
to believe that a complete annotation was not achieved; the “05_*.nuc” and “05_*.pep”
files containing the predicted CDS sequences and their translations, respectively; and
the “05_*.pep.blast” files showing the result of the blastp search when using the refer-
ence protein as query and the corresponding “05_*.pep” file as the database, that provide
a fast and simple way of checking how different the annotated sequences are from the
reference protein.

Pipelines

As commented before, the new CLI allows using SEDA in automated environments and
thus it can now be seamlessly integrated in automated analysis workflows or pipelines.
For instance, Auto-Phylo is a recently developed pipeline maker software for phyloge-
netic studies [14], which includes many modules where SEDA CLI operations are used.
Such usage enables the development of new modules by users with basic Bash scripting
capabilities, and improves code readability [15].

Also, within the first SEDA release, we published three SEDA protocols with step-
by-step execution guides for preparing datasets for large-scale phylogenetic analyses,
obtaining protein family members, and performing phylogenomic studies. By provid-
ing the operations’ configuration files, these protocols could be re-executed manually
with updated data. Now, with the introduction of the CLI, these processes can now be
fully automated. Since these protocols mainly consist of SEDA operations (with very
few exceptions of custom Bash scripts), we automated them by creating ready-to-run

Page 5 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

pipelines. Nevertheless, instead of creating tailored pipelines, we developed the
“SEDA pipelines with Compi” framework, which is publicly available at GitHub [16].

Compi is a versatile framework for constructing computational pipelines. These
pipelines are specified in an XML file, containing the pipeline parameters, tasks defi-
nitions and task dependencies. Therefore, “SEDA pipelines with Compi” can be seen
as a specialization of Compi for SEDA. In this specialization, the definition of the
tasks to be executed by SEDA is streamlined, eliminating redundant and routine ele-
ments. Additionally, task communication is automated through a convention-based
management of tasks inputs and outputs. With this simplification, the creation of a
pipeline for SEDA is reduced to the definition of its tasks (i.e. SEDA commands) and
their execution order (including dependencies on other tasks).

The choice of Compi as underlying workflow manager technology was motivated
by technical issues compared to existing alternatives like Nextflow [17] or Snakemake
[18]. For instance, Snakemake follows a rule-based approach to specify data process-
ing pipelines in which each rule describes how to create one or more output files from
one or more input files. On the other hand, Nextflow pipeline scripts are created by
defining independent processes that communicate to each other via input and output
channels. While powerful and widely used in other use cases, these approaches are
not appropriate for creating generic workflows as Compi allows thanks to the declara-
tive XML and the possibility of using custom task runners.

There are some conventions to consider when using "SEDA pipelines with Compi"
(illustrated in Fig. 1). First, task ids are the name of the SEDA commands to be
executed (X, Y and Z in Fig. 1A). Second, if the same SEDA command is executed
more than once, then tasks ids are disambiguated by adding a numeric suffix (X_1
and X_2 in Fig. 1B). Third, the location of the input files of each task depends on
whether it has dependencies or not. For tasks without dependencies (i.e. initial tasks)
they are located at input/ < seda_command >. For tasks with dependencies (e.g. task
Y in Fig. 1A and B) they are located at the output/ < seda_command_after > direc-
tory (where < seda_command_after > is the ID of each predecessor task, defined in the
after property). Fourth, the output files of each task are located at the output/ < seda_
command > directory. Finally, command parameters are taken from a file with the
params/ < seda_command > . < extension > name (as Fig. 1C shows, the extension can

Fig. 1 Representation of tasks in a SEDA pipeline

Page 6 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

be “.cliParams”, for standard CLI parameters, or “.sedaParams”, for SEDA configura-
tion files in JSON format).

Since it is based on Compi, all the features provided by this framework (such as
logging or partial execution) are also available. In addition to such functions, “SEDA
pipelines with Compi” includes several extra features, specifically: (i) the support for
running non-SEDA tasks (e.g. Bash scripts, as task Z in Fig. 1A), (ii) the ability to run
commands in batches of a given size, essential for handling a large volume of input
files or when resources are limited (by default, all the input files are processed in a
single SEDA execution), and (iii) the generation of comprehensive and meaningful
logs.

Also, as Fig. 1B shows for the task with id X_2, the input files can be provided as a
plain text file at input/lists/ < seda_command > .txt. This is useful for re-analyzing only a
subset of files such as new files not analyzed previously or files that failed at some point.

Integration in GNU/Linux environments

The integration of SEDA in GNU/Linux environments was greatly improved in this
new release. First, manual pages (or man pages) are now included in the GNU/Linux
distributables and can be shown with man, as is usually done for most command-line
programs. This complements the help provided by the own SEDA CLI application as
well as the exhaustive online documentation [13]. The new SEDA release now offers
installation packages for APT (Advanced Package Tool), used in Debian-based distri-
butions like Ubuntu or Kubuntu, RPM (Red Hat Package Manager), used in Fedora
or CentOS, among others, and Snap, a package manager available across a range of
Linux distributions.

Use cases
Auto‑phylo

Auto-Phylo is a pipeline maker tool for phylogenetic studies [14]. It has a variety of
prebuilt modules for performing different tasks related to BLAST execution, FASTA
file processing, alignment, tree building, model checking, gene annotation, detection
of positively selected amino acid sites, and divergence estimates.

Users can combine each module at their convenience by following a simple syntax
as long as they are compatible between them (i.e. the output of one module matches
the required input of the next one), and the execution engine takes care of running
the pipeline. The advantage of using Auto-Phylo is that it eases the creation of cus-
tom pipelines, eliminates human errors, and ensures reproducibility across operat-
ing systems and laboratories. This is a straightforward yet useful use case of the new
SEDA CLI. All modules under the categories “Blast”, “FASTA file processing”, “Model
checking”, “Gene annotation”, and “Divergence estimates”, as well as five out of nine
modules under “Alignment”, and one out of 11 under”Tree building”, use SEDA-CLI
operations. One of such modules, called “CGF_and_CGA_CDS_processing”, imple-
ments 12 SEDA CLI operations to process CDS FASTA files, downloaded from NCBI
Assembly database for phylogenetic studies.

Page 7 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

Automated SEDA protocols

As noted before, the “SEDA pipelines with Compi” framework was used to automate
three SEDA protocols for preparing datasets for large-scale phylogenetic analyses,
obtaining protein family members, and performing phylogenomic studies.

The first protocol, available at GitHub [19], is designed to process a large number of
coding sequence files to retrieve sequences showing similarity to a given gene. In other
words, it allows preparing datasets for large-scale phylogenetic analyses. The provided
test data include all configuration files for the GULO gene case study, which can be eas-
ily adapted to work with other genes.

The second protocol, available at GitHub [20], is aimed at retrieving all members of a
given protein family using the PfamScan operation to annotate sequences. The provided
test data include all configuration files for the case study of mucin proteins and can be
easily adapted to other case studies.

Finally, the third protocol, available at GitHub [21], shows how to retrieve files and
prepare datasets to be used in detailed phylogenomic studies. The test data provided
focus on the use of mitochondrial genomes to pinpoint the most likely phylogenetic rela-
tionship between Rosaceae species. The protocol can be easily adapted to other species
by simply changing the input data files.

Conclusions
The new SEDA release featured here complements the previous GUI with a CLI and
enhances its integration in GNU/Linux environments through the inclusion of man
pages and new distributables. Both interfaces are readily accessible via the official
Docker image, which is compatible with other container technologies, such as Singular-
ity. In addition to introducing new functionalities, we have also presented a framework
for easily constructing pipelines based on SEDA commands.

Through this update, our aim is to elevate SEDA from being a helpful GUI tool for
researchers working with FASTA to becoming a fundamental part of pipelines and
scripts for the analysis of this kind of data. Thanks to both the GUI and CLI interopera-
bility and the “SEDA pipelines with Compi” framework, any researcher can easily design
a protocol using the GUI (i.e. configuring and running each operation) and then build a
distributable and reproducible pipeline that can be shared with other researchers.

Availability and requirements

• Project name: SEDA (SEquence DAtaset builder)
• Project home page: http:// www. sing- group. org/ seda
• Archived version: https:// doi. org/ 10. 5281/ zenodo. 10201 605
• Operating system(s): Linux, Windows and Mac OS.
• Programming language: Java 8
• Other requirements: Docker (optional) and/or third-party software like BLAST,

Clustal Omega, etc. Check the manual for a complete list (http:// www. sing- group.
org/ seda/ manual/ insta llati on- and- confi gurat ion. html# depen denci es-1).

• License: GNU GPL-3.0.

http://www.sing-group.org/seda
https://doi.org/10.5281/zenodo.10201605
http://www.sing-group.org/seda/manual/installation-and-configuration.html#dependencies-1
http://www.sing-group.org/seda/manual/installation-and-configuration.html#dependencies-1

Page 8 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

• Any restrictions to use by non-academics: e.g. licence needed

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 024‑ 05818‑2.

Supplementary Material 1: SEDA operations. Table with all commands and operations in SEDA.

Supplementary Material 2: JSON configuration files of three different operations. JSON configuration files of three
different operations (1. Remove isoforms; 2. BLAST; 3. Filtering).

Author contributions
HLF, MRJ, CPV and JV, conceived and designed the software. DPR and HLF implemented the “SEDA pipelines with Compi”
framework and the automated SEDA protocols presented in “Automated SEDA protocols” section. HLF, MRJ and DVF
designed the CLI. HLF and DVF implemented the CLI. MJDS created the Linux distributions and manual pages. HLF wrote
the first draft of the manuscript. All authors were involved in improving the initial draft. All authors read and approved
the final manuscript.

Funding
This research was financed by the National Funds through FCT‑Fundação para a Ciência e a Tecnologia, I.P., under the
project UIDB/04293/2020, and by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Gali‑
cia), under the scope of the strategic funding ED431C 2022/03‑GRC Competitive Reference Group. D. Pérez‑Rodríguez
was partially supported by an Investigo Program contract (TR349V) from Xunta de Galicia.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests in this section.

Received: 16 February 2024 Accepted: 21 May 2024

References
 1. Lopez‑Fernandez H, Duque P, Vazquez N, Fdez‑Riverola F, Reboiro‑Jato M, Vieira CP, et al. SEDA: a desktop tool suite

for FASTA files processing. IEEE/ACM Trans Comput Biol Bioinform. 2020;1–1.
 2. Shen W, Le S, Li Y, Hu F. SeqKit: a cross‑platform and ultrafast Toolkit for FASTA/Q file manipulation. PLoS ONE.

2016;11(10): e0163962.
 3. Li H. lh3/seqtk [Internet]. 2020 [cited 2020 Mar 20]. Available from: https:// github. com/ lh3/ seqtk
 4. seqmagick [Internet]. [cited 2020 Mar 20]. Available from: https:// fhcrc. github. io/ seqma gick/
 5. Kapustin Y, Souvorov A, Tatusova T, Lipman D. Splign: algorithms for computing spliced alignments with identifica‑

tion of paralogs. Biol Direct. 2008;3(1):20.
 6. Hoff KJ, Stanke M. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinform. 2018;22: e57.
 7. pegi3s/cga [Internet]. pegi3s; 2022 [cited 2024 Feb 14]. Available from: https:// github. com/ pegi3s/ cga
 8. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic

Acids Res. 2008;36(Web Server):W5‑9.
 9. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss‑Prot. In: Edwards D, editor. Plant bioin‑

formatics. Totowa: Humana Press; 2007. p. 89–112. https:// doi. org/ 10. 1007/ 978‑1‑ 59745‑ 535‑0_4.
 10. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL‑EBI search and sequence analysis tools

APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–41.
 11. López‑Fernández H, Graña‑Castro O, Nogueira‑Rodríguez A, Reboiro‑Jato M, Glez‑Peña D. Compi: a framework for

portable and reproducible pipelines. PeerJ Comput Sci. 2021;18(7): e593.
 12. López‑Fernández H, Reboiro‑Jato M, Glez‑Peña D, Laza R, Pavón R, Fdez‑Riverola F. GC4S: a bioinformatics‑oriented

Java software library of reusable graphical user interface components. PLoS ONE. 2018;13(9): e0204474.
 13. Welcome to the SEDA manual!—SEDA 1.6.0 documentation [Internet]. [cited 2024 Feb 14]. Available from: http://

www. sing‑ group. org/ seda/ manual/
 14. López‑Fenández H, Pinto M, Vieira CP, Duque P, Reboiro‑Jato M, Vieira J. Auto‑phylo: a pipeline maker for phy‑

logenetic studies. In: Rocha M, Fdez‑Riverola F, Mohamad MS, Gil‑González AB, editors. Practical applications of
computational biology and bioinformatics, 17th international conference (PACBB 2023). Cham: Springer Nature
Switzerland; 2023. pp. 24–33. (Lecture Notes in Networks and Systems).

https://doi.org/10.1186/s12859-024-05818-2
https://github.com/lh3/seqtk
https://fhcrc.github.io/seqmagick/
https://github.com/pegi3s/cga
https://doi.org/10.1007/978-1-59745-535-0_4
http://www.sing-group.org/seda/manual/
http://www.sing-group.org/seda/manual/

Page 9 of 9Reboiro‑Jato et al. BMC Bioinformatics (2024) 25:200

 15. auto‑phylo script basic structure—auto‑phylo‑v2 documentation [Internet]. [cited 2024 Feb 14]. Available from:
http:// evolu tion6. i3s. up. pt/ static/ auto‑ phylo/ v2/ docs/ script. html

 16. sing‑group/seda‑compi‑pipelines [Internet]. SING Group; 2024 [cited 2024 Feb 14]. Available from: https:// github.
com/ sing‑ group/ seda‑ compi‑ pipel ines

 17. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa‑
tional workflows. Nat Biotechnol. 2017;35(4):316–9.

 18. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics.
2018;34(20):3600–3600.

 19. pegi3s/seda‑pipeline‑phylogenetics‑datasets [Internet]. pegi3s; 2023 [cited 2024 Feb 14]. Available from: https://
github. com/ pegi3s/ seda‑ pipel ine‑ phylo genet ics‑ datas ets

 20. pegi3s/seda‑pipeline‑protein‑family‑members [Internet]. pegi3s; 2023 [cited 2024 Feb 14]. Available from: https://
github. com/ pegi3s/ seda‑ pipel ine‑ prote in‑ family‑ membe rs

 21. pegi3s/seda‑pipeline‑phylogenomics‑study [Internet]. pegi3s; 2023 [cited 2024 Feb 14]. Available from: https://
github. com/ pegi3s/ seda‑ pipel ine‑ phylo genom ics‑ study

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://evolution6.i3s.up.pt/static/auto-phylo/v2/docs/script.html
https://github.com/sing-group/seda-compi-pipelines
https://github.com/sing-group/seda-compi-pipelines
https://github.com/pegi3s/seda-pipeline-phylogenetics-datasets
https://github.com/pegi3s/seda-pipeline-phylogenetics-datasets
https://github.com/pegi3s/seda-pipeline-protein-family-members
https://github.com/pegi3s/seda-pipeline-protein-family-members
https://github.com/pegi3s/seda-pipeline-phylogenomics-study
https://github.com/pegi3s/seda-pipeline-phylogenomics-study

	SEDA 2024 update: enhancing the SEquence DAtaset builder for seamless integration into automated data analysis pipelines
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	Results
	Command line interface
	New functionalities
	Pipelines
	Integration in GNULinux environments

	Use cases
	Auto-phylo
	Automated SEDA protocols

	Conclusions
	Availability and requirements
	References

