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Background
We developed SEDA (SEquence DAtaset builder) as a multiplatform desktop applica-
tion to deal with FASTA files, one of the most used formats to store DNA and protein 
sequences [1]. The initial version of SEDA was characterized for offering an easy-to-use 
graphical user interface to a collection of more than thirty operations. These include 
common operations such as filtering, sorting, and editing. However, unlike other 
applications for manipulating FASTA files (such as SeqKit [2], seqtk [3] or seqmagick 
[4]), SEDA also provides advanced operations for performing BLAST queries, protein 
domain annotation, and gene annotation. For these advanced operations, SEDA uses 
external software (Splign/Compart [5], Augustus [6], CGA [7]) as well as popular web 
services (NCBI BLAST [8], UniProt BLAST [9], or PfamScan [10]). While this initial 
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version of SEDA eases the work of life science researchers working with DNA and/or 
protein sequences—especially those who have no programming skills—, it could not be 
used in the context of command-line scripts or automated analysis pipelines as it lacks a 
command-line interface (CLI).

This paper focuses on detailing the enhancements made in the latest release of SEDA, 
including: (i) the incorporation of a comprehensive CLI for all operations; (ii) the intro-
duction of new features, such as a new gene annotation operation for executing the 
CGA (Conserved Gene Annotation) pipeline; (iii) the development of a framework for 
constructing automated pipelines of SEDA commands using Compi [11]; (iv) enhanced 
integration in Linux environments, with man help and new distributables for APT 
(Advanced Package Tool), used in Debian-based distributions like Ubuntu or Kubuntu, 
RPM (Red Hat Package Manager), used in Fedora or CentOS, among others, and Snap, a 
package manager available across a range of Linux distributions.

Implementation
SEDA is implemented in Java 8 using the GC4S library for GUI development [12] and a 
custom framework for CLI development.

The project has a modular architecture with plugins, featuring a central module 
responsible for core SEDA functionalities, including managing sequences and files, and 
additional modules offering supplementary operations. As outlined in the developer’s 
section of the SEDA manual, extending SEDA is straightforward through the incorpora-
tion of new plugins, seamlessly integrating new functionalities into the main application.

Some functions within SEDA require the use of external software like BLAST, Clustal 
Omega, EMBOSS, Splign/Compart, ProSplign/ProCompart or bedtools, among others. 
Although SEDA distributions for Windows, Linux, and Mac OS allows users to specify 
the paths for these dependencies if required, it is noteworthy that some of them, such 
as Splign/Compart and ProSplign/ProCompart, are exclusive to Linux or might pose 
installation challenges. To streamline SEDA usage and tackle such drawbacks, Docker 
images corresponding to each dependency have been developed and SEDA can execute 
third-party software through these images instead of relying on local binaries. Conse-
quently, when executing operations requiring external applications, SEDA only needs 
Docker, which can be easily installed across the three primary operating systems. This 
approach aligns with SEDA’s user-centric ethos, eliminating common issues faced by 
users lacking advanced technical expertise, particularly the installation and configura-
tion of third-party dependencies. Nevertheless, it is important to note that these external 
dependencies are only required for gene annotation pipelines, BLAST-based operations, 
and Clustal Omega alignment; the majority of SEDA’s operations remain accessible 
without them.

The “SEDA pipelines with Compi” framework was developed using Compi, a versatile 
framework for constructing computational pipelines [11].

Results
Command line interface

Having a CLI is essential for enabling the use of SEDA in automated environments, 
whether it is within scripts or as part of automated analysis workflows. The CLI was 
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developed following standard conventions and providing rational default parameters to 
reduce the complexity of the commands.

As the updated online manual shows [13], each command mimics the GUI con-
figuration as much as possible, taking into account the necessary changes. Full 
information about each command and its parameters can be obtained with “ < com-
mand_name > --help” or using the man pages, as commented later. Additional file 1 pro-
vides a list of all the commands and categories and their corresponding GUI operations. 
Table 1 shows the command options that are common to all commands: input, output, 
processing configuration, and configuration files (see below). These options are shown in 
categories in the help of each command, along with an additional section at the begin-
ning with the command specific options. This way, the GUI layout is somehow repro-
duced in the CLI, facilitating its interactive usage and adoption.

One interesting feature is the interoperability of GUI and CLI operations through 
JSON configuration files. Additional file 2 provides the JSON configuration files of three 
different operations. Both the GUI and the CLI allow recording the operations’ configu-
ration in these human-readable files to be reused later. This way, for instance, it is pos-
sible to configure (and run) an operation with the GUI and save its state for later use (e.g. 
to reproduce a series of steps automatically using the CLI). In addition, this feature also 
helps to ensure the reproducibility of the analyses and can be advantageous when creat-
ing pipelines with the procedures described below.

New functionalities

Since its initial stable release, SEDA has undergone a continuous series of updates, 
encompassing bug fixes and various enhancements. Among these, a noteworthy addi-
tion is the incorporation of a new gene annotation operation designed to execute the 

Table 1 SEDA options common to all commands

Type Name Description

Input ‑‑input‑directory/‑id Path to the folder containing the files to process

‑‑input‑file/‑if Path to the file to process. This parameter can be 
specified multiple times

‑‑input‑list/‑il Plain‑text file with the paths of the files to process

Output ‑‑output‑directory/‑od Path to the folder to be created where result files will 
be saved

‑‑output‑group‑size/‑sz Whether output files must be split into subdirectories 
of a defined size. By default (0), no split subdirectories 
are created. (default: 0)

‑‑output‑gzip/‑gz Whether the output files must be compressed using 
gzip

Configuration ‑‑in‑disk‑processing/‑dp Whether files must be processed in hard disk. If not 
specified, files are processed in RAM memory. This 
option is slower but allows processing big batches of 
files with thousands of sequences

Command 
configuration 
files

‑‑parameters‑file/‑pf < parameters‑file > File with the command configuration (created using 
‑‑save‑parameters‑file/‑spf or the GUI) to load the 
command options

‑‑save‑parameters‑file/‑spf File to save the command configuration options for 
later reuse
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CGA pipeline. This addition further strengthens SEDA’s unique capability in performing 
advanced operations.

CGA [7] is a Compi pipeline to efficiently perform CDS annotations by automating 
the steps that researchers usually follow when performing manual annotations. Within 
CGA, the following procedure is applied to nucleic input sequences in a given FASTA 
file with the genome regions of interest. It starts with the “get-orf” step, which identi-
fies open reading frames (ORFs) longer than 30  bp using EMBOSS getorf program. 
The obtained sequences are then translated in frame + 1 using EMBOSS transeq pro-
gram, resulting in “01_orfs.prot.fasta” and “01orfs.nuc.fasta files”. Subsequently, the 
"blast" step creates a BLAST database from the identified ORFs and performs a blastp 
analysis against the user-provided reference protein sequence. Significant matches 
(e-value < 0.05) are retrieved and stored in the “02_*.ini” files. The “sort” step organizes 
the “02_*.ini” files based on the relative genomic locations of exons, producing “03_*.ini.
sorted” files. The “join-exons” step iteratively processes the sorted files, applying consec-
utive sub-steps for merging sequences, extracting splicing sites, translating sequences, 
removing stop codons, and aligning sequences with the reference protein. This cycle 
continues until all exons are successfully joined, creating the main output files “04_*.
join_exons_results”. The “predict” step processes these files using EMBOSS getorf and 
transeq to obtain predicted CDS and protein sequences in frame + 1, considering a min-
imum size specified by the user. Additionally, a blastp search is performed using the ref-
erence protein as the query. The result includes four output files for each input sequence: 
the “05_*.join_exons_results” files containing the DNA sequences being considered 
before the predict step (useful for manual sequence refinement when there are reasons 
to believe that a complete annotation was not achieved; the “05_*.nuc” and “05_*.pep” 
files containing the predicted CDS sequences and their translations, respectively; and 
the “05_*.pep.blast” files showing the result of the blastp search when using the refer-
ence protein as query and the corresponding “05_*.pep” file as the database, that provide 
a fast and simple way of checking how different the annotated sequences are from the 
reference protein.

Pipelines

As commented before, the new CLI allows using SEDA in automated environments and 
thus it can now be seamlessly integrated in automated analysis workflows or pipelines. 
For instance, Auto-Phylo is a recently developed pipeline maker software for phyloge-
netic studies [14], which includes many modules where SEDA CLI operations are used. 
Such usage enables the development of new modules by users with basic Bash scripting 
capabilities, and improves code readability [15].

Also, within the first SEDA release, we published three SEDA protocols with step-
by-step execution guides for preparing datasets for large-scale phylogenetic analyses, 
obtaining protein family members, and performing phylogenomic studies. By provid-
ing the operations’ configuration files, these protocols could be re-executed manually 
with updated data. Now, with the introduction of the CLI, these processes can now be 
fully automated. Since these protocols mainly consist of SEDA operations (with very 
few exceptions of custom Bash scripts), we automated them by creating ready-to-run 
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pipelines. Nevertheless, instead of creating tailored pipelines, we developed the 
“SEDA pipelines with Compi” framework, which is publicly available at GitHub [16].

Compi is a versatile framework for constructing computational pipelines. These 
pipelines are specified in an XML file, containing the pipeline parameters, tasks defi-
nitions and task dependencies. Therefore, “SEDA pipelines with Compi” can be seen 
as a specialization of Compi for SEDA. In this specialization, the definition of the 
tasks to be executed by SEDA is streamlined, eliminating redundant and routine ele-
ments. Additionally, task communication is automated through a convention-based 
management of tasks inputs and outputs. With this simplification, the creation of a 
pipeline for SEDA is reduced to the definition of its tasks (i.e. SEDA commands) and 
their execution order (including dependencies on other tasks).

The choice of Compi as underlying workflow manager technology was motivated 
by technical issues compared to existing alternatives like Nextflow [17] or Snakemake 
[18]. For instance, Snakemake follows a rule-based approach to specify data process-
ing pipelines in which each rule describes how to create one or more output files from 
one or more input files. On the other hand, Nextflow pipeline scripts are created by 
defining independent processes that communicate to each other via input and output 
channels. While powerful and widely used in other use cases, these approaches are 
not appropriate for creating generic workflows as Compi allows thanks to the declara-
tive XML and the possibility of using custom task runners.

There are some conventions to consider when using "SEDA pipelines with Compi" 
(illustrated in Fig.  1). First, task ids are the name of the SEDA commands to be 
executed (X, Y and Z in Fig.  1A). Second, if the same SEDA command is executed 
more than once, then tasks ids are disambiguated by adding a numeric suffix (X_1 
and X_2 in Fig.  1B). Third, the location of the input files of each task depends on 
whether it has dependencies or not. For tasks without dependencies (i.e. initial tasks) 
they are located at input/ < seda_command >. For tasks with dependencies (e.g. task 
Y in Fig.  1A and B) they are located at the output/ < seda_command_after > direc-
tory (where < seda_command_after > is the ID of each predecessor task, defined in the 
after property). Fourth, the output files of each task are located at the output/ < seda_
command > directory. Finally, command parameters are taken from a file with the 
params/ < seda_command > . < extension > name (as Fig. 1C shows, the extension can 

Fig. 1 Representation of tasks in a SEDA pipeline
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be  “.cliParams”, for standard CLI parameters, or  “.sedaParams”, for SEDA configura-
tion files in JSON format).

Since it is based on Compi, all the features provided by this framework (such as 
logging or partial execution) are also available. In addition to such functions, “SEDA 
pipelines with Compi” includes several extra features, specifically: (i) the support for 
running non-SEDA tasks (e.g. Bash scripts, as task Z in Fig. 1A), (ii) the ability to run 
commands in batches of a given size, essential for handling a large volume of input 
files or when resources are limited (by default, all the input files are processed in a 
single SEDA execution), and (iii) the generation of comprehensive and meaningful 
logs.

Also, as Fig. 1B shows for the task with id X_2, the input files can be provided as a 
plain text file at input/lists/ < seda_command > .txt. This is useful for re-analyzing only a 
subset of files such as new files not analyzed previously or files that failed at some point.

Integration in GNU/Linux environments

The integration of SEDA in GNU/Linux environments was greatly improved in this 
new release. First, manual pages (or man pages) are now included in the GNU/Linux 
distributables and can be shown with man, as is usually done for most command-line 
programs. This complements the help provided by the own SEDA CLI application as 
well as the exhaustive online documentation [13]. The new SEDA release now offers 
installation packages for APT (Advanced Package Tool), used in Debian-based distri-
butions like Ubuntu or Kubuntu, RPM (Red Hat Package Manager), used in Fedora 
or CentOS, among others, and Snap, a package manager available across a range of 
Linux distributions.

Use cases
Auto‑phylo

Auto-Phylo is a pipeline maker tool for phylogenetic studies [14]. It has a variety of 
prebuilt modules for performing different tasks related to BLAST execution, FASTA 
file processing, alignment, tree building, model checking, gene annotation, detection 
of positively selected amino acid sites, and divergence estimates.

Users can combine each module at their convenience by following a simple syntax 
as long as they are compatible between them (i.e. the output of one module matches 
the required input of the next one), and the execution engine takes care of running 
the pipeline. The advantage of using Auto-Phylo is that it eases the creation of cus-
tom pipelines, eliminates human errors, and ensures reproducibility across operat-
ing systems and laboratories. This is a straightforward yet useful use case of the new 
SEDA CLI. All modules under the categories “Blast”, “FASTA file processing”, “Model 
checking”, “Gene annotation”, and “Divergence estimates”, as well as five out of nine 
modules under “Alignment”, and one out of 11 under”Tree building”, use SEDA-CLI 
operations. One of such modules, called “CGF_and_CGA_CDS_processing”, imple-
ments 12 SEDA CLI operations to process CDS FASTA files, downloaded from NCBI 
Assembly database for phylogenetic studies.
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Automated SEDA protocols

As noted before, the “SEDA pipelines with Compi” framework was used to automate 
three SEDA protocols for preparing datasets for large-scale phylogenetic analyses, 
obtaining protein family members, and performing phylogenomic studies.

The first protocol, available at GitHub [19], is designed to process a large number of 
coding sequence files to retrieve sequences showing similarity to a given gene. In other 
words, it allows preparing datasets for large-scale phylogenetic analyses. The provided 
test data include all configuration files for the GULO gene case study, which can be eas-
ily adapted to work with other genes.

The second protocol, available at GitHub [20], is aimed at retrieving all members of a 
given protein family using the PfamScan operation to annotate sequences. The provided 
test data include all configuration files for the case study of mucin proteins and can be 
easily adapted to other case studies.

Finally, the third protocol, available at GitHub [21], shows how to retrieve files and 
prepare datasets to be used in detailed phylogenomic studies. The test data provided 
focus on the use of mitochondrial genomes to pinpoint the most likely phylogenetic rela-
tionship between Rosaceae species. The protocol can be easily adapted to other species 
by simply changing the input data files.

Conclusions
The new SEDA release featured here complements the previous GUI with a CLI and 
enhances its integration in GNU/Linux environments through the inclusion of man 
pages and new distributables. Both interfaces are readily accessible via the official 
Docker image, which is compatible with other container technologies, such as Singular-
ity. In addition to introducing new functionalities, we have also presented a framework 
for easily constructing pipelines based on SEDA commands.

Through this update, our aim is to elevate SEDA from being a helpful GUI tool for 
researchers working with FASTA to becoming a fundamental part of pipelines and 
scripts for the analysis of this kind of data. Thanks to both the GUI and CLI interopera-
bility and the “SEDA pipelines with Compi” framework, any researcher can easily design 
a protocol using the GUI (i.e. configuring and running each operation) and then build a 
distributable and reproducible pipeline that can be shared with other researchers.

Availability and requirements

• Project name: SEDA (SEquence DAtaset builder)
• Project home page: http:// www. sing- group. org/ seda
• Archived version: https:// doi. org/ 10. 5281/ zenodo. 10201 605
• Operating system(s): Linux, Windows and Mac OS.
• Programming language: Java 8
• Other requirements: Docker (optional) and/or third-party software like BLAST, 

Clustal Omega, etc. Check the manual for a complete list (http:// www. sing- group. 
org/ seda/ manual/ insta llati on- and- confi gurat ion. html# depen denci es-1).

• License: GNU GPL-3.0.

http://www.sing-group.org/seda
https://doi.org/10.5281/zenodo.10201605
http://www.sing-group.org/seda/manual/installation-and-configuration.html#dependencies-1
http://www.sing-group.org/seda/manual/installation-and-configuration.html#dependencies-1


Page 8 of 9Reboiro‑Jato et al. BMC Bioinformatics          (2024) 25:200 

• Any restrictions to use by non-academics: e.g. licence needed
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The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 024‑ 05818‑2.

Supplementary Material 1: SEDA operations. Table with all commands and operations in SEDA.

Supplementary Material 2: JSON configuration files of three different operations. JSON configuration files of three 
different operations (1. Remove isoforms; 2. BLAST; 3. Filtering).
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