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Abstract 

In this paper, we aim to build a platform that will help bridge the gap between high-
dimensional computation and wet-lab experimentation by allowing users to interro-
gate genomic signatures at multiple molecular levels and identify best next actionable 
steps for downstream decision making. We introduce Multioviz: a publicly accessi-
ble R package and web application platform to easily perform in silico hypothesis test-
ing of generated gene regulatory networks. We demonstrate the utility of Multio-
viz by conducting an end-to-end analysis in a statistical genetics application focused 
on measuring the effect of in silico perturbations of complex trait architecture. By using 
a real dataset from the Wellcome Trust Centre for Human Genetics, we both recapitu-
late previous findings and propose hypotheses about the genes involved in the per-
centage of immune CD8+ cells found in heterogeneous stocks of mice. Source code 
for the Multioviz R package is available at https://​github.​com/​lcraw​lab/​multio-​viz 
and an interactive version of the platform is available at https://​multi​oviz.​ccv.​brown.​
edu/.

Introduction
Phenotypic architecture is often driven by a collection of biological processes that occur 
through dynamic interactions across various molecular levels, including single nucleo-
tide polymorphisms (SNPs), genes, and proteins [1]. Gene regulatory networks (GRNs) 
are directed graphs that effectively allow for the visualization of interactions between 
these components that constitute cellular pathways and signaling cascades  [2]. Each 
node in a GRN represents a molecular variable such as a SNP or a gene, with each edge 
representing the interaction between two nodes. By simultaneously characterizing phe-
notypes at multiple genomic levels and modeling their interactions as a GRN, practition-
ers and data analysts can identify significant molecular variables for follow-up studies 
(e.g., through knockout experiments) [3].

Unfortunately, finding cost effective ways to investigate how a set of perturbations on a 
GRN will drive changes within a phenotype remains a challenge—especially as sequenc-
ing technologies continue to advance and, with this new depth, the space of potential 
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biomarkers continues to grow. This motivates using in silico approaches to explore initial 
hypotheses and to identify actionable candidates for downstream tasks. To date, many 
computational methods have been developed for this purpose in high-dimensional 
multi-omics datasettings  [4, 5]. These platforms often leverage variable importance 
measures, such as p-values and posterior inclusion probabilities (PIP), to infer GRNs [6, 
7]. However, despite their usefulness, the software accompanying these algorithms usu-
ally require a fair amount of coding expertise to run them—thus, posing a challenge par-
ticularly for non-computational users  [8]. Furthermore, the outputs of these methods 
are usually just lists of potential biomarker candidates which are not always easily ame-
nable for determining the best next experimental action. To that end, there is a need 
for an accessible interactive platform that leverages statistical variable selection methods 
and subsequently enables non-computational researchers to efficiently test biological 
hypotheses in silico, prior to spending time and money in the wet-lab.

To meet this need in the field, we developed Multioviz: a web-based platform and 
R package for in silico exploration and assessment of GRNs. While many GRN plat-
forms have been developed, a majority do not allow for perturbation analyses where a 
user is able to impose modifications onto a network (i.e., the addition or subtraction of a 
node or edge) and invoke a statistical reanalysis to learn how a phenotype might change 
with new sets of molecular interactions [9–13]. More notably, existing platforms that 
do indeed have the capability to incorporate perturbation analyses, often do not offer 
a user-friendly interactive environment for efficiently visualizing changes to GRNs [14, 
15]. The key contribution of Multioviz is that it enables in silico perturbation experi-
ments within an easy-to-use interface that includes the following three main features 
(Table 1). First, it allows users to couple summary statistics from a computational analy-
sis (e.g., p-values or PIPs) along with a set of biological annotations (e.g., SNPs within the 
boundary of a gene) to visualize multi-level genomic relationships in the form of a GRN. 
Second, it allows users to perturb these learned networks and investigate the associated 
ramifications on a phenotype of interest. Lastly, Multioviz integrates various variable 

Table 1  Multioviz combines the features of existing platforms to present a unified platform 
for gene regulatory network (GRN) based  in silico hypothesis testing and perturbation analyses. 
Comparable platforms listed include: OpenXR  [9], vissE.cloud  [10], MONGKIE  [11], 
MiBiOmics [12], GeNeCK [13], scTenifoldKnk [14], and GenYsis [15]

Multioviz OpenXGR vissE.
cloud

MONGKIE MiBiOmics GeNeCK scTenifoldKnk GenYsis

Perturbation 
analysis

� � �

Flexible 
inputs

� � � �

Multi-omic 
integration

� � � � �

Variable 
selection

� � � � � �

Multi-level 
analysis

� � � � �

Interactive 
platform

� � � � � �

Total # of 
features

6 5 5 4 3 2 2 2
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selection methods to give users a wide choice of statistical approaches that they can use 
to generate relevant multi-level genomic signatures for their analyses.

Overall, Multioviz provides an intuitive approach to  in silico hypothesis testing, 
even for individuals with less computational and coding experience. Here, a user starts 
by inputting molecular data along with an associated phenotype to graphically visualize 
the relationships between significant variables. The user can then “knock out” a node in 
the GRN and rerun the statistical variable selection step to observe the effect of the per-
turbation. As a general illustration of our proposed platform, we will demonstrate how 
to perform perturbation analyses with the Multioviz online platform using “Biologi-
cally Annotated Neural Networks” (BANNs) which are a class of feedforward Bayesian 
machine learning models that integrate known biological relationships to perform asso-
ciation mapping on multiple molecular levels simultaneously [7]. The rest of the paper is 
organized as follows. In the next section, we describe the methodological and engineer-
ing details behind the three main features of Multioviz. Next, we demonstrate how to 
perform perturbation analyses using Multioviz with real quantitative traits assayed in 
a heterogeneous stock of mice from Wellcome Trust Centre for Human Genetics [16]. 
We also compare the GRN outputs produced by Multioviz to those generated by 
comparable platforms during a perturbation analysis on the same real data. Finally, we 
close with a discussion and a look towards future research directions. We believe that 
the Multioviz platform and its application are a step towards providing practition-
ers the ability to perform true human-in-the-loop assessment of the biological processes 
driving complex phenotypes and diseases.

Materials and methods
The Multioviz platform allows the user to (i) intuitively visualize gene regulatory net-
works (GRNs) from multi-omics data (ii) perform in silico hypothesis testing through 
perturbing those GRNs and uncovering the effect the phenotypic architecture and (iii) 
allows these features to be leveraged with virtually any variable selection method. The 
general end-to-end workflow of Multioviz is intended to be intuitive and straight-
forward to all users regardless of coding experience (Fig. 1). To begin, a user first inputs 
individual level data or summary statistics derived from a multi-omic dataset (Fig. 1a, 
b). In this paper, for the second step, we will demonstrate Multioviz using BANNs 
to perform variable selection on these input data. After statistically significant variables 
are identified, Multioviz outputs a GRN where the nodes correspond to genomic 
units (e.g., SNPs or genes) and the edges between nodes symbolize that there is some 
functional relationship that connects them. The BANNs method produces a posterior 
inclusion probability (PIP) for each molecular variable. These PIP scores lie on the unit 
interval and provide a prioritization score for each genomic variable in the data—with 
values closer to 1 indicating greater statistical significance [17]. In the Multioviz 
user-interface, these PIP values are displayed in different colors for nodes and edges, 
respectfully, which provides an interpretable view of important molecular variables. 
Insignificant SNPs are appear yellow, progressing to more red for those that are signifi-
cant. Similarly, insignificant genes appear as light blue and then progress to dark blue 
for more significant genes (Fig. 1c). In the third step of the Multioviz workflow, the 
user then has the flexibility to perturb any part of the GRN within the interface (e.g., by 
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adding or removing variable nodes from the graph) to investigate in silico hypotheses 
(Fig. 1d). The user can subsequently click a button to rerun the statistical analyses (e.g., 
BANNs in web application or another variable selection method in the Multioviz 
R package), and observe the newly visualized GRN (Fig.  1e). The human-in-the-loop 
perturbation analyses provided by Multioviz will hopefully lead to better informed 
hypotheses to be tested and validated in the wet-lab for downstream tasks.In this sec-
tion, we describe the GRN visualization, perturbation, and R package features in more 
detail.

Interpretable visualization of gene regulatory networks

The first step of the Multioviz workflow is to visualize molecular variables in the con-
text of a GRN (Fig. 2). The minimum required input is a file with two columns: (i) id 
which lists the molecular variables of interest and (ii) score which provides an associ-
ated summary statistic for each. Multioviz directly visualizes these data as a GRN. 

Fig. 1  Schematic overview of running an end-to-end computational analysis with the Multioviz platform. a, 
b The user uploads their own individual-level data or summary statistics derived from an omics study. c Input 
data are visualized as gene regulatory networks (GRNs). Here, darker node colors denote greater statistical 
significance for a genomic variable. The mapping within and between molecular levels are given via edges 
which share the same color as the out-degree node. d Multioviz allows users to visualize and perturb 
GRNs from a prioritized list of significant molecular variables. e Through the perturbation feature, users 
can explore their generated GRN and delete nodes, then rerun statistical analyses to produce a new GRN. 
Subsequent rerunning of the variable selection method regenerates data to be visualized as an updated GRN. 
f Human-in-the-loop perturbation analyses provide better informed in silico hypotheses to be tested and 
validated in the wet-lab
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The shape of each node in the GRN corresponds to the molecular level (e.g.,  a SNP 
versus a gene) and the node color represents the importance of each variable (e.g., PIP 
or p-value) (Fig. 2a). Overall, variables with greater degrees of significance are plotted 
with darker colors. For the purposes of demonstrating Multioviz functionality, we 
illustrate multio-omic data with SNPs and genes as the two molecular levels. Multio-
viz color-codes the first (SNPs) and second molecular levels (genes) as yellow to orange 
circles and light to dark blue rectangles, respectively. Because Multioviz leverages 
biological annotations that allow for the inference of biological hierarchies, there are 
directed edges between molecular levels. For example, given that SNPs can occur within 
the boundary of a gene and affect its function, we represent the interaction between the 
two levels as directed arrows when moving from the SNP to gene level [18]. Edges within 
the same molecular level are undirected, since we do not assume to have information 

Fig. 2  Components of gene regulatory networks (GRNs) and a schematic overview for performing 
perturbation analyses in Multioviz. a Visualization of the components making up a GRN. Here, variables 
(e.g., SNPs and genes) are represented as nodes. The shape of these nodes are different depending on the 
molecular level that they represent and the color scheme describes the significance level of each variable 
according to a statistical model (e.g., p-value or PIP). Insignificant SNPs are more yellow and more statistically 
important SNPs are depicted in red. Similarly, insignificant genes are light blue, while significant genes 
are dark blue. b Directed edges are used to map nodes between molecular levels (e.g., SNPs reside in the 
boundaries of genes) [18]. Since we do not assume to have access to temporal information, interactions 
between variables on the same molecular level are represented by undirected edges. There are three 
classes of edges between and within molecular levels: no connectivity, sparse connectivity, and complete 
connectivity. Here, the first molecular level has no connectivity since there are no direct interactions 
between SNPs. However, the second molecular level has complete connectivity because there is an 
interaction between all genes. The nodes and edges together form a visual representation of a GRN. c To 
emulate perturbation analyses, Multioviz allows users to select molecular variables (i.e., nodes), delete 
them, and rerun the statistical analysis to generate a new GRN. To perform this type of analysis within 
in the Multioviz interface, users simply highlight the variable of interest by (1) clicking on the node 
and selecting “Edit”, (2) clicking on “Delete selected”, and then (3) clicking “Rerun” under the “Perturb” left 
drop-down menu. An overview of the Multioviz interface can be found in Fig. 3
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on temporality. To summarize, for a given GRN, there are three types of edge connec-
tivities: (1) no connectivity between the nodes belonging to one molecular level because 
those variables do not interact biologically, (2) sparse connectivity, or (3) complete con-
nectivity. In Fig. 2b, we show no connections on the SNP-level and complete connec-
tivity between genes. For a given GRN, the user can then select a subset of molecular 
variables to perturb (i.e., add or delete) and rerun the method to identify which variables 
are significant in this new biological context (Fig. 2c).

When working directly in the Multioviz interface, users can click the “Visualiza-
tion” left-hand side drop-down to upload their own file of statistical importance scores 
for variables up to two molecular levels (Fig. 3a). This file should be a two-dimensional 
matrix with the column names labeled as “score” and “id”, respectively. Once these inputs 
are uploaded, the user can click “Run” to construct and view a corresponding GRN 
(Fig. 3b). Note that clicking on a specific node will highlight the variable itself along with 
its connected neighbors. If desired, the user can also upload their own biological annota-
tions to define a priori relationships and generate sparse edges between genomic levels 
(e.g., SNPs-to-genes or genes-to-pathways). To further explore the output of the GRN, 

Fig. 3  Overview of the Multioviz online platform user interface. a Users can select the visualization drop 
down to upload pre-generated variable ranks and annotation maps between molecular variables. b Under 
the perturbation drop down, the user can follow the outlined steps numbered in red. In step (1), the user 
will upload the required genotype matrix, phenotype vector, and biological annotation map (often given as 
a binary matrix where a “1” means that a variable belongs to a given group). In steps (2) through (4), the user 
can customize the type of method being used for association mapping, the threshold used to determine 
variable significance, and the layout for their gene regulatory network. In step (5) run BANNs (or some 
other variable selection approach) and subsequently generate the GRN. In step (6), the user can perform a 
perturbation analysis where they can select and delete variables of interest. Finally in step (7), the user will 
rerun the method to test in silico hypotheses. c Multioviz allows the user to adjust significance thresholds 
for each molecular level. d The user is able to specify the degree of mapping within each molecular level, 
thereby changing and/or modifying the GRN layout
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Multioviz offers the user the flexibility to set importance thresholds for each molecu-
lar level and filter out variables with low significance (Fig. 3c). This can be particularly 
important when generating GRNs from large datasets with many variables. Finally, users 
can manually modify the GRN after it is generated to create layouts that are most digest-
ible (Fig. 3d).

Facilitated perturbation analyses for in silico experimentation

The flexible functionality of Multioviz allows for the in silico testing of hypotheses 
where the nodes and edges of a learned GRN can be perturbed to observe the influence 
of different molecular variables onto a phenotype of interest. These changes are run as 
altered inputs in a variable selection model that runs in the background of the software 
which then generates a new set of significant molecular variables that are then visual-
ized as another interactive GRN (see Fig.  3). In the Multioviz web application, the 
statistical method that is implemented is BANNs  [7]. Like many linear and nonlinear 
models, BANNs requires a genotype matrix and a phenotype vector as input. Consider a 
biological study with N observations (e.g., the number of individuals, cells, tissues) that 
have been phenotyped for some response y = (y1, . . . , yN ) . Assume that the i-th sample 
has been genotyped, sequenced, or profiled for J variables (xi1, . . . , xiJ ) (e.g., gene expres-
sion, single nucleotide polymorphisms, proteomics). Collectively, all variables across all 
samples can be collected in an N × J  matrix X . In the Multioviz interface, users can 
click the “Perturb” drop down menu and upload their data D = {X, y} along with a set of 
biological annotations encoded as a J × G binary mask matrix M where G denotes the 
number of groups on the second molecular level. In this case, we have J SNPs that are 
grouped into G genes. To run BANNs (or a similar variable selection approach) and gen-
erate a GRN, the user should click “Run” once their data are uploaded. Once the user has 
a clear understanding of the GRN, in silico hypothesis testing can carried out by click-
ing on a variable of interest, selecting “Edit” to delete the node and its connected edges, 
and then clicking “Rerun” to rerun BANNs and generate new sets of interactive GRN. 
Overall, this human-in-the-loop process facilitates the efficient testing of any number of 
hypotheses.

Flexible integration of statistical and machine learning methods

Part of the contribution of Multioviz is that it is also available as a standalone R pack-
age. This enables users with coding experience to have more control over the statisti-
cal methodologies that run in the background of the software. This is important when 
there are unique theoretical considerations that need to be made for different types of 
omic data before performing perturbation experiments. Regardless of the method used, 
we recommend that the model have the ability to variable selection or regularization to 
ensure that the resulting GRN is reasonably sized (i.e., reducing an initial high-dimen-
sional set of variables to a small number worthy of follow-up). Implementing Multio-
viz within a developer script only requires two inputs once the package is installed: 
(i) a file of molecular variables and their associated scores, and (ii) a set of biological 
annotations.
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Results
Demonstration of Multioviz on real data

To demonstrate the utility of Multioviz, we apply the software to real genetic data 
from a heterogeneous stock of mice collected by the Wellcome Trust Centre of Human 
Genetics (http://​mtweb.​cs.​ucl.​ac.​uk/​mus/​www/​mouse/​index.​shtml) [16]. The geno-
types from this study were downloaded directly using the BGLR R package [20]. This 
study contains N = 1,814 heterogeneous stock of mice from 85 families (all descend-
ing from eight inbred progenitor strains) and 131 quantitative traits that are classified 
into 6 broad categories including behavior, diabetes, asthma, immunology, haematology, 
and biochemistry. Phenotypic measurements for these mice can be found freely avail-
able online to download (details can be found at http://​mtweb.​cs.​ucl.​ac.​uk/​mus/​www/​
mouse/​HS/​index.​shtml). In this study, we focus on modeling the percentage of CD8+ 
cells in these mice as our y vector. For preprocessing, we corrected this trait for sex, age, 
body weight, season, and year [16]. The X matrix that we input into Multioviz con-
tains single nucleotide polymorphisms (SNPs) as variable, each of which are encoded as 
{0, 1, 2} copies of a reference allele at each locus. For mice with missing genotypes, we 
imputed values by the mean genotype of that SNP in their corresponding family. Only 
polymorphic SNPs with minor allele frequency above 5% were kept for the analyses. This 
left a total of J = 10,227 SNPs that were available for all mice. Lastly, to create biological 
annotation file M , we used the Mouse Genome Informatics database (http://​www.​infor​
matics.​jax.​org) [21] to map SNPs to the closest neighboring gene(s). Unannotated SNPs 
located within the same genomic region were labeled as being within the “intergenic 
region” between two genes. Altogether, a total of G = 2,616 annotations were analyzed.

We input these files into Multioviz where we assumed that significant SNPs and 
genes would produce PIPs greater than or equal to 0.5—this is also known as the median 
probability model threshold in Bayesian statistics [19]. When viewing the correspond-
ing GRN produced by the software, this resulted in 15 associated SNPs variables and 
19 enriched genes (Fig. 4). Notably, we observed the SNP CEL-17_31069801 and gene 
hlb156 on chromosome 17 as both being significant (PIPs = 1). As corroborating evi-
dence, the genomic region where these molecular variables reside has been reported 
to contain highly significant SNPs that contribute to non-additive variation for CD8+ 
T-cells [16]. To investigate this region further, we perturbed the GRN in Multioviz by 
deleting CEL-17_31069801 and observed the emergence of CEL-17_31214920 as being 
important which also maps to the hlb156 gene (PIP = 1). Two new gene-level variables 
that also became enriched upon perturbation and are both associated with CD8+ T-cell 
differentiation are  Anapc1 (PIP = 0.726) and  Pard3 (PIP = 0.998). Anapc1 functions 
in the metaphase-to-anaphase transition in the cell cycle and has been associated with 
poor prognosis in T-cell acute lymphoblastic leukemia [22]. Pard3 directs polarized cell 
growth and asymmetric cell division [23]. The asymmetric division of T-cells has been 
uncovered as a potential means by which effector and memory T cells are differentiated 
during immune responses[24]. Overall, we show here that Multioviz has the potential 
to enable users to generate new testable hypotheses  in silico through its perturbation 
framework. These results suggest a honed set of molecular variables to explore in inves-
tigating mechanisms underlying the percentage of CD8+ T cells in heterogeneous mice.

http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml
http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml
http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml
http://www.informatics.jax.org
http://www.informatics.jax.org
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Comparing platforms during a perturbation analysis

To comprehensively assess Multioviz’s performance during an in silico perturbation 
analysis, we compared Multioviz with two comparable platforms, OpenXGR [9] and 
vissE.cloud [10] (Table  1), which leverage Gene Set Enrichment Analysis (GSEA)
[27] to visualize significant SNPs and genes that belong to subnetworks and enriched 
pathways (Table 1). For this platform comparison, we again utilized the heterogeneous 
stock of mice dataset from the Wellcome Trust Centre of Human Genetics[21]. While 
all platforms similarly aim to infer GRNs from high-dimensional multi-omics data, there 
are several differences, predominantly in data preprocessing, ease-of-use, and interface 
functionality.

Similar to Multioviz, both OpenXGR and vissE.cloud take precomputed sta-
tistics for the molecular level (e.g., genes) of interest. However, neither OpenXGR and 
vissE.cloud accommodate information about intergenic regions and, despite their 
potential significant regulatory influence, statistics corresponding to these features 
must be removed before these platform analyses can proceed  [28]. While OpenXGR 
and vissE.cloud provide statistical confidence scores for molecular variables, these 
scores are presented in the form of lists and graphs (rather than being integrated into 
the output networks), which makes interactive variable selection less user-friendly. In 
the context of OpenXGR, only the gene table with functional descriptions and statisti-
cal significance scores is interactive, not the GRN itself. This can be limiting in settings 
where the goal for users is to interpret the GRNs. For vissE.cloud, various visuals for 
multi-scale analyses including GRNs and gene set enrichment exist. However, functional 

Fig. 4  Demonstration of an in silico analysis using Multioviz on a heterogeneous stock of mice dataset from 
the Wellcome Trust Centre of Human Genetics. We applied Multioviz to visualize a GRN with associated 
SNPs and enriched genes driving the architecture of CD8+ cell percentage. To generate this GRN, we set the 
following parameters in the Multioviz software: (i) Molecular Level 1 (ML1) Map Type = 
None; (ii) Molecular Level 2 (ML2) Map Type = Complete; (iii) ML1 Threshold = 0.5 
which follows the median probability model [19]; (iv) ML2 Threshold = 0.5; and (v) GRN Layout 
= “layout_with_kk”. In this figure, SNP-level variables in ML1 (red circles) map to gene-level variables 
in ML2 (blue squares). Upon deleting the  CEL-17_31069801 SNP and rerunning Multioviz, we observe a 
new association with the SNP CEL-17_31214920 and a new enrichment of several genes, including Anapc1 
and Pard3. These are depicted in the perturbed GRN on the right. Note that both the deleted and newly 
enriched SNPs map to the hlb156 gene
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connection between these scales is unclear, making it challenging to identify gene set 
affiliations and discern genes within specific subnetworks. Perhaps the most noticeable 
limitation in functionality for the OpenXGR and vissE.cloud platforms is that they 
lack integration support for a wide range of statistical models, a key component that is 
available for method developers to integrate in the Multioviz R package. Further, 
while Multioviz enables GRN generation that incorporates both genes and SNPs 
simultaneously, mirroring biological networks, OpenXGR and vissE.cloud only per-
form single molecular level GRN construction (e.g., creating only a SNP GRN or gene 
GRN, but not both). Currently, OpenXGR is restricted to human genomes, with plans to 
include compatibility with mouse data in future iterations of the platform [9]. Lastly, nei-
ther OpenXGR and vissE.cloud support direct in silico perturbation analysis.

Given the platform restrictions for both OpenXGR  [9] and vissE.cloud  [10], we 
needed to implement a few additional human-in-the-loop steps to their workflows in 
order to compare their performance with Multioviz. The GSEA implementation in 
vissE.cloud requires that all G genes be input as a ranked list (in ascending order), 
a corresponding z-score statistic, or as p-values (P1, . . .Pg ) . OpenXGR, on the other 
hand, only accepts p-values as input. Thus, in order to re-analyze the same percentage 
of CD8+ cells phenotype, we used the minSNP procedure [25, 26]. Here, we ran a uni-
variate linear model for each SNP individually, and attributed a p-value for each gene by 
using the SNP with the lowest p-value in that gene’s region. This produced a list of genes 
with p-values from which we could determine a set of statistically significant genes. 
To ensure compatibility between platforms, we then filtered out any genomic features 
labeled as “intergenic” regions. Next, where applicable, we leveraged the Mouse Genome 
Informatics (MGI) database [29] to convert the mouse gene names to their correspond-
ing human gene names to ensure compatibility with OpenXGR. With these paired gene 
and statistical inputs prepared, we were able to proceed with running perturbation anal-
yses for all three platforms.

To implement a perturbation analysis in OpenXGR and vissE.cloud, we carry 
out the following steps. First, we run each platform with the paired gene and statistical 
measure inputs derived from the full mouse dataset. Second, we manually remove a sta-
tistically significant feature. Then, third, we rerun each platform without the significant 
feature to imitate an in silico knock-out (Fig. 5). It is worth noting that, for this particu-
lar dataset, neither of the competing platforms were able to generate GRNs using their 
default settings. Consequently, we had to manually adjust each of their hyper-param-
eters to investigate relationships between genes and pathways connect to CD8+ cell 
percentage. In OpenXGR, this meant setting the “functional interaction” to the lowest 
value of “medium confidence”; while, for vissE.cloud, we needed to fix the overlap 
threshold for gene set similarity measurement to the minimum value of 0.1. Notably, 
Multioviz simplifies the process of identifying the degree of meaningful functional 
interactions by incorporating a toggle directly into its platform interface. In Fig. 5, we 
display Multioviz with a selected edge threshold of 0.1 to ensure fair comparisons 
with the other platforms.

Each of the platforms we compare generates a slightly different type of visual GRN. 
Multioviz provides an interactive GRN of SNPs and genes with their associated sig-
nificance scores that enables users to explore and interact with the network dynamically 
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(Fig. 5a). Conversely, OpenXGR outputs a static image of a gene level GRN, with a scroll-
able table of gene names and associated statistical measures below it (Fig. 5b). While the 
vissE.cloud interface offers a wider range of genomic analyses, it does not directly 
link how the gene-level statistics correspond to gene set enrichment results. Instead, 
clusters of gene names and their associated statistics are displayed separately in a “Gene 
Stat” plot (Fig. 5c), while networks of connected pathways from GSEA are displayed in 
a different panel. Performing in silico perturbations also results in variations of detailed 
images from all three platforms. Due to us needing to include additional human-in-the-
loop steps to overcome a lack of perturbation functionality for OpenXGR and vissE.
cloud, the total needed to time to run our in silico analysis took approximately 30 min 
for OpenXGR and approximately 40  min for vissE.cloud. This compared to only 
needing 10  min to run an entire workflow for Multioviz. Overall, these compari-
son highlights promise of Multioviz to accelerate key steps in in silico perturbation 

Fig. 5  Comparison of gene regulatory network outputs from Multioviz, OpenXGR, and vissE.cloud 
during a perturbation analysis. Leveraging the same CD8+ cell percentage in the mice dataset from the 
Wellcome Trust Centre of Human Genetics (similar to Fig. 4) [21], we set out to compare these platforms. To 
ensure compatibility between platforms, we first preprocess data inputs by removing intergenic regions, 
and converting from mice gene names to human gene nomenclature where applicable. Then we proceed 
with perturbation analysis. a Perturbation analysis using Multioviz. The top panel shows an inferred GRN 
using Multioviz. The bottom perturbed GRN is generated by removing the most significant gene, FMN2 
and clicking “Rerun” on the platform. The total runtime for this analysis was approximately 10 min. b Similar 
perturbation analysis using OpenXGR [9]. The platform’s “Subnetwork Analyzer for Genes” (SAG) requires a 
list of genes and associated p-value statistics. To achieve this, we ran a series of univariate linear regressions 
for each SNP and determined the list of significant genes using the minSNP approach [25, 26]. This step 
was then followed by removing intergenic regions and converting from mice gene names to human gene 
nomenclature where possible. In OpenXGR, nodes represent genes in the inferred GRN, with darker colors 
indicating more significant genes. OpenXGR lacks in silico perturbation functionality. Thus to replicate the 
Multioviz pipeline, we manually remove the most significant gene DNAH8 ( P = 3.25× 10

−60 ) from 
the dataset. We then rerun the OpenXGR pipeline to obtain the new GRN. Runtime for this analysis was 
approximately 30 min. c Similar perturbation analysis using vissE.cloud [10]. The vissE.cloud 
platform uses “Gene Set Enrichment Analysis” (GSEA) [27] which requires a list of genes and their paired 
summary statistics. To achieve this, we again use the minSNP approach, removed intergenic regions, and 
where applicable, converted from mice gene names to human gene nomenclature. Given that the gene set 
network that vissE.cloud outputs does not directly show which genes are most significant, we again 
perturbed DNAH8 as we did in OpenXGR, resulting in the shown perturbed gene set network. The total 
runtime was approximately 40 min
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workflows. The Multioviz platform interface requires less data preprocessing for 
inputs, more flexible functionality for real time investigation, and requires less end-to-
end runtime for analysis.

Discussion
Multioviz is an interactive platform for in silico hypothesis testing with GRNs. Both 
the web platform and the R package allow users to easily explore interactions between 
variables in omics datasets through clear visualizations and by enabling them to perform 
perturbation analyses. It is well known how valuable it can be to perform in silico knock-
out or knock-down experiments to determine the best next actionable steps, prior to 
performing follow-up in-vivo and in-vitro experiments [30]. The Multioviz platform 
is in service of this goal.

Our real data results with the heterogeneous stock of mice dataset from the Wellcome 
Trust Centre for Human Genetics [16] serve as an illustrative example of how Multio-
viz can be used to identify a small set of candidate molecular variables that could be 
implicated in CD8+ T-cell differentiation. Our platform comparison results highlight 
the value of Multioviz by being a comprehensive in silico GRN perturbation plat-
form, equipped with multi-level interactivity to ensure that practitioners can intuitively 
and efficiently test multiple hypotheses prior to spending energy and resources in the 
wet-lab. Further, our R package enables method developers to integrate other statistical 
models for biological experts to interact with subsequent GRN results. As part of future 
work, we want to extend Multioviz to integrate a wider array of mathematical and 
machine learning models into the web platform, as well as allow for integrating more 
than just two molecular levels for analysis.

Overall, we envision platforms like Multioviz being used for applications such as 
early drug development where the goal is often not only to identify potential druggable 
targets for disease pathways but also test the effects of drugs  in silico prior to moving 
them into a biological system. Further, platforms including Multioviz could serve as 
a powerful means through which clinicians can generate and explore GRNs on a patient 
level and, as such, prescribe treatments and dosages tailored to each patient. The Mul-
tioviz platform is freely available, thereby providing researchers with an accessible 
way to analyze punitive molecular mechanisms underlying various traits across a wide 
array of biological levels.
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