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Abstract 

Background:  Protein solubility is a critically important physicochemical property 
closely related to protein expression. For example, it is one of the main factors to be 
considered in the design and production of antibody drugs and a prerequisite for real-
izing various protein functions. Although several solubility prediction models have 
emerged in recent years, many of these models are limited to capturing information 
embedded in one-dimensional amino acid sequences, resulting in unsatisfactory 
predictive performance.

Results:  In this study, we introduce a novel Graph Attention network-based protein 
Solubility model, GATSol, which represents the 3D structure of proteins as a protein 
graph. In addition to the node features of amino acids extracted by the state-of-the-
art protein large language model, GATSol utilizes amino acid distance maps gener-
ated using the latest AlphaFold technology. Rigorous testing on independent eSOL 
and the Saccharomyces cerevisiae test datasets has shown that GATSol outperforms 
most recently introduced models, especially with respect to the coefficient of deter-
mination R2, which reaches 0.517 and 0.424, respectively. It outperforms the current 
state-of-the-art GraphSol by 18.4% on the S. cerevisiae_test set.

Conclusions:  GATSol captures 3D dimensional features of proteins by building 
protein graphs, which significantly improves the accuracy of protein solubility predic-
tion. Recent advances in protein structure modeling allow our method to incorporate 
spatial structure features extracted from predicted structures into the model by relying 
only on the input of protein sequences, which simplifies the entire graph neural net-
work prediction process, making it more user-friendly and efficient. As a result, GATSol 
may help prioritize highly soluble proteins, ultimately reducing the cost and effort 
of experimental work. The source code and data of the GATSol model are freely avail-
able at https://​github.​com/​binbi​nbinv/​GATSol.

Keywords:  Protein solubility, Alphafold, ESM-1b, Graph neural network, Attention

*Correspondence:   
dming@njtech.edu.cn

1 College of Biotechnology 
and Pharmaceutical Engineering, 
Nanjing Tech University, 30 
South Puzhu Road, Jiangbei New 
District, Nanjing 211816, Jiangsu, 
People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05820-8&domain=pdf
https://github.com/binbinbinv/GATSol


Page 2 of 15Li and Ming ﻿BMC Bioinformatics          (2024) 25:204 

Introduction
Solubility is a significant indicator of protein performance in biotechnology and medi-
cine [1–3], especially for recombinant proteins in disease therapy [4]. For example, 
recombinant proteins used for disease treatment are usually injected subcutaneously, 
and they need to have a high solubility to avoid aggregation when they enter the body at 
high therapeutic concentrations [5]. This is also true in the pharmaceutical field, where 
one needs to consider increasing the solubility of antibodies to avoid aggregation that 
could lead to a decrease in their activity in vivo [6]. Standard protein production meth-
ods in Escherichia coli (E. coli) often result in low solubility, hindering their manufactur-
ability [7]. Improving protein solubility experimentally involves using weak promoters 
[8], lower temperatures [9], modified growth media, or optimizing other expression 
conditions [10]. However, even today, screening for high solubility through experiments 
is still time- and effort-consuming, which has led to the development of bioinformat-
ics methods to predict protein solubility over time, thus avoiding many unnecessary wet 
experimental studies [11].

Over the past decades, several computational methods have been developed to predict 
protein solubility using various features of protein sequences. Most of these tools with 
relatively high accuracy use traditional machine learning models such as support vec-
tor machines [12] and gradient boosters [13], whose input consists of pre-extracted fea-
tures, i.e., features extracted from protein sequences by other bioinformatics tools before 
being fed into the machine learning model. For example, SOLpro employs a two-stage 
SVM model to train 23 features extracted from protein sequences [10]. PROSO II uses 
a two-layer structure with a Parzen window [14], whose first layer is a first-stage logistic 
regression model, and the second layer is a second-stage logistic regression model [15]. 
More recent models, such as SoluProt, use a new independent test set and utilize the 
frequencies of significant dimers extracted from protein sequences as part of the input 
features [16]. DeepSol, an earlier deep learning predictor proposed by Khurana and col-
leagues [17], was constructed as a single-stage predictor that uses the high-dimensional 
solubility classification features encoded in the typical amino acid k-mers and their non-
linear local interactions extracted from protein sequences, using a parallel convolutional 
neural network with different filter sizes [18].

However, one-dimensional (1D) information, whether in the form of core amino acids, 
specific motifs, overall amino acid sequence identity, or hidden Markov models [19], 
cannot fully illuminate the functional characteristics of proteins. Deep learning models 
using graphical neural networks, which exploit the contact information of amino acid 
pairs, such as GraphSol, have also emerged [20, 21]. The advantage of this method is that 
it adds some physical significance and interpretability to the predictor by considering 
amino acid residue pair contact information. However, The data processing procedure 
in the GraphSol model is quite intricate, making it challenging to input custom data for 
predictions. Additionally, the accuracy of these prediction methods still needs to meet 
the demands of practical applications. Consequently, there remains ample room for 
enhancement and improvement in this regard.

Numerous artificial intelligence methods have emerged dedicated to precisely predict-
ing high-resolution 3D protein structures from one-dimensional amino acid sequences. 
These advancements have enabled us to access the 3D structures of many proteins, 



Page 3 of 15Li and Ming ﻿BMC Bioinformatics          (2024) 25:204 	

leveraging the predictions made by these AI models. Notably, Alphafold has made 
remarkable strides in protein 3D structure prediction [22–24], earning validation and 
acclaim through the Critical Assessment of Protein Structure Prediction. This accom-
plishment has rendered the predicted protein structures efficient for applications in 
scientific research. Furthermore, research in large-scale language modeling for proteins 
is booming, with the ESM-1b model emerging as a prominent representative [25, 26]. 
Based on the Transformer architecture, this is an unsupervised protein language model. 
The self-attention mechanism of the ESM-1b allows it to compute pairwise interactions 
between residues in protein sequences directly, capturing the intricate interdependen-
cies and interactions among amino acid residues at different positions. These interac-
tions are intricately linked to the protein’s structural characteristics and are reflected 
in the sequence patterns. What’s noteworthy is that unsupervised language models can 
leverage extensive sequence data from protein databases without the need for manual 
annotations. The ESM-1b model, trained on a vast dataset comprising 250 million pro-
tein sequences, can extract meaningful features directly from amino acid sequences. 
These feature representations encode crucial information about a protein’s secondary 
and tertiary structures, functionality, homology, and more, which can be intuitively con-
veyed through linear projections.

This study introduces GATSol, an innovative structure-based solubility prediction 
method that uses graph-attentive deep learning modeling [27]. In GATSol, proteins are 
represented by a graph data structure consisting of nodes and edges, where nodes rep-
resent amino acids and edges connect nodes whose amino acids are closely contacted 
in the 3D structure. The method then applies graph neural networks to extract features 
and learn the underlying relationships in the graph data, a technique that has proven 
to be very successful in predicting protein properties [28, 29]. Specifically, Alphafold is 
used to predict the 3D structure of proteins based on their sequences, from which amino 
acid distance maps are generated. The protein large language model, ESM-1b, is applied 
to the sequence to extract embedding features for each node in the protein graph. The 
model was then fully trained and rigorously tested using the eSOL database. For a fair 
comparison, we also applied the model to a larger test set of S. cerevisiae to assess its 
robustness and applicability. Our calculations revealed GATSol outperformed recently 
introduced models in the two test datasets.

Methods
Dataset

During model training and testing, we utilized two datasets: eSOL and S. cerevisiae. 
The eSOL dataset underwent preprocessing to remove intra-dataset homology. Subse-
quently, it was split into a training set and the first independent test set. To ensure data 
diversity, the S. cerevisiae dataset was compared to eSOL to identify and remove homol-
ogous sequences, forming the second independent test set. The distribution of sequence 
lengths and solubilities of the proteins used for training and testing is shown in Fig. S1 
[see Supplementary file 1]. It can be observed that the solubility distribution in the data-
set exhibits a trend where shorter protein sequences tend to have relatively higher solu-
bility from Fig. S1A, S1B, and S1C, with this trend being more pronounced in the eSol 
dataset for training. The specific dataset treatments are described below.
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eSOL dataset

eSOL is a database on the solubility of the entire ensemble of E. coli proteins individu-
ally synthesized by the PURE system, which is a chaperone field [30]. To create the 
training set, we utilized the eSol database and adhered to the same data processing of 
GraphSol. Initially, the eSol dataset comprised 4132 proteins, with solubility defined 
as the ratio of supernatant grade to total grade in the PURE physical chemistry exper-
iment [31]. These 4132 proteins were initially mapped to the NCBI database using 
their gene names, resulting in 3144 samples.

Minimizing homology within and between the training and test sequences was 
imperative to ensure a fair evaluation of the prediction tool’s performance. Conven-
tional clustering tools such as CD-HIT, MMseqs 2, and BLASTCLUST were found to 
need to be more sufficient in achieving this homology separation [32]. Therefore, we 
introduced our ggsearch36 tool [33], which allows for global identity comparisons, 
and employed the following homology separation procedure:

1.	 Prepare a dataset in FASTA format for homologation.
2.	 Extract the first amino acid sequence from the dataset to initialize a library file.
3.	 Retrieve the second protein sequence from the dataset and compare homology with 

the library file using ggsearch36. The sequence is added to the library file if the global 
identity between the two sequences is < 30% and the E-value is ≤ 1e−6.

4.	 Repeat the above step for the third protein sequence and continue until all data in the 
dataset have been homologously compared once.

The final library file represents the homology-separated dataset, which included a 
total of 2679 protein sequences. To ensure equitable comparisons with other mod-
els, we adopted the same training set division strategy as GraphSol. Any amino acid 
sequences presented in GraphSol’s training set were included in our training set, 
while the remainder were allocated to the test set. As a result, the final dataset con-
sists of 2019 amino acid sequences assigned to the training set (75%) and 660 amino 
acid sequences assigned to the test set (25%). It is worth noting that both the training 
and test sets utilized in our model constitute equal-sized subsets of the correspond-
ing training and test datasets of GraphSol. This equivalence facilitates a direct and 
insightful comparative analysis between our model and GraphSol.

Saccharomyces cerevisiae dataset

For independent external testing, we employed a unique protein dataset sourced from 
S. cerevisiae [34]. Initially, the dataset comprised 447 proteins with UniProt Entry 
identifiers and their corresponding solubility information obtained through the PURE 
cell-free expression assay. To ensure the integrity of the dataset, we strictly filtered 
internal homologies using the same meticulous process as the eSOL dataset. After 
removing internal homology, the dataset was streamlined to 414 entries.

We then performed an exhaustive homology removal process between this dataset 
of 414 entries and the eSOL dataset. Through these rigorous procedures, we obtained 
the S. cerevisiae dataset—S. cerevisiae_368, which currently contains 368 amino acid 
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sequences. In addition, we isolated a subset of the S. cerevisiae dataset—S. cerevi-
siae_108 [20], which includes 108 proteins, mirroring the S. cerevisiae dataset used by 
GraphSol. This was done to facilitate direct comparisons with other models.

Protein graph
Node features

Nodes play a pivotal role in the graph structure [35]. In the protein graph, each amino 
acid is considered a separate node, and we extract features from each amino acid in the 
sequence as node attributes. We tested the ESM-1b and Blosum62 features, did abla-
tion experiments on both features separately, and found that the model works best when 
these features work together. This suggests that although the ESM-1b feature contains a 
large amount of information about the structure of biomolecules, the Blosum62 feature, 
as a widely used one, can still complement the enhancement effect.

ESM‑1b features

The ESM-1b model is a cutting-edge transformer network honed by self-supervised 
learning of an astonishing dataset of about 250 million proteins from the UniRef50 
dataset [25]. This model takes amino acid sequences as input and generates numerical 
representations of these sequences, often called protein embeddings. A key strategy 
throughout the training of ESM-1b was to randomly mask approximately 15% of the 
amino acids in the protein sequence. Subsequently, the model was fine-tuned to identify 
and predict the identities of these masked amino acids. This rigorous training regimen 
forces the model to encapsulate local and global protein sequence information into a 
1280-dimensional representation vector assigned to each amino acid. Thus, the ESM-
1b model can represent each amino acid in an amino acid sequence of length L as a 
1280-dimensional vector, yielding an L× 1280-dimensional feature matrix.

Blosum62 features

Blosum62 stands for BLOcks of Amino Acid SUbstitution Matrix 62, a substitu-
tion matrix used to evaluate the possibility of amino acid substitutions during protein 
sequence comparisons [36]. This matrix utilizes a large amount of comparative data 
from known protein sequences to derive substitution scores between different amino 
acids. This is achieved by analyzing the substitutions of alternative amino acids at dif-
ferent positions. Thus, Blosum62 encodes each amino acid in a protein sequence into 
a 20-dimensional feature vector that reflects their respective substitution propensi-
ties. The functionality for generating the corresponding L× 20 Blosum62 matrix from 
the raw amino acid sequence of L length has been seamlessly integrated into iFeature-
Omega, and we will leverage this program to generate the Blosum62 matrix [37] directly. 
Notably, Blosum62 frequently performs excellently in protein-related tasks [37].

Distance map

In the intricate world of protein structures, the spatial relationships between amino 
acids, especially the proximity between α-carbon atoms, play a pivotal role. Protein 
backbone structures based on α-carbon atoms have achieved leading results in protein 
generation [38]. These distances reveal the three-dimensional configuration of proteins. 
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We construct the adjacency matrix, also known as the distance map, by precisely meas-
uring and recording these distances in the protein graph.

Obtaining the 3D structure of a protein directly from its amino acid sequence is typi-
cally challenging. Here, for a given amino acid sequence, we generated its 3D structure 
by modeling with Alphafold [22] and saved it as a PDB file. This allows us to calculate the 
distances between the α-carbon atoms of individual amino acids and thus determine the 
distance map between residues.

In our protein graph representation, each amino acid corresponds to a node, and 
we use these distances to determine whether edges exist between different amino acid 
pairs to construct a distance map. When the distance between the α-carbon atoms of 
two amino acids falls below a predefined threshold, we build an edge to indicate interac-
tion or proximity. In this way, by continuously adding edges to the amino acid nodes, we 
ended up with a distance map that characterizes the structure of the protein. To deter-
mine the most suitable threshold, we used a cross-validation method.

An example of a distance map is given in Fig. 1, in which ygjH is a nucleic acid-binding 
protein in the eSOL dataset. The figure shows several bands that cross the main diago-
nal, which occur at β-turn positions, including amino acids A28, Q40, R75, G91, etc. 

Fig. 1  A 3D structure of the amino acid sequence corresponding to ygjH predicted with Alphafold in the 
eSOL data, the blue part represents the α-helix structure, and the orange part represents the strand structure; 
B Atom map of the ygjH protein in Fig. A after retaining only the Cα, and the upper right corner is the 
example of the calculated distances by taking two Cαs; C Adding edges to all Cα atom pairs according to the 
distance thresholds of 6Å, 8Å, 10Å, and 12Å, respectively; D Showing the distance map of α-carbons under 
the distance threshold of 10Å
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Branches approximately parallel to the main diagonal correspond to many residues par-
allel to each other in the 3D structure, forming either a β-sheet structure or an α-helix/
β-sheet folded structure. Extracted distance maps record surface information that may 
reflect many features of protein structure and solubility properties.

Neural network architecture

The Graph Attention Network (GAT) employs an attention mechanism that assigns 
weights to neighboring node features and re-aggregates these features [27]. Importantly, 
these weights are determined entirely by the characteristics of the node features, inde-
pendent of the underlying graph structure. The GATSol model autonomously extracts 
feature information from nodes and edges as the protein graph iteratively propagates 
node information. This process assigns different weights to nodes in the intermediate 
hidden layers to create fixed-size graph representation vectors. These vectors are then 
subsequently consolidated via fully connected layers. The overall architecture of the 
model is shown in Fig. 2.

Graph attention networks
Following the notation of reference [27], for a protein consisting of L amino acids, the 
input of node feature can be written as h =

−→
{h1,

−→
h 2, . . . ,

−→
h L},

−→
h i ∈ R

F , where 
−→
h i is an 

amino-acid dependent F-dimensional f feature vector, and in this work F = 1300 , 
obtained by summing ESM-1b features in 1280 dimensions and Blosum62 features in 20 
dimensions. Denote A ∈ R

L×L as the adjacency matrix representing the neighboring 
contact information. The primary function of the attention layer is to generate an output 
set of node features h′

=
−→
h 1

′,
−→
h 2

′, . . . ,
−→
h N

′  , 
−→
h i

′ ∈ R
F ′ , based on input h and A . The 

dimensionality of the feature vectors may be changed during the process: F → F ′.
To retain enough expressive power, at least one learnable linear transformation is required. 

For example, transfer from the dimension A features 
−→
h i,

−→
h j to the new dimension B features 

−→
h i

′,
−→
h j

′ for nodes i, j , and then we leverage self-attention to allocate attention weights to each 

node, eij = a(W
−→
h i,W

−→
h j) , where a signifies a shared attention mechanism: RF ′

× R
F ′

→ R , 

Fig. 2  The overall framework of the GATSol model consists of several key components. First, the node 
features of the protein graph are carefully extracted from amino acid sequences. Second, the graph’s edges 
are derived from the protein structure modeled by Alphafold and based on amino acid sequences. After 
two iterations of the graph multi-head attention layers, the features from the multi-head attention hidden 
layers are meticulously integrated. These integrated features are the input to the multilayer perceptron for 
predicting solubility values
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which used to calculate the attention factor eij , the importance of node j’s features to node I’s, 
and W ∈ R

F ;×F is a weight matrix which parametrizes a shared linear transformation.
When evaluating the target node i , we used masked attention to specifically compute 

the correlation eij among nodes j ∈ Ni within its neighborhood, encompassing the target 
node’s own influence, where Ni is some neighborhood of node i in the graph. To ensure a 
balanced distribution of weights among various nodes, we employ softmax normalization 
to normalize the computed correlations with all neighboring nodes uniformly:

when it comes to selecting the a parameter, there are two viable approaches. One option 
is to use the inner product of vectors to establish an unparameterized form of corre-
lation computation. Alternatively, a can be defined as a parameterized neural network 
layer, provided it fulfills the requirement of producing a scalar value signifying the corre-
lation between the two elements. In this context, a represents a single-layer feed-forward 
neural network, parameterized by the weight vector −→a ∈ R

2F ′ , and uses LeakyReLU as 
the activation function with a negative semiaxis slope of 0.2. Let the symbol ‖ denote the 
concatenation operation that merge two weighted feature vectors W

−→
h i and W

−→
h j into a 

new feature vector, and then compute the complete weight coefficients using the follow-
ing equation:

After obtaining the normalized attention coefficients, we proceed to compute a linear 
combination of their associated features. Subsequently, by means of a nonlinear activation 
function σ , we obtain the final output feature vector for each node:

Multi‑head attention

We employ multi-head attention to enhance the stability of the self-attention learning 
process. In other words, we invoke K sets of mutually independent attention mechanisms 
according to the initial formula, and then combine the resulting outputs:

where ‖ is the concatenation operation and αk
ij is the weight coefficients computed by 

the k set of attention mechanisms Wk is the corresponding input linear transformation 
matrix, and the final output node eigenvector 

−→
h i

′ contains the KF′ dimension features.

αij = softmaxj
(

eij
)

=
exp

(

eij
)

∑

k∈Ni
exp(eik)

αij =
exp(LeakyReLU (

−→
a

T
[W

−→
h i � W

−→
h j]))

∑

k∈Ni
exp(LeakyReLU (

−→
a

T
[W

−→
h i � W

−→
h k ]))

�h
′
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
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−→
h i
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αk
ijW

k−→h j)
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Multilayer perceptron

The vectors resulting from the fusion of multiple attention mechanisms are passed into 
a multilayer perceptron [39]. This perceptron serves the purpose of generating the pre-
dicted solubility S that we seek:

where wMLP ∈ R
KF′ is the hidden layer weights of the multilayer perceptron and b is the 

hidden layer bias.

Training and evaluation

Five‑fold cross‑validation

K-fold cross-validation is a widely employed technique for evaluating machine learning 
models [40]. It evaluates model performance, reduces overfitting, and facilitates param-
eter selection and tuning. This approach enhances the model’s generalization ability and 
ensures superior performance on previously unseen data.

In this study, we performed five-fold cross-validation on the training dataset, which 
was not used in the independent tests. Specifically, the protein dataset designated for 
training was randomly divided into five subsets. Each iteration of training rotates four 
of these subsets for model training, and the remaining one is used for model evalua-
tion. This process was iterated five times, and the hyperparameter optimization was per-
formed using the average coefficient of determination (R2) value reflecting the model’s 
performance over the five rounds. After fine-tuning the optimal hyperparameters, the 
model was trained using the entire training dataset and tested independently on a sepa-
rate test dataset.

Evaluation indicators

When training the GATSol model, we used the root-mean-square error as the loss func-
tion. We utilized R2 to evaluate the model’s performance while fine-tuning the hyper-
parameters. In addition, for comparison with the solubility classifier models reported 
in the recent literature, we categorized all predicted protein solubility values into two 
groups: i.e., those greater than or equal to the 0.5 thresholds are labeled as soluble and 
the rest as insoluble. We evaluated the model’s performance using the area under the 
Receiver Operating Characteristic (ROC) curve (AUC), accuracy, precision, and recall, 
as outlined in the following formula [41]:

S = ReLU(wMLP

−→
h i

′
T
+ b)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN
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where TP represents true positives (soluble proteins), FP stands for false positives (non-
soluble proteins predicted as soluble), TN represents true negatives, and FN stands for 
false negatives.

Results and discussion
Node feature and distance map threshold selection

For our ablation experiments, we conducted five-fold cross-validation on the training set 
to meticulously select the optimal node feature combinations and determine the most 
effective threshold for the distance graph. As depicted in Fig. 3A, our model attains its 
peak performance, with an impressive R2 value of 0.411, when ESM-1b and Blosum62 
features are seamlessly integrated into the model. This achievement underscores our 
model’s aptitude for effectively harnessing the combined information from both feature 
sets. Notably, the 20-dimensional Blosum62 features are a valuable complement to the 
already information-rich 1280-dimensional ESM-1b features.

As shown in Fig. 3B, in our quest to ascertain the optimal threshold for the distance 
map, it became evident that 10Å stood out as the superior choice. This selection enables 
our model to achieve the highest R2 value, emphasizing its proficiency in fine-tuning 
model parameters for peak performance.

Hyper‑parameter optimization

We conducted five-fold cross-validation on the identical training set to fine-tune the 
model’s hyperparameters separately, including the learning rate, batch size, number of 
attention heads, hidden channel count, and hidden layers, as shown in Fig. 4 below.

During the five-fold cross-validation, we observed a noteworthy pattern in the model’s 
fitting performance, typically characterized by reaching a peak or encountering a bot-
tleneck as hyperparameters were adjusted. As a general guideline, selecting a minimal 

F1 =
2× (Precision× Recall)

(Precision+ Recall)

Fig. 3  A Results of ablation experiments with amino acid node feature selection; B Results for distance 
thresholding of edges between nodes in a protein graph
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learning rate can result in sluggish convergence or getting stuck in local optima, while 
opting for an overly large learning rate may induce instability or even divergence in the 
training process. Similarly, a batch size that is too small can lead to a disproportionate 
increase in model training time or heightened gradient estimation noise, thereby ampli-
fying training instability. Conversely, a considerable batch size can exponentially escalate 
the model’s memory demands during training and elevate the risk of overfitting, com-
promising the model’s ability to generalize effectively.

We meticulously determined the model’s hyperparameters to balance achieving opti-
mal results and avoiding undue escalation in model complexity and computational costs. 
Specifically, we arrived at the following settings: a learning rate of 2 × 10–6, a batch size 
of 4, 16 attention heads, 1024 hidden channels, and two hidden layers. These parameter 
choices were instrumental in fine-tuning the model for its best possible performance.

Comparisons with other predictors

We conducted a comparative analysis of our model against state-of-the-art methods. 
Recognizing that model ensemble significantly amplifies model complexity and compu-
tational overhead, we opted not to engage in model ensemble, thereby ensuring a basis 
for practical usability.

As depicted in Table 1, when benchmarking the GATSol model against other exist-
ing methods, it’s worth noting that most of these methods were initially designed for 
predicting discrete states. We transformed the problem into a binary classification 
task to facilitate a fair comparison, aligning with GraphSol’s approach. We employed 
a threshold value of 0.5 to categorize proteins as soluble, and our results underscored 
significant superiority in key performance metrics. Moreover, we used the coeffi-
cient of determination R2 to comprehensively evaluate the model’s regression ability, 

Fig. 4  Hyper-parameter optimization process of learning rate (A), batch size (B), number of attention 
heads (C), hidden channel count (D), and hidden layers (E)
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providing a broader assessment of its performance. The GATSol model demonstrated 
an R2 value of 0.517, an Accuracy of 0.791, a Precision of 0.781, a recall of 0.745, an 
F1 Score of 0.763, and an AUC of 0.882. These values surpass those of the GraphSol 
model using a Graph Neural Network, and the R2 value exceeds GraphSol’s by 7.0%, 
also having a 3.2% advantage over GraphSol (Ensemble). This disparity underscores 
our model’s proficiency in discerning latent data characteristics essential for accurate 
proteolysis prediction.

Moreover, the GATSol model streamlines the proteolysis prediction process com-
pared to GraphSol, making it more practical for real-world applications. In Fig.  5, 
when observing the ROC curves of the seven methods, it becomes evident that most 

Table 1  Performance comparison of GATSol with existing protein solubility predictors on the 
independent eSOL test dataset

†Performance values for most methods are adopted from the original GraphSol paper, with the bolded values highlighting 
the best performance for a given situation

Models R2 Accuracy Precision Recall F1 AUC​

K-nearest neighbor 0.214 0.691 0.737 0.486 0.586 0.776

Linear regression 0.240 0.707 0.685 0.642 0.663 0.777

Random forest 0.370 0.760 0.750 0.690 0.729 0.825

Protein- Sol 0.376 0.714 0.689 0.688 0.693 0.808

XGboost 0.385 0.756 0.748 0.690 0.718 0.829

Support vector machine 0.411 0.761 0.763 0.684 0.721 0.842

DeepSol 0.434 0.763 0.771 0.738 0.695 0.845

ProGAN 0.442 0.763 0.770 0.676 0.720 0.853

SeqVec 0.458 0.767 0.754 0.715 0.734 0.858

TAPE 0.461 0.764 0.774 0.710 0.730 0.856

LSTM 0.458 0.765 0.748 0.677 0.730 0.855

GraphSol 0.483 0.779 0.775 0.693 0.732 0.866

GraphSol (Ensemble) 0.501 0.782 0.790 0.702 0.743 0.873

GATSol 0.517 0.791 0.781 0.745 0.763 0.882

Fig. 5  Performance comparison of GATSol with existing predictors of ROC and AUC on independent eSOL 
test dataset
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of our model’s curves occupy the upper echelons. This observation is a further testa-
ment to our model’s superior performance in proteolysis prediction.

To underscore the versatility of the GATSol model further, we conducted a rigor-
ous evaluation on the same independent test set of S. cerevisiae, akin to the procedure 
employed by GraphSol. Initially, the original S. cerevisiae test set contained 447 solu-
bility-accessible proteins. After eliminating internal redundancy and redundancy con-
cerning the training set, following the criteria of 30% global identity and an E-value 
of ≤ 1e−6, we were left with 368 proteins, denoted as S. cerevisiae_368. We also used the 
same independent test set featuring 108 proteins as GraphSol.

GATSol model’s performance was rigorously assessed on the independent test set S. 
cerevisiae_368, yielding a commendable R2 value of 0.361. Furthermore, to facilitate a 
robust comparison with other models, a parallel evaluation was conducted on S. cere-
visiae_108. The results, as detailed in Table 2, unveil the GATSol model’s outstanding 
prowess, reflected by its remarkable R2 value of 0.424., marking an impressive improve-
ment of more than 18.4% in contrast to the previously top-performing GraphSol, and an 
impressive 14% improvement compared to GraphSol (ensemble). It’s worth noting that 
all other methods returned lower R2 values on this dataset, potentially attributable to 
our model’s prowess in discerning concealed relationships within a dataset character-
ized by low homology. This proficiency enhances the model’s generalization capabilities, 
allowing it to excel in uncharted data territory.

Conclusion
This study introduces an innovative method, the GATSol model, for protein solubility 
prediction through the synergy of protein large language modeling and amino acid graph 
attention neural network modeling. GATSol outperforms most recently introduced 
models by about 0.517 and 0.424 of R2 when tests on the independent eSOL and the S. 
cerevisiae test datasets. One of the key elements of GATSol, compared to other models, 
is the use of protein graph based on ESM-1b model and the 3D protein structures pre-
dicted by Alphafold. It plays an important role in harnessing the power of graph neu-
ral networks to reveal three-dimensional features from in one-dimensional sequences. 
GATSol simplifies the entire prediction process by requiring only the input of pro-
tein sequences and the structures predicted by Alphafold, thus greatly simplifying the 

Table 2  Performance comparison of GATSol with existing protein solubility predictors on the 
independent S. cerevisiae_108 test dataset†

†Performance values for most of the methods are adopted from the original GraphSol paper, with the bolded values 
indicating the best performance for a given situation

Solubility predictors R2

GATSol 0.424
GraphSol (ensemble) 0.372

GraphSol 0.358

ccSol 0.302

Protein-Sol 0.281

CamSol 0.160

DeepSol 0.090

ProGANb 0.084
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prediction process, making it easier to use and more efficient. We can expect GATSol 
to help prioritize highly soluble proteins, which ultimately reduces the cost and effort of 
the practical experimental work.
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